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ADDING DIVERSITY TO MATHEMATICAL CONNECTIONS TO 

COUNTER KLEIN’S SECOND DISCONTINUITY 

Abstract – For instructors that try to make university mathematics 
courses relevant to future secondary school teachers, doing so generally 
involves making connections between university mathematics content 
and school mathematics content–in attempts to counter what Felix Klein 
referred to as a “double discontinuity.” In this paper, I consider the 
nature of the mathematical connections that bridge these two domains, 
and common distinctions made in extant literature between them, such as 
directionality. Through this analysis, I point out another aspect of these 
connections that has been left implicit: university mathematics is 
primarily–and reasonably–framed as a superset of school mathematics 
content. In this paper I consider alternatives, in particular 
conceptualizing connections that invert this typical relational 
connection–i.e., a subset relational connection–and I exemplify these 
connections with concepts from university courses such as real analysis 
and abstract algebra. Then, I consider the rationale for doing so in terms 
of secondary teacher education, and the ways that diversifying our 
framework of connections in this way can be used to help counter 
Klein’s second discontinuity. 
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The international Teacher Education and Development Study 

in Mathematics (TEDS-M) highlighted the great diversity in 

mathematical requirements in teacher education programs, but 

also found most secondary teacher education programs usually 

require students to take at least some university mathematics 

courses (Ingvarson et al., 2013). Although this requirement is not 

universal, taking such mathematical coursework, offered by 

university mathematics departments, is reasonably common in 

secondary teacher education. And yet such courses are not 
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without significant challenges (e.g., Wasserman et al., 2018; 

Zazkis & Leikin, 2010). One challenge is related to Felix Klein’s 

(1932/2016) description of the “double discontinuity” teachers 

face in their mathematical preparation–which captures the gap 

future teachers face as they transition to their university studies 

(Klein’s first discontinuity), and then again from their university 

studies (Klein’s second discontinuity). Broadly speaking, Klein’s 

resolution involved elaborating mathematical connections 

between school and university mathematics, which were captured 

in a series of volumes entitled “Elementary mathematics from a 

higher standpoint” (Klein, 1932/2016; Weigand et al., 2019). 

Various scholars–indeed, all those contributing to this seminar 

series and special journal issue–have continued developing this 

line of work, as well as expanding it, to consider how to help 

make university mathematics courses more relevant to teacher 

preparation (e.g., Alvarez et al., 2020; Cho & Kwon, 2017; 

Derouet et al., 2018; Dreher et al., 2018; Gueudet et al., 2016; 

Stylianides & Stylianides, 2014; Wasserman, 2018; Wasserman 

& McGuffey, 2021; Planchon, 2019; Winsløw & Grønbæk, 

2014). Particularly with respect to Klein’s second discontinuity, 

one important theme in the literature has been identifying the 

kinds of connections to make explicit, as well as differentiating 

various types of connections. In this theoretical paper, I 

summarize recent literature and then exemplify a new distinction 

to consider, which provides opportunities to generate other 

mathematical connections; then, I make an argument about why 

these new types of connections might be especially useful with 

respect to secondary teacher education, as well as how they might 

be incorporated into university mathematics courses.  

LITERATURE 

In this section, I begin with Klein’s work and elaborate on 

developments in the field that have expanded the kinds of 

connections one might consider with respect to Klein’s second 

discontinuity. Notably, this work has involved differentiating 

mathematical and didactical (which I use roughly to mean 

mathematics-specific pedagogical) connections, as well as top-

down and bottom-up connections. I use examples of these 

different types of connections from the literature to situate and 

exemplify another dimension to consider in distinguishing 

mathematical connections. 
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Klein’s Second Discontinuity 

Before discussing the second discontinuity, it is important to 

briefly describe the first. The first discontinuity Klein described 

was about the transition from school mathematics (SM) to 

university mathematics (UM). Primarily, this describes the abrupt 

transition students sometimes feel when they encounter more 

abstract, proof-based mathematics courses at the university, 

which are quite different than their school studies. As one 

example, university mathematics courses such as abstract algebra 

often do not resemble, nor develop from, the school algebra 

students know. There are other sociocultural transitions between 

these differing institutional contexts, but the epistemological and 

cognitive transitions in terms of the mathematics itself often feel 

like discrete jumps (DiMartino, Gregorio, & Iannone, 2023; 

Gueudet et al., 2016). Work in this area primarily aims to identify 

ways to smooth over these gaps–meaning, to coordinate better 

alignment and a clearer progression throughout the transition, 

perhaps with “bridging courses,” and to connect the university 

content to the school mathematics students already know. 

Klein’s second discontinuity is different–more specific to 

future secondary teachers and, fundamentally, about teacher 

preparation. For those studying university mathematics who plan 

to become school teachers, a second discontinuity is experienced 

as they return to the school mathematics they will teach and 

grapple with how their university studies relate to the tasks of 

teaching. Empirical research suggests this is particularly 

challenging (e.g., Goulding et al., 2003; Hoth et al., 2019; 

Ticknor, 2012; Wasserman et al., 2018; Zazkis & Leikin, 2010). 

Although there are a variety of dimensions to this transition–e.g., 

the institutional context, the subject’s differing role as teacher 

versus student, the temporal gap, etc. (Wasserman et al., 2017; 

Winsløw & Grønbæk, 2014)–at some level this second 

discontinuity asks two different kinds of questions: i) How might 

university mathematics change how secondary teachers 

understand the school mathematics they will teach; and ii) How 

might university mathematics inform didactical ideas for how to 

teach this school mathematics? 

Regarding the first question, one might consider this in 

relation to the notion of backward transfer. Hohensee (2014) 

defined backward transfer as “the influence that constructing and 

subsequently generating new knowledge has on one’s ways of 

reasoning about related mathematical concepts that one has 

encountered previously” (p. 136). He found that it was possible to 
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productively influence learners’ ways of reasoning and 

conceptual connections to prior content while learning new 

material. Such backward transfer–from UM to SM–is a desired 

mechanism for helping counter Klein’s second discontinuity. It 

provides a rationale for how study of UM might contribute to 

teacher’s mathematical formation. In terms of this mathematical 

knowledge, Skemp’s (1979) differentiation–which is related to 

Piaget’s (1952) notions of assimilation and accommodation–

between ‘expansion of cognitive structure’ (e.g., adding cases to 

existing structure) and ‘mental reconstruction’ (e.g., a 

reorganization of structures) provides additional insight into how 

backward transfer might influence one’s conceptions and ways of 

reasoning. In relation to the teacher education literature, 

Wasserman’s (2018) knowledge of nonlocal mathematics for 

teaching described this as a mathematically powerful 

understanding–not just any mathematical connection from UM, 

but particular connections that change and reshape one’s 

perception of, or understanding about, the SM they will teach. 

The second question stems from the fact that efforts focused 

solely on mathematics have not had the fully desired effect. That 

is to say, the assumption that studying UM will somehow 

“trickle-down” to inform teaching practice, in the terms of Wu 

(2011), has not been supported by empirical evidence (e.g., Hoth 

et al., 2020; Zazkis & Leikin, 2010). Recent emphases on 

practice-based approaches to teacher knowledge in the teacher 

education literature (e.g., Ball, Thames, & Phelps, 2008; 

Shulman, 1986) seem to support the difficulties that are evident in 

empirical studies, as do notions of ‘far transfer’ (e.g., Wasserman 

et al., 2019). In other words, it is a fundamentally different 

question to ask how knowing the set of invertible functions under 

function composition is a group influences one’s mathematical 

understanding of inverse functions, than it is to ask how such 

knowledge influences one’s approach to teaching secondary 

students about inverse functions. Meaning, backward transfer in 

mathematical knowledge may be necessary but insufficient; a 

connection to teaching practice is another potent mechanism to 

help counter Klein’s second discontinuity. Wasserman’s (2018) 

knowledge of nonlocal mathematics for teaching described this as 

a pedagogically powerful understanding–that the mathematically 

powerful understandings from UM actually shape and influence 

classroom teaching practice in some way. 

In the introductory survey paper for a recent special issue in 

ZDM–Mathematics Education, Wasserman, Buchbinder, and 
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Buchholtz (2023) surveyed the literature to identify and depict 

theoretical distinctions with regard to university mathematics 

courses as they relate to secondary teacher preparation. They 

captured three distinctions with a figure that identified (i) two 

planes–the first mathematical and the second didactical; (ii) 

within each plane was a collection of mathematical or didactical 

concepts–differentiated between school and university; (iii) 

underlying each plane of concepts were foundational 

mathematical or didactical practices and beliefs. Briefly, to 

connect these to the literature base, the first distinction is one 

between a scientific discipline and the didactics of its school 

subject–concerned with the preparation of content for students 

(e.g., Winkelmann, 1994); within the Anthropological Theory of 

the Didactic (ATD) (Chevallard & Bosch, 2020) this might be 

understood as a distinction between mathematical and didactical 

praxeologies. The second one connects to what Gueudet et al. 

(2016) referred to as the “school level” when investigating 

mathematical transitions–which in ATD would relate to the 

institutional context. The third relates to the distinction between 

content standards about particular mathematical concepts (e.g., 

the quadratic formula) and process standards about mathematical 

processes and activities (e.g., representing, reasoning and proof) 

(cf., NCTM, 2000); in ATD, it can be related to the distinction 

between a logos block and praxis block. Within the current 

conversation, these different theoretical distinctions help frame 

the challenges of (and opportunities for) countering Klein’s 

second discontinuity. There is a disconnect between school and 

university mathematics on the mathematical plane, which requires 

attention, as well as a gap between mathematics and teaching 

mathematics (evident from the two distinct mathematical and 

didactical planes) that needs to be bridged. 

Throughout the literature, the most prominent idea present for 

addressing Klein’s double discontinuity has to do with making 

connections–essentially, a relation that links one thing to 

something else. For the purposes of our discussion, the “things” 

being linked in this context refer essentially to triples composed 

from the three dichotomous distinctions described above (e.g., 

school mathematical concepts). Given the importance of school 

and university mathematics to these connections, I first elaborate 

further on this distinction and its conceptualization in this paper; 

then, I move onto connections between them and others, 

describing some of the various types and dimensions of 
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connections in extant literature as they relate to countering 

Klein’s second discontinuity. 

Conceptualization of School Mathematics 

Although university mathematics is often a synonym for 

academic mathematics, broadly speaking, school mathematics 

(SM) tends to be constituted by the mathematics discussed in 

primary and secondary education (K-12), prior to university 

studies, as specified by various curriculum documents–such as 

national standards, textbooks, assessments, and so forth. Notably, 

curriculum documents differ by countries and local contexts, 

which means SM is not universal. Yet, even without such 

contextual differences, there can still be room for disagreement. 

Namely, whether SM is constituted by the concepts as specified, 

or by the examples that get used. Either might be reasonable.  

Consider the following: suppose “polynomial functions” is on 

the list of concepts to be studied; and suppose a student has been 

given the definition and has seen examples up to some basic 

cubics. Does SM in this case include, for example, quintics? On 

one hand, it’s reasonable to say yes, given there has been a 

general definition that would include quintics, and the fact that 

one cannot reasonably exhaust all examples–some will always be 

missing (if not quintics, then perhaps septics). On the other hand, 

it’s reasonable to say no, given that students who have only seen 

cubics might be genuinely confused about quintics and their 

functional behavior, having never seen one. Now having made 

the case both routes could be sensible, I now give what I will 

mean by SM in this paper and a justification for this choice. 

For this paper, I take SM to stand for the collection of 

concepts studied, as given by the definitions in the various 

curriculum documents such as school standards or textbooks (and 

not just the collection of examples used). This of course varies by 

location. Let’s consider the concept of function–a relevant 

example for this paper–and begin by looking at the Common 

Core State Standards from the United States (CCSSM, 2010). 

One standard specifies: “Understand that a function is a rule that 

assigns to each input exactly one output” (8.F.1); in another 

place, it is stated: “Functions describe situations where one 

quantity determines another” (p. 67), and “In school mathematics, 

functions usually have numerical inputs and outputs…” (p. 67). 

One might question whether the function concept described is 

equivalent to “real-valued functions” (e.g., between quantities); if 

so, the conceptual scope would be limited accordingly. But the 



 Adding Diversity to Mathematical Connections… 7 

definition and the word “usually” seem to suggest a more abstract 

notion–at least in the CCSSM. A grade 10 Canadian textbook, 

published by Pearson, defines function in terms of relations: “A 

function is a special type of relation where each element of the 

domain is associated with exactly one element in the range” 

(Davis et al., 2010, p. 265), and the examples in that book make 

clear the domain and range need not be numerical values. That is, 

the concept is defined to include functions on non-numerical, 

abstract sets of objects. In my meaning of SM, then–regardless of 

whether a student in these two contexts is ever introduced to 

examples of non-numerical functions–the SM concept of function 

(in these two specific cases) includes functions on abstracts sets 

of objects. (Notably, other countries or contexts might in fact 

limit the SM concept of function to real-valued functions, 

continuous functions, or something else.) 

By making this choice about how to conceptualize SM, I want 

to clarify two things. First, simply because a defined SM concept 

allows room for particular examples does not mean I am 

advocating such examples be given to SM students. As an 

illustration, the existence of a piecewise function–or, as a parallel 

to the prior example, a 24
th

 degree polynomial–does not mean I 

would advocate an explicit example should be, or would have to 

be, given in order for it to be part of the relevant SM concept. 

Second, this rationale is premised, to some degree, on the idea 

that teachers play an important role in the curriculum process; 

that is, the choice to use–or not to use–particular examples with 

particular classes of students comes down to a professional 

judgement. And such judgement is based on informed decision-

making, i.e., recognizing that, at least in the two contexts 

presented, functions between non-numerical sets are in fact 

possibilities. 

Mathematical Connections 

I begin with mathematical connections. In this context, a 

mathematical connection is a relation between mathematical 

concepts or practices encountered in university mathematics 

(UM) and those encountered in school mathematics (SM). In 

short, it is an arrow representing a link on the mathematical plane 

between UM and SM. For instance, pointing out that the addition 

of integers in school mathematics is an example of a group       

studied at university would be one such connection. 

Klein’s own approach to counter the double discontinuity, 

“elementary mathematics from a higher standpoint,” was 
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essentially about elaborating mathematical connections between 

concepts. His goal was to point to the fundamental coherence (not 

disconnectedness) of mathematics, and to demonstrate how 

school mathematics could be understood in relation to university 

mathematics. For example, Klein (1932/2016) pointed out that 

drawing two-variable functions          as level curves in the 

xy-plane, as studied in university, can be connected to solving 

one-parameter equations like        as done in school 

mathematics by finding intersections of the curve with the line 

   . In addition to being essentially mathematical, the bulk of 

Klein’s connections also had another commonality; they 

primarily started from university mathematical concepts, which 

were presumed to be known by students, and pointed to how the 

school mathematics could be viewed and further understood 

through this lens. Although this does not appear to be an explicit 

aim of Klein’s, in addition to mathematical concepts, a 

mathematical connection might also relate mathematical practices 

in university and school mathematics. 

It is important to note that, although there are points of 

connection, there also tend to be fundamental distinctions of both 

concepts and practices between UM and SM. For example, UM 

tends to focus more on proving as a justification process (rather 

than supplying reasonable evidence); Dreyfus (1991), for 

instance, characterized university mathematics in terms of 

emphases on activities such as generalizing, synthesizing, 

abstracting, defining, and proving. The key point is that, although 

clearly similar, mathematical practice as it happens in UM can 

have a slightly different feel than the practices of SM. Similarly, 

the concepts studied tend to be somewhat different–namely, in 

UM, they are more abstract (e.g., Gueudet et al., 2016; Tall, 

1991). A group, for example, is a more abstract structure than 

elementary arithmetic with integers. This abstractness of concepts 

is similarly reinforced by Dreyfus’ emphasis on abstraction as a 

university mathematical practice. University topics like multi-

variable functions, or groups, tend to be further abstractions and 

generalizations of similar school concepts like single-variable 

functions, or basic arithmetic; meaning, there tends to be a 

particular relational structure–which is a point to which I will 

return. 
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Mathematical Connections: Top-down and Bottom-up 

directions 

In addition to Klein’s work, various scholars have built on his 

work by trying to complement it with “higher mathematics from 

an elementary standpoint” (e.g., Courant & Robbins, 1962; 

Spiegel, 1950; Mosquera, 1992). In some sense, this is about a 

starting point–what is presumed to be known. In this 

complementary context, one uses relatively elementary 

techniques and concepts to gain access to some more advanced 

mathematical concepts–i.e., we view UM through the lens of SM. 

This complement to Klein has been captured in the literature as a 

contrast between a top-down (Klein) and a bottom-up connection 

(cf., Dreher et al., 2018). I describe this distinction as one 

dimension of mathematical connections–the dimension of 

directionality. 

Dreher et al. (2018) give descriptions of top-down and 

bottom-up connections that exist in the literature. I summarize 

briefly. A top-down mathematical connection is one that takes 

university mathematics as the starting point; it begins with the 

university mathematics (UM) and shows how such concepts or 

practices can be reduced, decompressed, or related to school 

mathematics (SM). As one example, the authors point out that the 

field of real numbers can be constructed from the rational 

numbers in several ways (i.e., starting from university 

mathematics), but that discussion of this by means of nested 

intervals–as opposed to topological closure, Cauchy sequences, or 

Dedekind cuts–would be more suitable for school mathematics 

students. That is, we can infer a mathematical connection 

between UM and SM–namely, between the construction of   

from   (including several variants), and the notion of nested 

intervals that is evident in school mathematics largely via decimal 

representation. The key point is that if we take UM as the starting 

point–i.e., knowledge of various sophisticated ways to construct 

  from  –one might ask teacher candidates how this university 

mathematics can be connected to school mathematics concepts in 

a top-down connection.  

In contrast to this, a bottom-up mathematical connection is 

one that takes school mathematics as the starting point; it begins 

with school mathematics (SM) and shows how the concepts or 

practices of school mathematics are rooted in the structures of 

the discipline evident in university mathematics (UM). To 

exemplify, the authors give an example pointing out that double 

paper-folding instructions sometimes used in school geometry 
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courses (i.e., starting from SM), which produce perpendicular 

lines, is based on a particular definition of perpendicularity; 

namely, two lines  ,   are called perpendicular if     and a 

reflection across   maps   onto itself. (A key point is that 

perpendicularity, in this double paper-folding, is not characterized 

by, for example, the dot product of two vectors being zero.) Here, 

the school mathematics topic has been taken as the starting point–

double paper-folding–and teacher candidates can be asked how 

this SM topic reflects and might connect to UM concepts in a 

bottom-up connection.  

Figure 1 depicts these two examples in terms of the 

directionality dimension of mathematical connections–top-down 

or bottom-up, which is represented by the directional arrows. 

(a) Example of Top-Down 

Mathematical Connection from 

Dreher et al. (2018) 

(b) Example of Bottom-Up 

Mathematical Connection from 

Dreher et al. (2018) 

  
Figure 1. Examples of (a) top-down and (b) bottom-up mathematical 
connections 

Didactical Connections: Top-down and Bottom-up directions 

Fundamentally different from mathematical connections are 

didactical ones–that is, a relation between mathematical concepts 

or practices encountered in university mathematics (UM) and the 

didactical approaches one takes to situations encountered in the 

activities of teaching school mathematics (TSM). Going beyond 

just mathematical connection-making, didactical connections are 

ones that inform instructional approaches. In short, it is a link 

between the mathematical and didactical planes; in particular, one 

in which university mathematics is connected to aspects of 

teaching school mathematics. In a manner similar to what was 

evident from mathematical connections, the literature appears to 

identify the same directionality dimension of these didactical 

connections–both top-down and bottom-up connections. 

Stylianides and Stylianides (2014), for instance, talk about 

mathematics for teaching as a sort of “applied” mathematics. This 

idea represents a top-down didactical connection, which is one 

that takes university mathematics as the starting point; it begins 

with the university mathematics (UM) and shows how such 
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concepts or practices can be applied to resolve a situation 

encountered in teaching school mathematics (TSM). That is, it is 

a top-down directional arrow (like in Figure 1a), but between 

university mathematics and teaching school mathematics. In the 

authors’ elaboration, prospective teachers first work “on a 

mathematical idea from an adult’s standpoint” (italics added, p. 

272), and then a “pedagogical context [in which] prospective 

teachers [have] to consider…their mathematical work… from a 

teacher’s standpoint” (p. 272). The point is that the adult 

mathematical concepts (i.e., UM) had some implication on the 

pedagogical context of teaching school mathematics, and were 

considered from this direction. As a particular example of such a 

top-down didactical connection, Wasserman and Weber (2017) 

explored how proofs of the algebraic limit theorems for 

sequences (in a real analysis course) could be used to inform a 

teacher’s response to school mathematics situations about the use 

of rounded numbers while solving basic equations.  

On the other side, Heid et al. (2015) considered all the 

mathematical concepts–including more advanced university 

mathematical concepts–that might relate to particular school 

mathematics teaching situations. This represents a bottom-up 

didactical connection, which is one that takes situations 

encountered in teaching school mathematics as the starting point; 

it begins with the school teaching situation (TSM) and shows how 

university mathematical (UM) concepts or practices might be 

relevant to and arise from these school mathematical situations. 

As an example, the authors started from a student questioning that 

     for all nonzero real values of  , based on the student’s 
explanation that    would mean   times itself 0 times and so    

must be 0; they went on to explore, using the formal     

definition of continuity, why defining      makes sense 

because it means         is continuous on all real numbers. 

Here, the direction of the connection is in reverse (like in Figure 

1b); it started with a pedagogical context of teaching school 

mathematics (TSM), but which then allowed for further 

explorations connected to some related university mathematics 

content (UM).  

The literature base aiming to be more explicit about such 

didactical connections (and not just mathematical ones) has been 

more recent–in part, due to the development of, and alignment 

with, practice-based approaches to teacher knowledge and teacher 

education (e.g., Ball & Forzani, 2009). For example, a number of 

recent projects in the United States have created instructional 
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modules for university courses such as real analysis, abstract 

algebra, modern geometry, and so forth, that try to elaborate such 

didactical connections (e.g.,  lvare  et al., 2020; Lischka et al., 

2020; Wasserman et al., 2019). 

ANOTHER DIMENSION TO MATHEMATICAL 

CONNECTIONS 

The distinctions above–between mathematical and didactical 

connections, and between top-down and bottom-up connections–

situate some of the ways extant literature has attempted to capture 

various types of connections in order to counter Klein’s second 

discontinuity. I described the top-down and bottom-up directions 

as the directionality dimension of such connections. Notably, this 

dimension was present in both mathematical and didactical 

connections. This dimension of connections is useful in that it 

provides a sense of what is foregrounded–that is, what is being 

presumed and from where the connection begins. In what follows 

I try to capture another dimension to mathematical (but not 

didactical) connections–what I refer to as the set-relational 

dimension.  

Mathematical Connections: Set-relations 

The set-relational dimension of mathematical connections 

considers the set relation between the two mathematical ideas in 

question–one from school mathematics (SM) and one from 

university mathematics (UM). In reality, the set-relation 

dimension describes a particular “framing” of the relationship 

between two mathematical ideas–for mathematical ideas have 

many facets. For example, a binary operation might be framed in 

ways that highlight the “binary” aspect–e.g., understanding it as a 

contrast to a “unary” operation–or in ways that highlight its 

“functional” aspect, etc. Set theoretic notions suggest there are 

four possibilities for such a framing, depicted in Figure 2, with 

descriptive titles given from the perspective of university 

mathematics.  

Superset 

 

Subset 

 

Overlapping 

 

Disjoint 

 

Figure 2. Four possible framings for set relations between university 

mathematics (UM) and school mathematics (SM) 
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Before I begin, what I intend to demonstrate is that the 

examples of mathematical connections described previously, 

regardless of directionality, appear to correspond to just one of 

the set relations–a superset connection. This fact suggests space 

for exploring this new set-relational dimension of mathematical 

connections. I then do so by considering the ‘inversion’ of this 

typical relation–a subset connection. Although I elaborate 

exclusively on superset and subset possibilities in this paper, 

future work might further consider overlapping and disjoint 

relations. 

Consider the two examples given by Dreher et al. (2018) in 

Figure 1. Even though directionally they were different (as 

indicated by the arrows), if we consider each in terms of the 

mathematical concepts and relationships, what we see is that both 

represent a superset relation–one in which the university 

mathematics (UM) concepts or practices are framed as a superset 

of the connected school mathematics (SM) concepts or practices. 

In the universe of mathematical concepts, for example, we can 

consider the collection of those associated with the “construction 

of the set of real numbers,  , from the set of rational numbers, 

 .” Mathematically, there are many concepts that would fall 
within this notion, but, most germanely, there are also several 

different kinds of constructions. One of them is “construction by 

nested intervals.” Through this framing, the concepts within this 

nested interval collection would not include, for example, 

Dedekind cuts, but it would include concepts such as sequences 

and decimal representations; in other words, construction by 

nested intervals is a subset of the broader collection. Notably, the 

superset is connected to UM; at university, we look at the various 

rigorous constructions (e.g., Dedekind cuts) and, for example, 

demonstrate that desirable properties are then preserved. The 

authors argue that construction by nested intervals is appropriate 

for SM because it addresses issues of the set of real numbers and 

of the field of real numbers; “school mathematics is essentially 

based on representations that facilitate an empirical inductive 

access using specific examples” (p. 334) and the denseness of the 

rational numbers in the reals is “illustrated by means of the 

decimal number representation of the rational numbers” (p. 334). 

Thus, the top-down mathematical connection described by Dreher 

is also an example of a superset connection. This set relation is 

depicted in Figure 3a. Similarly, Dreher et al.’s other example 

considers formal definitions of perpendicularity. In particular, we 

might consider the collection of concepts associated with 
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“defining perpendicularity in terms of being when a reflection 

across   maps   onto itself.” In UM, we might even consider 

other definitions of perpendicularity (such as dot products being 

 ero), but for our purposes here, the key point is that the “double 

paper-folding” conducted in SM contexts exemplifies a particular 

one. The mathematical aspects of double paper-folding, again, 

represent a subset because this folding activity would be one way 

to exemplify the definition but there would be others. In sum, 

what we find is that, even though the connection is in the reverse 

direction, the fundamental set relation that is being framed 

between SM and UM is the same: they both represent examples 

where UM is a superset of SM (see Figure 3b). What this 

suggests is that the set-relational dimension is something distinct 

from the directionality dimension of mathematical connections.  

(a) Superset top-down 

connection 

(b) Superset bottom-up 

connection 

  

Figure 3. Dreher et al.’s (2018) (a) top-down and (b) bottom-up 

examples, as superset connections 

Before moving on, the fact that both these examples represent 

a superset relation is not especially surprising. Essentially, as we 

continue further mathematical study, the mathematical concepts 

tend to get increasingly generalized and abstract–as noted 

previously. In SM we study a particular algebraic structure, 

whereas in UM we study algebraic structures more generally; in 

SM we study a particular geometry, whereas in UM we study 

various geometries; and so forth. The point is that in these very 

typical examples, SM is easily framed as a subset of UM; it is an 

example–often a more concrete one–of a broader and more 

abstract mathematical concept. Indeed, the primarily top-down 

mathematical connections from Klein’s “elementary mathematics 

from a higher standpoint” tend toward this superset relational 

connection. (This superset connection is similar to what 

Wasserman and Galarza (2018) called a generalization 

connection.) 

Exemplifying Subset Relational Connections 

In contrast to the typical superset mathematical connections, 

let’s consider an inversion of this relationship; namely, a subset 
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relation, which is one in which university mathematics (UM) 

concepts or practices are framed as a subset of the connected 

school mathematics (SM) concepts or practices. From the outset, 

I want to clarify two things. First, that some of this is about 

conceptualization and framing–based on how SM was 

conceptualized earlier as well as the various framings one might 

take of UM concepts or practices. For instance, it is possible that 

even when we name a somewhat abstract topic in SM, such as 

“functions,” we only associate the particular functions studied in 

school, which are typically functions of real variables (i.e.,   
 ). Functions outside of these we might associate as being non-

SM topics. However, based on the earlier description, if the SM 

concepts are being defined in a particular way, then they might 

still be used as instances in which it is reasonable to consider 

framing UM concepts or practices–or aspects of them–as a subset 

of this broader school notion. Second, that what constitutes SM 

and UM, of course, differs by context and country. The two 

examples I give below aim to broadly applicable, but of course 

what I consider UM in these examples might be SM in some 

contexts and vice versa.  

Although the functions studied in SM tend to be of a 

particular type (i.e.,    ), the actual way function is defined 

can allow for abstraction–as discussed previously (e.g., CCSSM, 

2010; Davis et al., 2010). In these contexts, the abstract definition 

of function appears to be part of SM. When we consider the 

abstract definition of function to be part of SM then the particular 

definition of, say, a binary operation in an abstract algebra course 

(UM) is an example of such a function (i.e., “A binary operation, 

 , on a set  , is a function,        ). The point being, in this 

case, UM can be framed (at least in this aspect) as a subset of SM. 

That is, if the SM concept of function is “a relation where each 

element of the domain is associated with exactly one element in 

the range,” then the following mapping which is an example of a 

binary operation is a function by that definition:           
  (for      ). The point here is not that this example is or 

should be instantiated in SM, but rather that this framing provides 

an opportunity to make a mathematical connection between SM 

and UM–in a way that I argue is distinct from the other kind of 

connection which was a superset relation. I also argue that 

framing UM as a subset connection in this way shifts the 

learning; namely, the activity situates the SM concept of function 

as the broader focus of learning by its framing of UM as an 

example and thus places emphasis on the SM concept. 
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(Wasserman (2023) and Wasserman & Galarza (2018) elaborated 

on use of this particular connection with secondary teachers; they 

also used the term instantiation connection to describe an idea 

similar to a subset connection.) 

As another example, it is common in SM to justify area 

formulas using a “cut-reassemble” argument (e.g., cut the 

triangular end from a parallelogram and reassemble it into a 

rectangle). One way to conceptualize this sort of transformational 

argument is as an “area-preserving transformation”–meaning that 

such a transformation preserves a region’s area. Indeed, even if 

this sort of argument in SM is informal and not given an abstract 

name, this sort of reasoning clearly exists in some form in this 

context. In this way, it is possible to situate “area-preserving 

transformations” as a relevant part of SM. Doing so allows us to 

frame other area-preserving transformations studied in UM as a 

subset connection. Wasserman et al. (2020) describe precisely 

such a connection by framing properties of the Riemann integral, 

such as     
 

 
   

 

 
   

 

 
, as another example of an area-

preserving transformation. Properties of the Riemann integral are 

typically framed in a university mathematics course as being 

about their “algebraic” properties, useful for understanding how 

we might operate with the integral concept. However, an 

alternative framing is to consider their meaning geometrically; 

that is, to frame the equality in the previous example as telling us 

something about the preservation of area (since the Riemann 

integral is frequently connected to area), and then abstracting the 

kind of transformation this property suggests. The property 

referenced above can be directly related to Cavalieri’s principle, 

which at least in the U.S. is part of SM (CCSSM, 2010). Again, 

framing the connection between SM and UM in this way places 

the UM concept (properties of the integral) as another example of 

an area-preserving transformation (in addition to “cut-

reassemble”), and thus emphasi es the SM concept of a 

transformation that preserves area as the focus of learning. 

To reiterate the point that the directionality and the set-

relational dimensions of mathematical connections are distinct, I 

use these two examples to give both top-down and bottom-up 

subset connections. According to its prior description, a top-down 

perspective starts from UM. So, we might start with the definition 

of a binary operation, and then ask about how one might use a 

functional mapping between sets to depict which elements are 

being mapped to and from in a particular binary operation (e.g., 

with the operation of addition, the pair (5,2) maps to the number 
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7). Because it begins with the UM it is top-down; because the 

abstract notion of function is part of SM and is the more general 

mathematical concept, it is a subset relation (see Figure 4a). Now 

let’s consider the reverse. Suppose we start by pointing out that a 

“cut-reassemble” argument is an example of a transformation that 

preserves area (SM), and then ask how the integral property 

    
 

 
   

 

 
   

 

 
 also exemplifies an area-preserving 

transformation. Because it begins with SM it is bottom-up; 

because the integral property at university exemplifies this 

broader concept, it is a subset relation (Figure 4b). (Notably the 

descriptors top-down and bottom-up are counter to the direction 

of the arrows in Figure 4 because of where UM is situated in 

relation to SM.) 

(a) Subset top-down connection (b) Subset bottom-up connection 

  

Figure 4. Examples of subset connections that are (a) top-down and (b) 

bottom-up 

DISCUSSION 

Thus far, I have tried to articulate another dimension of 

mathematical connections between UM and SM–one that can be 

leveraged to help describe and differentiate various types of 

connections. Here, I draw out some summative ideas, and 

consider the rationale for discussing this new dimension–and the 

related subset mathematical connections–in terms of secondary 

teacher education.  

An Expanded Framework of Mathematical Connections 

When considering mathematical connections meant to bridge 

the gap between UM and SM, I have argued that current 

examples have tended to be differentiated along a dimension of 

directionality; in this paper, and up until this point, I have tried to 

argue that the set-relational facet is a distinct dimension that 

should also be considered. I will try to argue for why I regard 

such a distinction to be important in what follows, but for now 

it’s helpful to summarize that in terms of mathematical 



18 Recherches en Didactique des Mathématiques 

connections (which are distinct from didactical connections), I 

argue we can differentiate along two different dimensions: 

directionality and set-relational. In the current discussion, I have 

only considered framings of superset and subset relations, 

although future work might further consider overlapping and 

disjoint relations. Table 1 provides a 22 table situating the now 

four different types of mathematical connections discussed and 

exemplified in this paper thus far (which are contained in Figures 

3 and 4). A critical argument in this paper is that subset relational 

connections are less well-known, and less well-explored in the 

literature in relation to Klein’s second discontinuity; indeed, 

given the natural progression of abstraction in mathematics, 

superset relations certainly seem more typical (and thus, subset 

relations potentially rarer).  

Table 1. A 22 framework of mathematical connections between 

university and school mathematics 

 Subset Superset 

Top-down 
Subset top-down 

mathematical connections 

Superset top-down 

mathematical connections 

Bottom-up 
Subset bottom-up 

mathematical connections 

Superset bottom-up 

mathematical connections 

Two Classes of Subset Mathematical Connections 

Subset mathematical connections have in common the 

framing of UM as a subset of SM. Here, I discuss what I think are 

two general classes of this kind of mathematical connection; the 

purpose in doing so is that these classes might become starting 

points for generating more of these types of connections to 

counter Klein’s second discontinuity. 

Mathematical Practices 

In mathematics education, it is reasonably common to 

differentiate between mathematical concepts and mathematical 

practices (NRC, 2001; MOE, 2020). Many mathematical 

connections–indeed, the majority of Klein’s texts–focus on 

connections between mathematical concepts; say, between the 

addition of integers in SM and groups in UM. However, we can 

also consider connections between mathematical practices. Here, 

by mathematical practices, I am referring to activities such as 

problem-solving, proving, defining, generalizing, conjecturing, 

theoremizing, and so forth; the distinction being made is a 

contrast between particular mathematical concepts and 

particularly mathematical ways of engaging with those concepts, 
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sometimes called mathematical “habits of mind” (Cuoco et al., 

1996; Heid & Wilson, 2015; Mason et al., 2010; Rasmussen et 

al., 2005). Now, as mentioned previously, there are certainly 

differences between the mathematical practices at university and 

at school. That is, these mathematical practices undergo a 

didactical transposition within these institutional contexts (e.g., 

Ouvrier-Buffet, 2015). Proof is more heavily emphasized in UM 

than in SM, and has additional levels of rigor. Tall (1991), for 

instance, characteri es SM in terms of “describing” and 

“convincing,” which in UM turn into “defining” and “proving” 

(in a logical manner based on those definitions). While 

differences certainly exist, there are also inherent commonalities 

across these mathematical practices–made more or less clear 

depending on the level of grain size at which they are described. 

What I argue here is that mathematical practices–as a class of 

mathematical connections–can often be conceptualized and 

framed as subset connections.  

As Tall (1991) points out, there is a difference in what a 

definition looks and feels like at school and at university; in SM, 

they tend to be more descriptive, whereas in UM they are more 

stipulative. Nonetheless, defining is a mathematical activity in 

both places. That is, despite some of the differences, the 

university mathematical practice of defining can be framed in 

terms of the commonality it shares with the school mathematical 

practice of defining–a core kernel of the practice of defining. As 

such, I think it is possible conceptualize this core of “defining” as 

a mathematical activity of SM, and seek to frame examples of 

defining in UM as particular examples of this broader 

mathematical practice. In doing so, we can conceptualize a subset 

mathematical connection between UM and SM. For instance, 

instead of framing the     definition of continuity in an 

analysis course as the starting point to discuss the concept of 

continuous functions, we might use it as an opportunity to discuss 

the activity of defining more generally, instead. We might ask 

students in a university mathematics course, for example, how 

they might define a continuous function; we might use those to 

interrogate how various definitions classify differently the same 

examples; and we might consider the advantages or disadvantages 

of certain characterizations. The key point is that, by framing the 

particular UM concept as an example of a broader mathematical 

practice–one whose core is also evident in SM–it is possible that 

students might gain an improved understanding of that core 

practice more generally. While not all of the specificities of how 
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defining is practiced in SM versus UM will transfer, the broader 

practice provides a concrete point of connection between SM and 

UM–and, in particular, as a subset connection. As another 

example, Wasserman et al. (2019) describe “attention to scope” 

as a point of connection between the proofs of various derivative 

rules in a real analysis class, and broader considerations in 

teaching about providing explanations about school mathematics 

concepts; notably, this subset framing of the connection was 

valued by the prospective and practicing teachers in the study. 

Furthermore, as a particular subset of mathematical practices, 

Wasserman (2022) conceptuali ed “pedagogical mathematical 

practices” (PMPs) as being at the intersection of mathematical 

practices and pedagogical practices for teaching mathematics. 

There being a genuine difference between these two spaces of 

mathematical practice and didactical practice in mathematics–as 

Weber et al. (2020) argue–PMPs, as a construct, asks the field to 

consider which ones are especially similar. Indeed, Wasserman 

and McGuffey (2021) report on the ways secondary teachers 

seemed to adopt and incorporate PMPs into their own 

pedagogical practice, after having had mathematical experiences 

with them in a real analysis course; the key point being that 

mathematical practices, and PMPs in particular, appeared to serve 

as a meaningful mathematical connection–a subset connection–

that helped bridge Klein’s second discontinuity. 

Mathematical Structures 

The definition of subset relational connections stipulates that 

concepts or practices in SM be framed as a superset of concepts 

or practices in UM. Although this may seem to invert the 

normative developmental progression in mathematics, broad 

mathematical structures might be another class of subset 

connections. Structures here is intended to convey an idea similar 

to Bruner’s (1960) description “…to sense the simpler structure 

that underlies a range of instances…” (p. 68). A structuralist 

perspective on curriculum development, such as Bruner’s, 

suggests that one should orient mathematics instruction around 

these broader structures, with complexity slowly and increasingly 

being layered on for further development (Howson et al., 1981). 

In this sense, the concept of “function”–from the earlier example–

is an example of a large structure in mathematics (indeed, its 

strong emphasis in mathematics curriculum today is in part 

attributable to Klein!); an area-preserving transformation–or some 
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other property-preserving transformation–similarly might 

represent another broader mathematical structure.  

Critically, by highlighting and naming the broader structures 

which are encompassed in SM, we can frequently identify UM 

ideas as being examples or subsets of those structures. Doing so 

allows for making a subset connection. In addition to the function 

structural example earlier, we could also consider “equivalence” 

as a broader structure of SM. Through this lens, the study of 

quotient groups in UM might be framed not so much as another 

example of a group, but more used as an opportunity to explore 

its structural notion of equivalence–by regrouping collections into 

subcollections of objects which will be considered to be 

equivalent. In this sense, we are not “building on” equivalence as 

discussed in SM to link it with how equivalence is understood in 

UM, but rather we are acknowledging a core notion of 

equivalence as part of SM and framing the UM content as an 

opportunity to deepen one’s notion of this core mathematical 

structure by exploring the UM as an instantiation of it. The key 

point is that by situating the particular UM idea as an example of 

a broader mathematical structure–one that is also tangibly present 

in SM, like equivalence–one gains an improved understanding of 

that structure more generally.  

The key idea is that mathematical practices and broad 

mathematical structures are classes of connections that can 

represent subset mathematical connections; instances when ideas 

in UM can be conceptualized and framed as subsets of ideas 

relevant to SM. Both might be used to diversify and expand the 

kinds of connections typically made in university mathematics 

courses to counter Klein’s second discontinuity. 

Significance and Implications 

As I have noted, many mathematical connections discussed in 

extant literature to counter Klein’s second discontinuity between 

UM and SM are superset relations–where SM is an example of a 

broader idea in UM (cf. Dreher et al., 2018). Although these 

might differ in terms of directionality, whether top-down, i.e., 

“elementary mathematics from a higher standpoint”, or bottom-

up, i.e., “higher mathematics from an elementary standpoint,” the 

set-relational dimension of mathematical connections is a distinct 

issue. Now, I argue not only that this dimension of connections is 

distinct, but that subset connections–as conceptualized in this 

paper–may be especially important for countering Klein’s second 

discontinuity. 
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The key components to my argument for the value of subset 

relational connections with respect to Klein’s second 

discontinuity has to do with (i) enriching SM conceptions instead 

of UM conceptions, by (ii) adding UM examples to one’s 

example space for SM concepts, which might involve a 

reorganization of SM concepts, since (iii) doing so makes clearer 

the reference to when in the teaching of SM that a teacher might 

draw on this mathematical connection. 

Consider the topic of a binary operation in abstract algebra. 

We might make various connections between this UM topic and 

SM concepts. We’ll consider two possibilities–depicted in Figure 

5. On one hand, we might consider a connection to function 

composition–   . In secondary school, students learn about 

function composition, primarily via algebraic substitution, where 

                . While discussing the general notion of a 

binary operation on a set, we might use function composition (or 

another familiar operation like addition) to exemplify this abstract 

concept. This is a superset connection. We have made a 

connection between UM and SM, and regardless of the 

directionality of the connection, note that a primary effect is to 

add a familiar and concrete example (from SM) to the example 

space of this new abstract idea of binary operation (in UM). That 

is, in Skemp’s terms, we have expanded, or perhaps even 

restructured, the cognitive structures for the concept of binary 

operation. In this superset connection, what has been developed 

further–at least explicitly–is the idea from UM. I point out that 

such connections may be less effective at bridging Klein’s second 

discontinuity because it is the UM idea (not the SM idea) that is 

explicitly foregrounded. On the other hand, as a different point of 

connection, we might make the connection to function described 

previously–by framing that a binary operation is an example of a 

function. This is a subset connection. And here, note that a 

primary effect is to add something concrete (from UM) to the 

example space of function–which is the SM topic. In Skemp’s 

terms, adding this example expands, or even restructures, the 

cognitive structures for the concept of function. A subset 

mathematical connection like this explicitly foregrounds and 

further develops the SM concept; meaning such subset 

connections primarily enrich SM conceptions, whereas superset 

connections primarily enrich UM conceptions. And since it is 

those SM concepts–like functions–that teachers will be 

responsible for teaching (not binary operations), having an 

enriched conception of a school topic arguably makes it more 
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likely for teachers to recognize at what point in the curriculum 

those connections might become useful. While planning a lesson 

on function, for example, having an enriched conception of this 

SM topic is what acts as an explicit signal to a school teacher to 

consider the connection to UM.  

 

Figure 5. Possible superset and subset mathematical connections for 

binary operation 

In addition to such theoretical arguments, which are based on 

conceptual differences between superset and subset connections, I 

also draw on my own work in the context of a real analysis course 

to support the potential value of subset connections. One module 

focused on the mathematical practice of “attention to scope,” in 

which we used a sequence of proofs for the power rule for 

derivatives to exemplify this practice. What we found, reported 

on in Wasserman et al. (2019), was that this mathematical 

practice–indeed, a ‘pedagogical mathematical practice’–was one 

that the teachers not only reported as valuable, but also 

incorporated into their own secondary teaching. That is to say, the 

subset mathematical connection made (bottom-up, in this case), 

which situated a sequence of real analysis proofs as an instance of 

“attention to scope,” was one that appeared to be effective in 

terms of bridging Klein’s second discontinuity; of helping clarify 

how prospective and practicing teachers’ university studies could 

be related to the tasks of teaching school mathematics. 

Furthermore, as reported on in Wasserman and McGuffey (2021), 

we also found that teachers were attributing some of their 

approaches to teaching in relation to the strictly mathematical 

experiences in the real analysis course–and not just the modules 

that explicitly tried to connect to teaching. Although not reported 

on in either, participants in the course tended to find added value 

in those modules that leveraged subset connections; many were 

mathematical practice connections like “attention to scope,” but 

others included more content-focused subset connections like 

area-preserving transformations. The key point is that, in addition 

to the theoretical arguments about their potential, some of my 
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own work with teachers has indicated the potential value of using 

subset relational connections. Regardless, these indicate the 

potential of these subset mathematical connections to counter 

Klein’s second discontinuity, with a call for further research, and 

demonstrate the value of articulating this additional dimension of 

mathematical connections.  

Lastly, in terms of teacher education, the implications of the 

ideas in this paper are primarily for teacher educators. The 

framework presented is less important for teacher candidates to 

dwell on, and more useful for university teacher educators 

(including mathematicians who teach UM mathematics courses), 

who can use it to identify a wider variety of possible connections. 

The paper’s contribution is that subset connections represent 

another type of connection–another tool in the toolkit, so to 

speak–for teacher educators to try to counter the second 

discontinuity Klein described. These depend on how one 

conceptualizes SM and how one frames UM; specifically, 

although UM concepts are interesting to study in their own right, 

by framing them as examples of broader school mathematical 

concepts, practices, or structures, one can find novel, interesting, 

and compelling connections between UM and SM that explicitly 

foreground and further develop SM. 

CONCLUSION 

There were two particular challenges for this special issue. 

The first was to highlight for university students the links 

between university mathematics and school mathematics; the 

second was to provide future teachers with access to effective 

tools for their didactic work. In regard to both of these challenges, 

this paper highlights a new class of links between UM and SM–

specifically subset connections, which arose from elaborating the 

set-relational dimension of mathematical connections. While the 

particular examples in this paper may be useful, perhaps more 

useful is the theoretical identification and description of the class 

of subset connections; it is this theoretical classification (see 

Table 1), alongside the two classes of mathematical practices and 

broad mathematical structures, that allow for the creation of many 

more concrete examples. In this regard, it is the diversification of 

types and dimensions of connections to counter Klein’s second 

discontinuity that becomes an effective tool for the didactic work 

of mathematics teachers–and mathematics teacher educators. 
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