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Abstract

The performance of deep neural networks is enhanced by ensemble methods, which
average the output of several models. However, this comes at an increased cost
at inference. Weight averaging methods aim at balancing the generalization of
ensembling and the inference speed of a single model by averaging the parameters
of an ensemble of models. Yet, naive averaging results in poor performance as
models converge to different loss basins, and aligning the models to improve the
performance of the average is challenging. Alternatively, inspired by distributed
training, methods like DART and PAPA have been proposed to train several models
in parallel such that they will end up in the same basin, resulting in good averag-
ing accuracy. However, these methods either compromise ensembling accuracy
or demand significant communication between models during training. In this
paper, we introduce WASH, a novel distributed method for training model en-
sembles for weight averaging that achieves state-of-the-art image classification
accuracy. WASH maintains models within the same basin by randomly shuffling a
small percentage of weights during training, resulting in diverse models and lower
communication costs compared to standard parameter averaging methods.

1 Introduction

In order to enhance the accuracy of a given class of models, aggregating the answers of multiple
instances trained in parallel can be done via model ensembling. This can lead to significant im-
provements in modern deep learning models (11), increasing generalization ability. However, this
comes at the cost of evaluating multiple instances of a given model at inference. This increases
both the required memory and computations, resources which can be critical for on-device inference
(31). To resolve this issue, the population of models can be fused into a single model to obtain both
the generalization improvements of ensembling and the inference cost of a single model. Since
independent models can be linearly connectable (13), a simple technique is to average the weights of
the different models to obtain a fused model (51).
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1. Train separately 2. WASH! 3. Average the weights

Repeat..

Figure 1: Representation of training with WASH. A population of models is being trained separately.
(1) After each training step, (2) a small percentage of parameters are permuted between models. (3)
At the end of the training, the model weights are averaged, resulting in a high-performance model.

There are however limits to this method. For models that are too dissimilar, the performance of the
averaged model may not be better than chance (18). To mitigate this, the ensemble can either use a
pre-trained network as a starting point (33) or ensure that models share part of their optimization path
(13). Nevertheless, diminishing too much the ensemble diversity comes at the cost of its performance
(see Fig. 6 of (11)), revealing a tradeoff between model diversity and weight averageability. Inspired
by distributed training, techniques like DART (19) and PAPA (20) have been proposed to train
a population of models in parallel on heterogeneous data while communicating to balance this
tradeoff. DART, similarly to LocalSGD (43), averages all the models regularly to avoid models
diverging. PAPA controls the diversity of the models more finely, by pushing them towards the
averaged parameters using an Exponential Moving Average (EMA) like EASGD (54), achieving
better performances. Notably, they show that training a population in such a way results in models
that generalize better than a single model trained with the same compute as the entire population,
demonstrating the potential of these distributed approaches. However, existing methods require a
regular computation of the average model using an all-reduce operation, either to remove periodically
any diversity in the population (19) or in the case of PAPA, to compute an EMA of the average. This
results in a high communication cost during the parallel training of the population of models (35),
hindering the scalability of these approaches as the population size increases (34).

We propose in this paper a novel distributed method to train a population of models in parallel while
keeping their weights within the same basin. It requires a fraction of the communication cost of PAPA
but displays greater model diversity during training, increasing the final averaging accuracy. Our main
idea is to shuffle parameters between models during training, forcing them to learn using the others’
parameters. We refer to ’parameter shuffling’ as the following idea. A permutation is randomly
chosen, and models will communicate peer-to-peer their parameters following the permutation. The
use of a permutation is distinct from the notion of weight permutation of (1) which is inside one
model. We denote our method, which achieves Weight Averaging using parameter SHuffling, as
WASH, and represent it schematically in Fig. 1.

Contributions. Our work makes the following contributions: (1) We propose a novel method for
the training of a population of models that can be weight averaged, which we refer to as WASH
(Weight Averaging using parameter SHuffling). By shuffling a small number of parameters between
models during training, the resulting population can be weight-averaged into a high-performance
model for a fraction of the communication volume of methods such as PAPA. (2) We find that WASH
provides state-of-the-art results on image classification tasks, resulting in models with performances
at the level of ensembling methods while only requiring a single network at inference time. (3)
We provide experiments to better understand the improvement provided by WASH, notably on how
WASH reduces the distance between models in the population implicitly while maintaining diversity.
(4) We perform different ablations on our method, showing the impact of the shuffling. (5) Our code
is made available at github.com/fournierlouis/WASH.
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2 Related work

Ensemble and weight averaging. By combining predictions from multiple models, ensemble
methods significantly improve a predictive system’s ability to make accurate generalizations (7; 25),
while reducing the variance of estimator (4). This variance reduction is especially effective when
errors are uncorrelated and models show diversity, meaning they do not fail simultaneously on the
same instances (16; 11). However, ensembles require additional passes through each model for
inference, leading to increased computational costs. This cost can become prohibitive with a large
number of models. As a remedy under some constraints, models can be averaged together to remove
the computational burden during inference. Averaging the weights of models was first explored
in simple linear (26) and convex scenarios (37; 3). In deep learning, (18) establish that weight
averaging is a first-order approximation of the ensemble when models are close in the weight space.
Notably, a simple averaging of multiple points along the SGD trajectory leads to better generalization.
Following mode connectivity (15; 13) and the observation that many optima of independent models
are connectable, (2; 50) propose learning simplexes in parameter space with a regularization penalty
to encourage diversity in weight space, and (52; 38) propose to train multiple model branches with
different last-layer initialization and hyperparameters concurrently. These models are later averaged
to enhance generalization and reduce the inference cost. However, for these models to be amenable to
weight averaging, they need to begin with the same pre-trained initialization (33) which can diminish
diversity among the models. To alleviate this issue, neuron alignment techniques (41; 1; 36; 17) match
the units of multiple networks to make them amenable to weight averaging, however, they rarely work
in practical scenarios (21), often obtaining performance below the individual models. DART (19) and
Branch-Train-Merge (BTM) (27) propose a three-phase training pipeline. The process begins with an
initial shared training phase, followed by the parallelized training of multiple models, each diversified
through different data domains or different data augmentations. Finally, these models are merged
into a single model. They find that iterative refinement of the last 2 stages enhances the overall
optimization trajectory and improves generalization. To enhance diversity among models, PAPA
(20) proposes to rather gradually adjust model weights towards the population average throughout
the training process, beginning from random initialization. However, these approaches can result in
substantial communication costs during training. Conversely, WASH tackles high communication
costs by permuting only a small fraction of parameters among models during training, while ensuring
the branches remain amenable to weight averaging at the end.

Distributed and federated learning. In distributed training of deep learning models, the trade-off
between communications and model performance is a core concern (34; 22), and finding methods
efficiently alleviating some of its communication cost is a recurrent theme in different areas of
research (45; 12). For instance, communication overhead being a key concern of decentralized
optimization, it has been shown in this literature that to train models in a data-parallel setting with
a limited communication budget, a key metric to observe is the average distance to the consensus
(23; 39; 44; 48; 32). The techniques discussed earlier to train a population of models for weight
averaging are similar to methods in the LocalSGD (43; 29) and Federated Learning (30; 22; 28)
literature. The training in DART and BTM is similar to the LocalSGD training, where models are
averaged regularly after several steps of computations. PAPA, which uses an EMA of the averaged
model to gradually move the models towards consensus, is similar to methods like EASGD (54) or
SlowMo (47). Only averaging a population at the end of training like in BTM was also proposed for
LocalSGD (42), and cross-gradient aggregation (10) can be seen as a way to shuffle gradients locally.
Federated learning also uses techniques discussed previously for model merging (46; 53; 5). Finally,
our method can be thought of as training a global model where each local model picks randomly
from a subset of parameters when shuffled. This can be linked to Bayesian learning (14) in particular
for federated learning (49; 8), or to federated subnetwork training (9; 40).

3 Parameter shuffling in an ensemble for weight averaging

Motivation of our training procedure. We aim to balance the benefits of model ensembling with
the computational efficiency of using a single model at inference via weight averaging. In other
words, our objective is to produce a single model resulting from the ensembling. A set of N model
parameters {θn}n≤N ⊂ Rd are trained in parallel on the same dataset, with a different data order and
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Algorithm 1 Training with WASH

1: Input: Datasets Di, number of models N , initial parameters θ0, training steps T , number of
layers L, base probability p

2: Initialize parameters (θn)n ← θ0 and optimizers OPTi

3: for t = 1 to T do
4: # Training step
5: for n = 1 to N , in parallel do
6: (xn, yn)← Dn # Sample data
7: θn ← OPTn(xn, yn, θn) # Update the model n
8: # Shuffling step
9: for layer l = 0 to L− 1 do

10: for parameter θi in layer l do
11: With probability p(1− l

L−1 ),
12: πi ← Random permutation
13: (θin)n ← (θiπi(n)

)n # Send and permute the parameter

14: Output: the averaged model 1
N

∑N
n=1 θn

possibly different data augmentations and regularizations. To avoid divergence among the models,
PAPA applies an EMA every T training steps and produces the following update

θ̃n ← αθn + (1− α)θ̄ , (1)

where θ̄ ≜ 1
N

∑N
n=1 θn represents the average of the model weights, also referred to as the consensus,

and α ∈]0, 1[ is weighted depending on the learning rate. Despite its benefits, this method has
drawbacks, including the need for synchronized global communication across all models, which can
be inefficient, and the potential reduction in model diversity due to the consensus constraint, which
may reduce model expressivity. Indeed, we observe that after each update∑

n

∥θ̃n − θ̄∥2 = α2
∑
n

∥θn − θ̄∥2 <
∑
n

∥θn − θ̄∥2 , (2)

which shows that the EMA step of methods like PAPA directly reduces the distance of the models to
the consensus, hindering their diversity.

Proposed method: WASH. To address these challenges, we propose the following stochastic
parameter shuffling step instead of the EMA, defined for any individual parameter θin ∈ R of a model
θn = [θin]

d
i=1 by

θ̂in ←

{
θiπi(n)

with probability p,

θin otherwise,
(3)

where πi denotes a random permutation of the indices {1, ..., N}, chosen uniformly at each iteration
for each parameter index i ∈ {1, ..., d}, and independently from the Bernoulli variable of Eq. (3).
Notably, this parameter shuffling reduces in expectation to

E[θ̂n] = (1− p)θn + pθ̄ . (4)

Thus, WASH aligns, in expectation, with the EMA of Eq. (1) for p = (1− α). The expected number
of parameters communicated by each model at each step is thus p× d while for PAPA, each model
communicating all of its parameters every T steps, this amounts to d

T . Thus, p ≪ 1
T results in a

significantly reduced communication overhead favorable to WASH. However, the model diversity is
higher, as WASH preserves the consensus distance, as shown by∑

n

∥θ̂n − θ̄∥2 =
∑
n

∑
i

(θ̂in − θ̄i)2 =
∑
i

∑
n

(θin − θ̄i)2 =
∑
n

∥θn − θ̄∥2 . (5)
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Table 1: Communication volume and inference costs of four training techniques. The baseline
Ensemble is trained separately but requires a linearly increasing inference cost. In our experiments,
we fix the base probability of WASH and WASH+Opt to be equal to 0.001 or 0.05 when training on
CIFAR-10/100 or ImageNet, resulting in a reduction of communication volume over PAPA.

Communication volume
Technique CIFAR-10/100 ImageNet Inference cost
Ensemble 0 0 N
PAPA 1 1 1
WASH 1/200 1/4 1
WASH+Opt 1/100 1/2 1

Layer-wise adaptation via WASH. Recognizing that different network layers may require varying
levels of adaptation due to their roles and dynamics, we introduce a layer-specific probability
adjustment. Assuming L layers in the network, we set for each layer l (where 0 ≤ l < L)

pl = p

(
1− l

L− 1

)
, (6)

where p is a base probability. In other words, the parameters of the first layer have a shuffling
probability of p, while the final layer’s parameters are never shuffled. This adaptation ensures that
deeper layers, which are typically slower to train and more sensitive to the input features, undergo
fewer permutations than the more generalizable early layers. This strategy not only preserves the
specificity required by the initial layers but also further halves the overall communication overhead.

Full procedure. Alg. 1 presents the training of a population of N models using WASH. Starting
from the same initialization, our training procedure alternates between local gradient computations
and shuffling communications. At inference, we simply average the weights of the models, obtaining
a single model with parameters θ̄. Note that techniques like REPAIR (21) or activation alignment (1)
could be incorporated to improve the alignment of the models, but we found them to be unnecessary
to obtain high accuracy and kept our evaluation framework minimal for the sake of simplicity.

4 Experiments

Training methods. We showcase the capacities of WASH for training a population of neural
networks on standard image classification tasks. As a Baseline, we consider a population trained
separately, with each model working on a different dataset order and different data augmentations
and regularization (if they are used). This is the same baseline as (20), only starting from the same
initialization, but we found that this change brought no significant impact on performance. We also
compare WASH to PAPA (20) on the same tasks (with PAPA however using models with a different
initialization), to show our improvement despite requiring a fraction of the communication cost.
We do not provide comparisons to DART (19) or the variants of PAPA as their performances are
generally inferior (20). We also propose a variant of WASH named WASH+Opt that also permutes
the optimizer state associated with the parameter shuffled (in our case, the momentum of SGD),
doubling the volume of communications. We do not permute or recompute the running statistics of
BatchNorm layers for simplicity.

Communication cost. Training with PAPA requires computing an all-reduce operation on all of
the models’ parameters every T = 10 training steps. In comparison, WASH requires, in expectation,
a shuffling of p/2 of the parameters of the models at every training step. Thus, by keeping a base
probability p ≤ 0.2, WASH results in a more communication-efficient training. In practice, p will be
equal in our experiments to 0.001 or 0.05, ensuring a communication volume reduction of 200 or 4.

Evaluation strategy. After training, the population of models obtained can be evaluated in three
separate ways. As a baseline, the performance of the population can be evaluated as an Ensemble,
averaging the predictions of the models. The parameters of the models can be averaged to obtain a
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Table 2: Ensemble and Averaged Model accuracy for a heterogeneous population of models;
trained with varying data augmentations and regularizations. We compare models trained
separately (Baseline), with PAPA, or our method WASH and its variant WASH+Opt. We also report
the GreedySoup accuracy for the Baseline models. The best Ensemble (black) and Averaged (blue)
accuracy are reported in bold. Except on CIFAR-10, WASH and in particular WASH+Opt provide
the best performance for the final Averaged Model, with performances comparable to the Ensemble
of models for a fraction of the inference cost.

Method Baseline (trained separately) PAPA WASH (ours) WASH+Opt (ours)
Config #N Ensemble Averaged GreedySoup Ensemble Averaged Ensemble Averaged Ensemble Averaged

CIFAR-10
VGG-16 3 95.98±.42 10.00±.00 95.26±.05 96.12±.34 96.13±.24 95.89±.23 95.97±.24 95.91±.36 95.85±.27

5 96.28±.40 10.00±.00 95.42±.10 96.24±.17 96.21±.13 96.15±.10 96.20±.10 96.00±.21 96.04±.14
10 96.47±.07 10.00±.00 95.39±.24 96.32±.13 96.31±.13 96.27±.10 96.18±.13 96.14±.08 96.20±.05

ResNet18 3 97.15±.28 10.17±.29 96.62±.38 97.33±.05 97.24±.05 97.21±.19 97.19±.17 97.22±.07 97.25±.14
5 97.33±.08 10.09±.16 96.61±.03 97.35±.12 97.31±.06 97.21±.10 97.25±.12 97.18±.09 97.16±.07
10 97.59±.01 9.26±1.28 96.79±.14 97.39±.13 97.34±.06 97.30±.10 97.28±.04 97.20±.13 97.16±.13

CIFAR-100
VGG-16 3 80.36±.15 1.00±.00 77.92±.22 78.89±.10 78.77±.16 79.10±.88 79.05±.68 79.15±.61 79.15±.41

5 81.32±.56 1.00±.00 77.81±.25 79.51±.38 79.24±.43 79.65±.27 79.39±.21 79.75±.21 79.71±.20
10 82.24±.15 1.00±.00 77.83±.65 79.95±.11 79.64±.13 80.05±.18 79.70±.25 80.03±.11 79.76±.13

ResNet18 3 82.84±.48 1.00±.01 80.06±1.5 81.58±.12 81.53±.13 81.91±.34 81.90±.36 81.99±.06 82.08±.09
5 83.72±.49 1.00±.00 80.72±.52 82.09±.30 82.01±.34 82.16±.42 81.97±.28 82.35±.17 82.17±.15
10 84.18±.20 1.00±.00 80.61±.43 82.32±.09 82.15±.14 82.43±.32 82.31±.38 82.42±.31 82.18±.22

ImageNet
ResNet50 3 76.16±.28 0.10±.00 74.15±.11 75.62±.15 * 74.39±.14 74.34±.18 74.30±.22 74.18±.26

5 76.68±.06 0.10±.00 74.47±.06 75.80±.21 * 74.63±.11 74.59±.07 74.44±.21 74.39±.21

single model, which we refer to as Averaged. This is equivalent to UniformSoup in (51) or AvgSoup
in (20) for example. More elaborate averaging methods have been proposed, such as GreedySoup
(51), which averages an increasing number of models (in order of validation accuracy) until the
averaging does not improve accuracy. We report the accuracy of the Ensemble and Averaged model
for all training techniques, as well as the GreedySoup accuracy of the Baseline. Like (20), we find
that the GreedySoup accuracy corresponds to the accuracy of a single model for the Baseline and
that the Averaged model accuracy outperforms the GreedySoup model for the other techniques, and
thus chose not to report it. We summarize in Tab. 1 the communication volume and inference cost
necessary for training a separate Ensemble of models, or training with PAPA, WASH, or WASH+Opt.

4.1 Main experiments

Experimental setup. We showcase the performance of WASH for training neural networks on
image classification tasks on the CIFAR-10, CIFAR-100 (24), and ImageNet (6) datasets. We use
the same training framework as (20) for a fair comparison. We train a population of N models for
N ∈ {3, 5, 10}, on the ResNet-18, 50 and VGG-16 architectures. 2% of the training data is kept as
validation for computing the GreedySoup. Like (20), we consider one framework with heterogeneous
models, learning with different data augmentations and regularizations, and one homogeneous setting
with no data augmentations, where the only difference between the models’ training is the dataset
shuffling. Details are presented in the Appendix. Models are trained with SGD with momentum, a
weight decay of 10−4, and a cosine annealing scheduler with starting and minimum learning rates
0.1 and 10−4. For CIFAR-10/100, we train over 300 epochs with a batch size of 64, and 90 epochs
with a batch size of 256 for ImageNet. For WASH and WASH-Opt we initialize the models with the
same parameters and choose p with cross-validation to be equal to 0.001 or 0.05 when training on
CIFAR-10/100 or ImageNet. We do not require any alignment technique such as REPAIR.

Main results. Tab. 2 and Tab. 3 correspond respectively to the heterogeneous and homogeneous
settings. We report the test accuracies as the average of 3 runs for the Ensemble of models, the
Averaged model, and the GreedySoup for the Baseline (equivalent to the best model). Consistent
with the findings of (20), we find that networks trained separately have a high Ensemble accuracy, but
perform as random when averaged. On CIFAR-10/100, methods like PAPA and WASH result in lower
Ensemble accuracy but almost no difference between the Ensemble and Averaged accuracies. In
general, WASH and WASH+Opt outperform PAPA, despite requiring a lower communication volume.
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Table 3: Ensemble and Averaged Model accuracy for a homogeneous population of models. We
compare models trained separately (Baseline), with PAPA, or our methods WASH and WASH+Opt.
The best Ensemble (black) and Averaged (blue) accuracy are reported in bold. We observe the same
results in this setting, with WASH in particular reaching close to the Ensemble performance.

Method Baseline (trained separately) PAPA WASH (ours) WASH+Opt (ours)
Config #N Ensemble Averaged GreedySoup Ensemble Averaged Ensemble Averaged Ensemble Averaged

CIFAR-10
VGG-16 3 94.93±.06 10.00±.00 93.60±.41 94.38±.14 94.34±.18 94.41±.23 94.58±.17 94.45±.05 94.47±.02

5 95.29±.05 10.00±.00 93.82±.30 94.55±.12 94.58±.12 94.72±.08 94.70±.17 94.63±.11 94.68±.14
10 95.23±.06 10.00±.00 93.82±.06 94.79±.18 94.78±.20 94.66±.03 94.54±.07 94.71±.07 94.61±.13

ResNet18 3 96.14±.10 10.00±.00 95.42±.27 95.89±.04 95.89±.06 95.77±.12 95.77±.17 95.85±.04 95.87±.10
5 96.19±.16 10.00±.00 95.31±.09 95.99±.08 95.99±.08 95.96±.08 95.98±.05 95.94±.12 95.98±.12
10 96.34±.02 10.00±.00 95.26±.11 96.10±.25 96.11±.24 96.08±.07 96.12±.09 96.07±.07 96.08±.14

CIFAR-100
VGG-16 3 77.63±.24 1.00±.00 73.76±.35 75.10±.11 75.09±.16 76.30±.37 76.04±.58 76.04±.03 75.96±.18

5 78.52±.10 1.00±.00 73.76±.18 75.56±.16 75.55±.14 76.63±.27 76.48±.23 76.64±.15 76.13±.18
10 79.26±.06 1.00±.00 73.99±.26 76.24±.44 76.26±.43 77.06±.12 76.43±.18 76.72±.15 75.94±.26

ResNet18 3 79.54±.17 1.00±.00 76.84±.54 77.83±.26 77.86±.30 78.90±.17 78.76±.25 78.66±.08 78.56±.21
5 80.11±.23 1.00±.00 76.83±.45 77.94±.16 77.92±.19 79.24±.32 79.09±.43 79.32±.19 79.19±.15
10 80.55±.13 1.00±.00 76.80±.41 78.40±.15 78.44±.22 79.65±.17 79.43±.16 79.34±.34 79.19±.45
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Figure 2: Average distance to the consensus (i.e. the averaged model) during training for a
heterogeneous population of 5 models trained on CIFAR-100, either separately, with PAPA, PAPA-
all, or our method WASH. Starting at consensus, models initially diverge from each other before
converging back during convergence, mainly due to weight decay. Models trained with WASH have
a smaller distance to consensus than ones trained separately; allowing them to be averaged with no
performance loss. By training with PAPA-all (i.e. averaging to a single model every few epochs),
models are not able to reach the same diversity as WASH between these averaging steps. Finally,
the EMA of PAPA has a strong pulling effect towards consensus, resulting in a similar distance as
PAPA-all. The jitter in the curve is due to the immediate distance reduction caused by the EMA steps.

On ImageNet, our parallelization procedure resulted in a slightly lower Baseline accuracy and we
were not able to reproduce PAPA’s baseline due to our distributed constraint. The WASH Averaged
model reaches a high accuracy, like previously. Both of our methods reduce the gap with accuracies
of the baseline Ensemble, indicating that WASH hinders less the diversity of the population of models
while maintaining weight averagability. However, a gap still remains, which may be inherent to
models being in the same basin. WASH and WASH+Opt have very similar results, with the simpler
WASH being better on the homogeneous case and WASH+Opt being better on the heterogeneous
case.

4.2 Why do shuffling parameters help?

In this section, we propose to explain the improvement provided by our parameter shuffling over
previous mechanisms such as BTM, DART, or PAPA, that focus on the averaging of parameters. We
first show that models trained with WASH have a smaller distance to consensus than models trained
separately. Then, we argue that despite this, WASH is a weak perturbation on the training of the
models and that it incites diversity in the models.
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Figure 3: 2D optimization example. We train 2 points with SGD on a simple loss function with
2 local and 1 global minima (upwards and downwards triangle). The two models are trained from
two different starting points (plus signs). If the points are trained separately (yellow), they converge
to their closest local minimum (yellow circles). By training with PAPA (blue), the points reach a
consensus but then converge to one of the local minima (blue circles). By training with WASH (red),
the shuffling (seen by the horizontal and vertical lines in the trajectory) allows more diversity in the
optimization path, and the points both reach the global minimum (red circles).

Reducing distance to consensus. To better analyze the diversity of the models trained with WASH,
we propose to report the distance of the models to the consensus (the averaged model) during training,
as a proxy of the diversity metric. (18; 52) showed that the difference between the Ensemble and
the Averaged models depends on the distance between models. We present in Fig. 2 the average
distance of the models to the consensus, for models trained separately, with PAPA, PAPA-all, or with
WASH. PAPA-all is a variant of PAPA functionally identical to DART. The idea is to average the
weights every few epochs before letting the models diversify again. We observe that WASH results in
a consistently lower distance to consensus than the baseline, despite explicitly leaving the distance
to consensus unchanged during the shuffling step, and shuffling only a small number of parameters.
Thus, the smaller distance at the end of the training explains why the averaging of the parameters does
not cause a decrease in performance. By comparison, PAPA-all (i.e. DART) results in alternating
phases where models diversify before being averaged, and we observe that the models are not able to
reach the diversity of WASH. Similarly, the EMA of PAPA has a strong pulling effect and results
in average in a similar diversity as PAPA-all. Thus, we find that models trained with WASH have a
higher diversity than models trained with PAPA or PAPA-all, while being close enough that averaging
them does not cause a loss of performance. More generally, we show in Fig. 6 of the Appendix that
various interpolations of models trained by WASH result in a similar performance, showcasing that
they all reside in the same loss basin.

Encouraging diversity. WASH can be viewed as a weak perturbation on the models: the parameter
shuffling affects more weakly the models than parameter averaging or the EMA of PAPA as only a
few parameters are affected at a time, and the consensus distance is unaffected. Furthermore, the
shuffling of parameters increases the diversity of the trajectories seen by the models. We showcase
this with a toy example, by training jointly two points with SGD on a 2D loss function with 2 local
minima and 1 global minimum, either training them separately, with PAPA, or with WASH. We
represent the trajectories corresponding to each method in Fig. 3. Training separately the two points
makes them converge into a separate local minimum (i.e. a different basin). Training with PAPA
allows the two points to reach a consensus, however they converge together into a local minimum.
In contrast, by training with WASH, we show that both points reach the global minimum, as the
shuffling allows for a greater diversity of points to optimize with. We provide more details in the
Appendix.

4.3 Ablations

We present in this section ablations to better understand the effect of the parameter shuffling, varying
the layer-wise probability adaptation, the base probability value, and the shuffling period.
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Figure 5: Ablations of WASH

Layer-wise adaptation variations. For WASH, we found that a probability decrease with depth
provided the best results. We show in Tab. 4 of the Appendix the performances for alternatives,
with probability either staying constant or increasing with depth. We find lower performances for
both alternatives. In Fig. 4, we report the models’ distances to consensus for all three schedules.
More precisely, we provide the distances for different slices of the models’ parameters, indicating
the effect of the shuffling depending on the depth. Shuffling equally all layers results in the lowest
distance to the consensus as predicted, except in the last quarter of parameters. Here, surprisingly,
our base ‘decreasing’ schedule shows a lower distance to consensus despite shuffling less frequently.
We also observe a particularly strong effect of the shuffling for early layers, as the distance is more
emphasized in the first quarter between the ‘increasing’ curve and the others.

Base probability variation. We present in Fig. 5a the Ensemble and Averaged for different values
of p, the base shuffling probability of the first layer. Rather than a smooth increase of the Averaged
model accuracy, we observe a phase transition between a phase where the Averaged model accuracy
is not improved by the shuffling and a sudden increase in the accuracy where it reaches the accuracy
of the Ensemble. Just before the transition, the Ensemble accuracy is decreased, before increasing
again back to its previous performance. The accuracy decreases only slightly even when increasing
the shuffling probability to 1, indicating the resilience of the models even to heavy shuffling.

Shuffling is beneficial at every step. Finally, we propose to show the impact of the parameter
shuffling at different steps of the training by varying the epoch at which the shuffling either starts or
stops. In Fig. 5b, we show that there is no improvement by having a warmup or slowdown period in
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parameter shuffling, indicating that all phases of the training are improved by WASH. Furthermore,
stopping parameter shuffling early results in a much smaller loss of Averaged accuracy compared
to starting late. In other words, shuffling at the start of training before models converge is more
impactful as models may still reside in different loss basins.

Conclusion

We proposed a novel distributed training method, WASH, aimed at training a population of models in
parallel. These models are averaged at the end of training to obtain a highly performing model with
accuracies close to the ensemble accuracy for a fraction of the inference cost. Our method requires
a fraction of the communication cost of similarly performing techniques while obtaining state-of-
the-art results for our weight-averaged models. We show that our novel parameter shuffling does
not explicitly reduce the distance between models while increasing the diversity of the optimization
paths seen by the population. Still, we observe that the distance between our models is smaller than
training them separately, allowing them to be averaged at the end of training.
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5 Appendix

2D optimization example The loss function we consider is a heavily simplified version of the
Ackley function. With a minima in (xm, ym) defined by

g(x, y, xm, ym, λ) = exp (−λ
√
0.5((x− xm)2 + (y − ym)2) , (7)

the function we consider in our example is

f(x, y) = −10g(x, y, 10, 10, 0.1)− 5g(x, y, 8, 3, 0.3)− 5g(x, y, 3, 8, 0.3) . (8)

This function has a 2 local minima in (3, 8) and (8, 3) and a global minimum in (10, 10). In all
three cases, the starting points are (0, 5) and (5, 0). We compute SGD by first computing the exact
gradient of the function and then adding Gaussian noise to the gradient. The learning rate is 0.1 and
we optimize for 1000 steps. For PAPA, we consider α = 0.99. For WASH, the shuffling probability
is equal for both coordinates and equal to 0.01.

Interpolation heatmap Here, we propose to display a heatmap showing the accuracy of more
varied interpolations between 5 models trained separately, with WASH, or WASH+Opt. We observe
how WASH and WASH+Opt trained models converge to the same loss bassin, and that a large number
of possible interpolations result in a high accuracy. The heatmaps are presented in Fig. 6.

Layer-wise adaptation variants performance We showcase in Tab.4 the performance of the three
variants of layer-wise adaptations of WASH.
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Table 4: Test accuracies of WASH with variants of the shuffling probability per depth. Trained
with a population of 5 models on CIFAR-100 with a ResNet-18. The results show that permuting the
first layers is more important than the later layers. Still, a constant probability across layers does not
decrease WASH’s performance much.

Proba. at layer Technique
0 to L-1 Ensemble Averaged GreedySoup Best model Worst model

10−3 ↘ 0 82.22±.38 82.15±.22 81.94± 0.25 80.89±.03 78.80±.77
10−3 → 10−3 82.04±.19 81.94±.15 81.69±.23 80.60±.16 78.67±.89

0 ↗ 10−3 81.75±.35 81.37±.10 81.14±.20 80.08±.40 78.55±.70

Augmentations and regularization used We follow the same data augmentations and regular-
izations used in (20) for a fair comparison. We use Mixup (random draw from {0, 0.5, 1.0} for
CIFAR-10/100 or from {0, 0.2} for ImageNet), Label smoothing (random draw from {0, 0.05, 0.1}
for CIFAR-10/100 or from {0, 0.1} for ImageNet), CutMix (random draw from {0, 0.5, 1.0} for
CIFAR-10/100 or from {0, 1.0} for ImageNet) and Random Erasing (random draw from {0, 0.15,
0.35} for CIFAR-10/100 or from {0, 0.35} for ImageNet).

For our experiments, we required a single A100 GPU for up to 14 hours to train up to a population of
10 models, and up to 40 hours for a population of 20 models. Similarly, we required 16 A100 GPUs
to train in parallel a population of 5 models on ImageNet.
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