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Abstract

We introduce and detail an atypical neural network architecture, called time elastic neu-
ral network (teNN), for multivariate time series classi�cation. The novelty compared to
classical neural network architecture is that it explicitly incorporates time warping ability
that is based on elastic kernel theory, as well as a new way of considering attention. In
addition, this architecture is capable of learning a dropout strategy, thus optimizing its
own architecture.

The experiment demonstrates that the stochastic gradient descent implemented to train
a teNN is quite e�ective. While maintaining good accuracy compared to state of the art
deep learning approaches, we get a drastic gain in scalability by �rst reducing the required
number of reference time series, i.e. the number of teNN cells required. Secondly, we
demonstrate that, during the training process, the teNN succeeds in reducing the number
of neurons required within each cell. Finally, we show that the analysis of the activation
and attention matrices as well as the reference time series after training provides relevant
information to interpret and explain the classi�cation results.

Keywords: Time series matching, Time elastic attention, Kernel methods, Neural Net-
works, Time series classi�cation.

1 Introduction

This paper presents a neural network architecture for time series classi�cation that explicitly
incorporates time warping capability. Behind the design of this architecture, our overall
objective is threefold: �rstly, we are aiming at improving the accuracy of instance based
classi�cation approaches that shows quite good performances as far as enough training data
is available. Secondly we seek to reduce the computation time inherent to these methods to
improve their scalability. In practice, we seek to �nd an acceptable balance between these
�rst two criteria. And �nally, we seek to enhance the explainability of the decision provided
by this kind of neural architecture.

The approach we develop in this study is rooted into the theory of kernels (Schoenberg,
1938), which are essentially similarity measures to which an inner product corresponds in
the so-called Reproducing Kernel Hilbert Space.

More precisely, the proposed architecture, called time elastic Neural Network (teNN) is
derived directly from the Dynamic Time Warping Kernel (KDTW) proposed in (Marteau
and Gibet, 2014b) and its novelty, compared to classical neural networks is the following.
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1. The full network architecture is an assembly of competitive sub-networks called teNN
cells. Each teNN cell is associated with three main components: i) an abstract time
series, called a reference, ii) an activation matrix and iii) an attention matrix.

2. Within a cell, the output of any elementary neuron is the sum of its inputs (at most
three) multiplied by the local kernel that evaluates the pairwise matching of time
series samples (thus, the samples of the input time series are compared to that of the
reference time series).

3. The inverse of the bandwidth of the local kernel is a parameter (ν) that is learned
during training. A large value means high local attention, while a small value means
a low attention, an area where we do not care any sample comparison. All attention
parameters (inverse of the bandwidth values) are gathered within a teNN cell into an
attention matrix.

4. each elementary neuron is associated to an activation weight that is learned during
the training. Therefore, inactivated neurons after training can be dropped to simplify
the neural architecture. In a way, the network is able to optimize its own architecture.
All activation weights in a teNN cell are gathered into an activation matrix.

5. Finally, the samples of the reference time series are also learned during training.

While we expect good accuracy, we also expect a drastic gain in scalability by �rst
reducing the number of references, i.e. the number of teNN cells required. Secondly, we
hope to reduce the number of neurons required in a cell. Finally, we believe that the
analysis of activation and attention matrices as well as references after learning will provide
relevant information for interpreting and explaining classi�cation results.

The remaining par of the article is organized as follows. In section 2, we present a brief
history of relevant works in the domain of time elastic matching, going from early de�ni-
tion of elastic distances to elastic kernel. Then, as the proposed architecture is essentially
inspired from the implementation of KDTW, we detail the way this kernel has been con-
structed, some of its properties and its implementation in section 3. Section 4 is dedicated
to the presentation of the proposed neural architecture. The di�erentiation of the teNN cells
is detailed in section 5. A stochastic gradient descent is proposed to minimize a categorical
cross entropy loss covering the entire teNN architecture. Section 6 shows some results ob-
tained on synthetic and real datasets. We confront here our expectations to the experimental
reality. In section 7 we compare teNN accuracy to the state of the art in multivariate time
series classi�cation before concluding this study.

2 A brief history of time elastic matching and the root of time elastic

neural network

The following survey on time elastic matching, that spans more than a century, as depicted
in Fig.1, is indeed not exhaustive. We mostly focus on the works or results which seem
enlightening to us in the context of the study presented in this article.

The concept of temporal elastic matching between two curves, x and y, was histori-
cally introduced by Maurice Fréchet (Fréchet, 1906) in the form of an eponymous distance.
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Figure 1: A non exhaustive history of time elastic matching for time series comparison. The
founding work is presented in orange, the work on elastic distances in blue and
the work on elastic kernel in green.

According to its mathematical formulation given in Eq.1, this pairwise distance is de�ned
as an optimization problem in the space of monotonically increasing (temporal) functions.
Formally, Fréchet de�ned the pairwise distance measure F between two time series x and y
as:

F (x, y) = Inf
α,β

Max
t∈[0,1]

{
d
(
x(α(t)), y(β(t))

)}
(1)

∀t, ∀δt > 0, α(t) ≤ α(t+ δt) and β(t) ≤ β(t+ δt)

with α(t) and β(t) two monotonic increasing temporal functions on which the optimiza-
tion applies.

Hence, according to Fréchet's metaphoric illustration, the distance between two (3D)
trajectories followed by a man accompanied with his dog is the minimum length of a leash
required to connect the dog and its owner as they walk freely, but without going backward,
along their respective paths from one endpoint to the other.

To our knowledge, this is the �rst time that the temporal way in which curves are traveled
has been explicitly taken into account into the design of a distance between two time series.
Elastic time matching was born.

Obviously, this formal de�nition was impossible to calculate e�ciently in 1906, and it
was not until the 1960s and 1970s, with the advent of the early computers, that we saw
the �rst implementations of distance or similarity functions sharing with Fréchet's distance
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this concept of temporal elasticity. Earlier and latest implementations of such time elas-
tic distances are based on the optimality principle developed by Bellman (Bellman, 1957).
Once the so-called Dynamic Programming (DP) algorithm has been proposed by Bellman to
solve complex (exponential) resource allocation problems in polynomial time, applications
to time elastic matching spread rapidly across the computer science community. The Viterbi
algorithm (Viterbi, 1967), used in Hidden Markov Model (Forney, 1973) to align with some
elasticity a sequence of observable with a sequence of hidden states, paved the way to the use
of DP in the scope of elastic matching. Subsequently to the Viterbi algorithm, Dynamic time
Warping (DTW) was proposed (Velichko and Zagoruyko, 1970; Sakoe and Chiba, 1971) in
the context of speech recognition and then widely generalized to numerous application areas.
About at the same time, Needlemann and Wunsch (Needleman and Wunsch, 1970) proposed
an eponym algorithm to evaluate, using DP, the global maximal alignment of two strings.
It has been widely used in bio-informatics, to align protein or nucleotide sequences. One
can also mention the Levenshtein distance (also called edit distance) for string comparison
(Levenshtein, 1966) that was originally proposed in the 1960s found ten years later a DP im-
plementation (Wagner and Fischer, 1974) solving the pairwise distance evaluation in O(n2)
complexity that greatly generalized its use, in particular as a spell checker and guesser. Its
adaptation to the �eld of bioinformatics was proposed by Smith and Watermann (Smith and
Waterman, 1981). Subsequently, other proposals seeking to satisfy the triangular inequality
unsatis�ed by DTW emerged such as the Edit Distance with Real Penalty (EDR)(Chen and
Ng, 2004) and the Time Warp Edit Distance (TWED) (Marteau, 2008).

Meanwhile, the advent of support vector machines (SVM) in the early 1990s shed light
on the theory of kernels (Schoenberg, 1938), opening a new path toward the development
of time elastic kernel. First string kernels have been proposed (Lodhi et al., 2002; Saigo
et al., 2004) then elastic kernels for time series matching were designed, in particular the
Global Alignment Kernel (GAK), (Cuturi et al., 2007a) and the KDTW kernel (Marteau
and Gibet, 2014b).

Some of these elastic distances have been intensively evaluated on numerous classi�ca-
tion tasks such as in (Bagnall et al., 2016) and (Middlehurst et al., 2024). The study by
Paparrizos et al. ((Paparrizos et al., 2020)) speci�cally focusing on distance and kernels eval-
uation on 1NN classi�cation tasks exploiting a set of 128 dataset from the UCR repository
(Chen et al., 2015) is likely to be the most exhaustive. Fig.2 showing that kernels com-
pete advantageously (KDTW, GAK) in terms of accuracy, but at the cost of computational
e�ciency.

Elastic dissimilarity or similarity functions have more recently been the subject of com-
plementary research to solve the problem of estimating the time elastic mean of a set of
time series. On the similarity track essentially based on the DTW we can highlight the
DBA algorithm (Petitjean et al., 2011) and a proposal for exact calculation of a DTW av-
erage (Brill et al., 2017). Regarding the kernel track, we mainly identify Soft-DTW (Cuturi
and Blondel, 2017) and a kernelized version of DBA called TEKA (Time Elastic Kernelized
Averaging) (Marteau, 2019).

Algorithmically speaking, DP allows to reduce computational complexity of all these
time elastic measures to a polynomial function of the time series lengths, in general of
degree 2.
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Figure 2: Ranking of elastic measures according to Paparrizos et al. study (Figure from
(Paparrizos et al., 2020)). Distance and kernel measures are evaluated on 128
datasets from the UCR archive.

To conclude this short survey, successful attempts to integrate warping capability into
deep neural networks architectures have been develops. In (Grabocka and Schmidt-Thieme,
2018) the so-called NeuralWarp is composed with a bi-directional recurrent neural network
followed by 4 layers of fully connected neurons used to learned a parametric warping function.
Addressing the issue from the angle of convolution kernel, Kewei et al. (Ouyang et al.,
2021) proposed to directly incorporate a warping binary matrix into convolutional layer and
evaluated with great success these new layers into common architectures such as ResNet or
Inception networks architectures. Finally, as part of a metric learning paradigm, (Matsuo
et al., 2021) proposed learning temporal warping patterns via an attention model where
attention (weight) forms the allowed warping paths.

The approach we develop below is complementary to these recent attempts to endow
neural networks with temporal warping capabilities. Rooted in kernel theory, this approach
is theoretically well-founded and proposes a new neural architecture that implements an
original model of attention not yet proposed to our knowledge.Finally, it o�ers a new way
of reconciling classi�cation accuracy and computational parsimony, while still ensuring ex-
plainability of the results.

3 The KDTW kernel

In the following subsections, we detail the construction of the KDTW kernel, on which we
based the development of the teNN architecture.

3.1 Few de�nitions

The following de�nitions will be used through out the article.
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De�nition 1 Time series:

1. A (discrete) time series is considered through out this article as a sequence x =
x(0), x(21), · · · , x(|x| − 1) of multidimensional samples x(i) ∈ S ∪ {Λ}, where |x| is
the length of x and Λ is the null sample element. In general S ⊂ Rd, with d ∈ N+, but

it could be also a set of �nite discrete symbols for instance. In the remaining part of

the article we will consider that S ⊂ Rd

2. Let xn, with 0 ≤ n < |x|, be the truncated time series obtained from x up to sample n
(xn = x(0)x(1), · · · , x(n− 1)).

3. rx will denote the time series obtained when reverting time series x, basically rx(i) =
r(|x| − i− 1), for all i ∈ {0, 1, · · · , |x| − 1}

4. Finally, by convention, if k < 0 or k ≥ |x| we consider that x(k) = Λ (padding).

Let U be the set of time series and Ω ∈ U be the null time series (time series of length

0). We will denote Un = {x ∈ U s.t. |x| ≤ n} the set of time series whose size is lower

or equal to n.

De�nition 2 Alignment map: Let π be an ordered alignment map between two �nite non

empty sequences of successive integers of length n and m respectively. Basically π is a �nite

sequence of pairs of integers π(l) = (il, jl) for l ∈ {0, ..., |π| − 1}, satisfying the following

conditions

1. 0 ≤ il, ∀l ∈ 0, .., |π| − 1

2. il ≤ il−1 + 1,∀l ∈ 1, .., |π| − 1

3. jl ≤ jl−1 + 1, ∀l ∈ 1, .., |π| − 1

4. il−1 < il or jl−1 < jl,∀l ∈ {1, .., |π| − 1}

π1(l) = il and π2(l) = jl are the two coordinate access functions for the lth pair of mapped

integers so that π(l) = (π1(l), π2(l)).
We refer to the alignment map that is symmetrical to π as π̃, namely, π̃1 = π2 and

π̃2 = π1.
For all n ≥ 1 and m ≥ 1, let Πn,m be the set of alignment maps π such that the two sets

of mapped integers by π are {1 · · ·n} × {1 · · ·m}.

Fig.3 gives an example of an alignment map that corresponds to an alignment path
traversing the n×m grid while satisfying the conditions speci�ed in De�nition 2.

3.2 Dynamic Time Warping

Using the previous de�nition of an alignment map and corresponding path, the DTW mea-
sure between two time series x and y is straightforwardly de�ned as:

δdtw(x, y) = min
π∈Π|x|,|y|

|π|∑
i=1

(x(π1(i))− y(π2(i)))
2 (2)
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Figure 3: Example of an alignment path corresponding to the alignment map
(0, 0)(0, 1)(1, 2)(1, 3)(2, 4)(3, 4)(4, 5). The white squares correspond to substitu-
tion or match operations and black circles to either deletion or insertion operations.

However, solving directly the optimization problem that de�nes DTW (Eq.2) is di�cult
since the number of available paths corresponding to a valid alignment map in a n×m grid
is known to be a Delannoy's number, D(n,m) (Banderier and Schwer, 2005). When n and
m are in the same order, this number asymptotically increases as D(n) = c αn

√
n
(1 +O(n−1))

where n × n is the size of the square grid, α ≈ 5, 828 and c =≈ 0, 5727. Hence, the above
DTW optimization problem consists in searching an optimal path in a set of paths whose
cardinal increases exponentially with the length of the compared time series.

This is where Bellman's optimality principle (Bellman, 1957) and the dynamic program-
ming paradigm come into play, allowing to derive in a recursive way the optimal alignment
path with a quadratic computational time complexity (Sakoe and Chiba, 1971).

δdtw(x(n), y(m)) = (x(n), y(m))2

+ Min


δdtw(x(n− 1), y(m))
δdtw(x(n− 1), y(m− 1))
δdtw(x(n), y(m− 1))

(3)

To further reduce the time complexity, Sakoe and Chiba proposed to limit the search
space to a symmetric corridor disposed around the main diagonal of the grid. The green
cells of the grid presented in Fig. 3 illustrates this kind of corridor.

3.3 Kernelization of DTW

Since it has been shown (Lei and Sun, 2007; Marteau and Gibet, 2014a) that it is not possible
to derive directly de�nite (positive or negative) kernels from the elastic distances mentioned
previously, including DTW, the kernelization of DTW has attracted some attention during
the last decade. Global alignment Kernel (GAK) (Cuturi et al., 2007b), Kernalized DTW
(KDTW) (Marteau and Gibet, 2014b) and soft-DTW(Cuturi and Blondel, 2017) are some
of the most prominent approaches in this area. As our proposal for a time elastic neural
network is directly derived from KDTW, we detail below how this positive de�nite kernel
has been originally elaborated.
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De�nition 3 π-embeding: For all n > 1 and all π ∈ Πn,n, we introduce two projections

for time series , basically two vectorized representations, φπ1 : Un → U2n,π and φπ2 : Un →
U2n,π. These projections are uniquely induced by the alignment map π. Here U2n,π ⊂
(Rd ∪ {Λ})2n can be considered as a subset of times series whose lengths are at most 2n.

Note that the maximal length of an alignment map, as de�ned by Def.2, allowing to align

two time series of length n is 2n.
Then, the principle of constructing these two projections is simple. Given any alignment

map π ∈ Mn and any time series x, we traverse π step by step from l = 1 to l = |π|, while
applying the following rules:

1. φπ1(x)(0) = φπ2(x)(0) = 0

2. if both indexes π1(l) and π2(l) increase, then, we set φπ1(x)(l) = x(π1(l)) and φπ2(x)(l) =
x(π2(l)),

3. if only index π1(l) increases, then we set in φπ1(x)(l) = x(π1(l)) and φπ2(x)(l) =
φπ2(x)(l − 1),

4. if only index π2(l) increases, then we set φπ1(x)(l) = φπ1(x)(l − 1) and φπ2(x) =
x(π2(l)),

5. when we reach the end of π, if the lengths of φπ1(x) (respectively φπ2(x)) is shorter

than 2n, then we insert Λ into the remaining slots.

If we consider the example given in Fig.3, for any time series x ∈ U6 corresponds two

projections in U12 ⊂ (Rd ∪ {Λ})2×6 given the alignment map. These projections are:

φπ1(x) = [x(0), x(1), x(2), x(3), x(4), x(4), x(6),Λ,Λ,Λ,Λ,Λ] (4)

φπ2(x) = [x(0), x(0), x(1), x(1), x(2), x(3), x(4),Λ,Λ,Λ,Λ,Λ]

Finally, for any x ∈ Un and π ∈ Πn,n, we denote Pπ(x) = {φπ1(x), φπ2(x)} the set of

projections (or parts) for time series x induced by π. Note that all these projections are

sequences whose lengths are 2n.

Proposition 4 If kernel k(., .) is positive de�nite on Rd ∪ {Λ} then ∀n ≥ 1 and ∀π ∈ Πn,n,

then

kπ(a, b) =
2n∏
l=1

k(a(l), b(l)) (5)

is a p.d. kernel on (U2n)

Proposition 5 If kernel k(., .) is positive de�nite on Rd ∪ {Λ} then ∀n ≥ 1 and ∀π ∈ Πn,n,

Kπ(x, y) =
∑

φ(x)∈Pπ(x)

∑
φ(y)∈Pπ(y)

2n∏
l=1

k(φ(x)(l), φ(y)(l)) (6)

is a p.d. kernel on (Un).
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Figure 4: Projections generated by the alignment path π. To each time series in Un cor-
responds two series (embeddings) in the space U2n. The existence of a kernel in
the embedding space allows for the construction of an elastic kernel back into the
time series space Un.

Proof of proposition 5 is a direct consequence of the Haussler's R-convolution kernel the-
orem (Haussler, 1999). Indeed, since k(x, y) is a p.d. kernel on (Rd ∪{Λ}), and, considering
the sets of parts Pπ(x) and Pπ(y) associated respectively to the sequences x and y, the
conditions for the Haussler's R-convolution are satis�ed.

Note that Kπ(x, y) simply rewrites as

Kπ(x, y) =

2n∏
l=1

k(φπ1(x)(l), φπ2(y)(l)))

+
2n∏
l=1

k(φπ2(x)(l), φπ1(y)(l)))

+
2n∏
l=1

k(φπ1(x)(l), φπ1(y)(l))) (7)

+

2n∏
l=1

k(φπ2(x)(l), φπ2(y)(l)))

In practice, k(a, b) = 1
3e
−ν(a−b)2 is chosen as the local positive kernel de�ned on Rd∪{Λ},

with ν ∈ R+ and considering for instance (a− Λ)2 = ∞, ∀a ∈ Rd \ {Λ}.
Let C2n ⊂ M2n be a subset of paths then the following holds.
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Proposition 6 For any n > 1 ∈ N, any π ∈ C2n ⊂ M2n, and any (x, y) ∈ (Un)
2, then the

following kernel is positive de�nite on Un

KDTW (x, y) =
∑

π∈C2n

Kπ(x, y) (8)

The three previous propositions are also a consequence of the fact that the set of positive
de�nite kernels is a closed (w.r.t. pointwise convergence) convex cone stable under addition
and multiplication.

The choice for the local kernel k(a, b) = 1
3e
−ν(a−b)2 in the embedding space allows for a

probabilistic interpretation of KDTW . It provides a probability (up to a normalization fac-
tor) for the matching of samples a and b. As we multiply these local matching probabilities
along the alignment path π, kernel kπ provides a distribution of probability (up to a nor-
malization factor) on the set of alignment paths (represented by the four alignments parts
listed in Eq.7). Finally, KDTW (x, y) can be understood as the sum of the probabilities of
admissible paths that align x and y. More details about the proofs and interpretation of
KDTW (x, y) can be found in (Marteau and Gibet, 2014b).

The following equations de�ne a recursive implementation (thanks to the dynamic pro-
gramming solution) of KDTW that can be evaluated with quadratic complexity (O(n2)) in
both time and space. It includes a corridor, h, symmetrical to the main diagonal of the
alignment grid.

KDTW (x, y) = Ch(x, y) + C̃h(x, y) (9)

with the two recursive equations starting with p = |x| and q = |y|.

Ch(xp, yq) =
1

3
e−ν(x(p)−y(q))

2

∑
h(p− 1, q)Ce,h(xp−1, yq)
h(p− 1, q − 1)Ce,h(xp−1, yq−1)
h(p, q − 1)Ce,h(xp, yq−1)

(10)

C̃h(xp, yq) =
1

3∑
h(p− 1, q)C̃h(xp−1, yq)(e−ν(x(p)−y(p))

2
+ e−ν(x(q)−y(q))

2
)

1
2δpqh(p− 1, q − 1)C̃h(xp−1, yq−1)e−ν(x(p)−y(p))

2

1
2h(p, q − 1)C̃h(xp, yq−1)(e−ν(x(p)−y(p))

2
+ e−ν(x(q)−y(q))

2
)

(11)

By construction, the �rst term in Eq.9 evaluates over all the considered alignment paths
the two �rst products listed in Eq.7, while the second term in Eq.9 evaluates over all the
alignment paths the two last products listed in Eq.7.

In the two terms of the recursive equations (Eq.10 and Eq.11), the h(p, q) function
represents a symmetric corridor that can be de�ned along the main diagonal of the alignment
grid.

In the second term (Eq.11) δpq is the Kronecker's symbol: δ(p, q) =

{
1 if p = q

0 if p ̸= q

10
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3.4 The forward and backward kernel evaluation matrices

The recursive equations of KDTW (Eq.9,10,11) allow to construct a |x|× |y| forward matrix
F (x, y) whose elements F (x, y)i,j are nothing but the evaluation of the kernel on the pre�x
time series xi and yj , namely KDTW (xi, yj), i.e. the sum of the probabilities of all the
alignment paths that align x and y up to samples i and j respectively, or in other words,
the sum of the probabilities of all the the alignment paths connecting cell (0, 0) to cell (i, j)
of the alignment grid.

Similarly, we construct the backward alignment matrix, B(x, y), from the reverse time
series rx and ry. More precisely, B(x, y) is de�ned such that B(x, y)i,j = KDTW (rxi,

ryj).

20 40 60 80

5

10

15 -340
-320
-300
-280
-260
-240

Figure 5: Forward Backward matrix (logarithmic values) for the alignment of a positive
halfwave with a sinus wave. The dark red color represents high probability cells,
while dark blue color represents low probability cells.

And the Forward-Backward alignment matrix FB(x, y) is de�ned as the point-wise mul-
tiplication of the forward and backward matrices

FB(x, y)i,j = F (x, y)i,j ·B(x, y)|x|−i,|y|−j (12)

Hence, cell (i, j) of the FB matrix evaluates (up to a constant) the sum of the proba-
bilities of all the existing alignment paths between x and y that traverse cell (i, j).

The FB matrix and its two components F and B provide interpretive information about
the alignment process. As an example, Fig. 5 presents the Forward-Backward matrix corre-
sponding to the alignment of a positive half-wave with a sine wave. The three areas of likely
alignment paths are clearly identi�ed in dark red color, while the low probability alignment
areas are encoded in dark blue color.

In section 5 the F and B matrices will be used to di�erentiate the KDTW kernel, whose
evaluation is provided by the core cell of the teNN architecture detailed in the following
subsections.

4 Time Elastic Neural Nets

As shown in Fig.2 and in Table ?? of the experimentation section, k-NN classi�ers based on
elastic distances or kernels are fairly good classi�cation models if su�cient training data is
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Figure 6: UCR Beef dataset: left Sakoe-Chiba 'optimal' corridor, right all the best DTW
alignment paths (symmetrized), (from (Soheily-Khah and Marteau, 2019).

available. However, �nding neighbors in large, multi-dimensional datasets scales very poorly
(especially when distance or kernel evaluation is obtain with a quadratic complexity). In
addition, decision results are di�cult to explain or interpret, as the local geometry of the
multi-dimensional embedding space is often highly non-linear and di�cult to visualize.

In this context, the motivation behind the development of the time-elastic neural network
(teNN) is the improvement of k-NN classi�ers based on the KDTWmeasure, an improvement
that can be quanti�ed in terms of e�ciency, accuracy and interpretability of results.

12
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4.1 KDTW as a network of cells

Figure 7: Network architecture dedicated to the computation of the KDTW kernel.

Four main considerations guided the design of the teNN architecture.

1. The evaluation of KDTW measurement is similar to the di�usion of information in a
network of cells. teNN is the result of this analogy taken as far as possible.

2. To speed up k-NN classi�ers, one can signi�cantly reduce the size of the train set by
selecting only reference instances that generally characterize class boundaries, e.g. the
support vectors involved in support vector machines, for example. However, another
path can be followed, which consists of considering the reference instances as model
parameters that can be optimized during the training phase.

13
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3. In the de�nition of KDTW, the meta-parameter ν which enters into the calculation of
the local kernel k(a, b) = 1

3e
ν(a−b)2 does not depend on the position of samples a and

b in the matched time series, although it can be adjusted throughout the alignment
paths. By making ν a time-dependent parameter, it may become possible to take
into account a varying selectivity of the local alignment kernel capable of encoding an
original form of sequential attention.

4. The corridor de�ned by the h(., .) function has a �xed and dense shape (usually it is
de�ned as a rectangle symmetrically adapted along the main diagonal of the alignment
grid). As shown in Fig.6, the best alignment paths may be con�ned inside a potentially
sparse corridor of any shape. Somehow, the teNN architecture is aiming at learning
the shape of the corridor that best balanced the accuracy and computational cost
requirements.

The computation of KDTW (x, r) between a reference time series, R, and time series x
consists in progressively evaluating the cells of two grids, [Ci,j ] (Eq.10) and [C̃i,j ] (Eq.11),
according to a process that corresponds to the propagation (from left to right) of partial
information into a well de�ned network architecture. This architecture is depicted in Fig.7.
Namely each cell (i, j) of these two grids are systematically connected to three previous
cells (i − 1, j), (i − 1, j − 1) and (i, j − 1), except for the initial cells (0, j) and (i, 0),
i, j ∈ {0, 1, · · · }. The summation of the upper right cells of the two grids gives the �nal
result, i.e. KDTW (x, r).

4.2 teNN elementary layer

To build a single teNN layer (or component) presented in Fig.8, we are making three major
changes to the previous KDTW network architecture.

First, each layer is composed of a reference matrix [R(i, k)] (i ∈ {0, · · · , n − 1} and
k ∈ {0, · · · , d − 1}), with R(i, k) ∈ R, which is trained during the learning phase to best
represent a time series subset. More precisely, once trained, R will correspond to a virtual
time series that somehow maximizes the sum of pairwise similarity between itself and each of
the time series of the considered subset, given the other parameters of the network introduced
below.

Second, to each pair of cells (C(i, j) and C̃(i, j)) we add an activation weight. All
activation weights are gathered into an activation matrix, Ac, whose elements Ac(i, j) ∈
[0; 1], ∀i, j = {0, · · · , n− 1}, are aiming at quantifying the activation of the cells at position
(i, j). If Ac(i, j) → 0, then the cell is inactive and the probability for an alignment path to
traverse it tends towards 0. Conversely, when Ac(i, j) → 1, the cell is activated. During the
training phase, this activation matrix highlights the likely alignment paths and consequently
reduces the size of the alignment search space. Basically, it will extract the optimized shape
of the alignment corridor.

The last main change is the attention matrix [At(i, k)] (i ∈ {0, · · · , n − 1} and k ∈
{0, · · · , d − 1}). The elements of this matrix are positive or null and correspond to the
parameter ν that appears in the local alignment kernel used in KDTW.

κ(R(i), x(j)) = e−
∑d

k=1 At(R(i)−x(j))2 (13)
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Figure 8: teNN network layer.
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When At(i, k) = 0, then the local di�erences at time stamp i and dimension k, (R(i, k) −
x(j, k))2, no longer play any role. Conversely, when At(i, k) takes high values, then the local
alignment kernel becomes very selective at time stamp i and dimension k. Consequently,
visualizing the contents of these matrices enables us to identify the spatio-temporal locations
of highly selective patterns, i.e. the area of the reference time series where the network is
particularly attentive, and the �don't care� areas where it is mostly inattentive.

In addition, although KDTW allows the management of time series of variable length,
we adopt for sake of simpli�cation an architecture able to process time series of length at
most n. If time series shorter than n are involved, a padding with Λ samples is used (in
practice, we set Λ = 0).

4.2.1 Managing several references per category

Figure 9: When several references are used to represent a category, the layer whose output
is maximum (given an input x) is selected.

For some applications, it may be necessary to deal with heterogeneous categories, that is to
say containing separated clusters of dissimilar time series. In such situation, the proposed
architecture can manage several references in parallel for these heterogeneous categories as
depicted in Fig. 9. When an input x is submitted to a set of elementary layers attached
to the same category, the best layer is selected, that is to say the one providing the highest
similarity measure in output. This selection is used during training (only the parameters of
the best reference will be updated) and during exploitation.

4.3 teNN full network

The complete teNN architecture is depicted in Fig.10. This is a parallelization of teNN
elementary layers. Each reference Ri is associated to a category yi. We can consider either a
single reference per category or several, depending on the classi�cation task to be processed.
The number of references per category is a meta parameter of the model. The expectation
will be that the size of the set of Ri (the number of teNN layers) will be much smaller than
the training set.
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Figure 10: teNN complete network architecture.

17



pfm

As each teNNi layer output provides, up to a normalization factor, an estimate of the sum
of the probabilities of all alignment paths between the tested time series and the reference Ri,
a �nal normalization function acting as a softmax layer is preferred over a pure softmax layer.
The latter could produce numerical instability due to the exponentiation of non-normalized
KDTW values.

The proposed normalizing function, f , is simply with zt = [z1, z2, · · · , zC ]:

oi = f(z)i =
zi

C∑
j=1

zj

(14)

5 teNN di�erentiation

To implement a training procedure for the teNN architecture based on stochastic gradient
descent, we need to di�erentiate the cells of this architecture according to the parameters
(R,Ac, At). Below we proceed step by step to provide these required derivatives.

5.1 teNN cell derivatives

Let begin with a single teNN cell. Recall that

teNN(x,R,At, Ac) = Cn,n + C̃n,n = u (15)

Let k(i, j) = 1
3 ·Ac(i, j) · e

−
d−1∑
k=0

At(i,k)(R(i,k)−x(j,k))2)
be the local kernel evaluation at cell

(i, j) of the alignment grid (i, j ∈ {0, 1, · · · , n− 1}, k ∈ {0, 1, · · · , d− 1})

5.1.1 Cn,n term differentiation

Let us �rst consider the derivative of Cn,n according to the three types of parameters that
come into play in the teNN cell. By decomposing the derivative process around position
(i, j) we get that

∂C(n, n)

∂R(i, k)
=
∑
j

(
∂C(n, n)

∂k(i, j)
· ∂k(i, j)

∂R(i, k)

)
(16)

∂C(n, n)

∂At(i, k)
=
∑
j

(
∂C(n, n)

∂k(i, j)
· ∂k(i, j)

∂At(i, k)

)
(17)

∂C(n, n)

∂Ac(i, j)
=

∂C(n, n)

∂k(i, j)
· ∂k(i, j)

∂Ac(i, j)
(18)

using the derivatives of the local kernel we have
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Figure 11: teNN Di�erentiating cell Ci,j (similarly C̃i,j) according to a parameter θi,j (that
only depends on cell (i, j)).

∂k(i, j)

∂r(i, k)
=

2

3
·Ac(i, j) ·At(i, k)(R(i, k)− x(j, k)) · e

−
d−1∑
k=0

At(i,k)(R(i,k)−x(j,k))2)
(19)

∂k(i, j)

∂At(i, k)
=

1

3
·Ac(i, j) · (R(i, k)− x(j, k)) · e

−
d−1∑
k=0

At(i,k)(R(i,k)−x(j,k))2)
(20)

∂k(i, j)

∂Ac(i, j)
=

1

3
· e
−

d−1∑
k=0

At(i,k)(R(i,k)−x(j,k))2)
(21)

For the term ∂Cn,n

∂k(i,j) , we make use of the forward matrix [Ci,j ] and its backward counter-
part [rCi,j ].

As k(i, j) only occurs in the evaluation of cell Ci,j , Fig.11 shows how forward and back-

ward matrices intervene into the determination of the term ∂Cn,n

∂k(i,j) by looking around cell

Ci,j . Basically, we only have to consider all the paths that traverse cell Ci, j to derive ∂Cn,n

∂k(i,j) .
According to Fig.11 the sum Si,j of all the probabilities of the alignment paths that

traverse cell Ci,j is given by

Si,j =(Ci−1,j−1 + Ci−1,j + Ci,j−1) · k(i, j)·
(rC|r|−i−1,|x|−j−1 +

rC|r|−i−1,|x|−j +
rC|r|−i,|x|−j−1) (22)

Hence, we get
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∂Cn,n

∂k(i, j)
=

∂Si,j

∂k(i, j)

= (Ci−1,j−1 + Ci−1,j + Ci,j−1) · (rC|r|−i−1,|x|−j−1 + rC|r|−i−1,|x|−j +
rC|r|−i,|x|−j−1) (23)

5.1.2 C̃n,n term differentiation

The procedure to obtain the derivatives of the term C̃n,n is similar to that used for the term
Cn,n. We introduce �rst the function f(i, j) = 1

2(k(i, i)+ k(j, j)) and decompose the partial
di�erentiation as follows

∂C̃(n, n)

∂R(i, k)
=
∑
j

(
∂C̃(n, n)

∂f(i, j)
· ∂f(i, j)
∂R(i, k)

)
(24)

∂C̃(n, n)

∂At(i, k)
=
∑
j

(
∂C̃(n, n)

∂f(i, j)
· ∂f(i, j)

∂At(i, k)

)
(25)

∂C̃(n, n)

∂Ac(i, j)
=

∂C̃(n, n)

∂f(i, j)
· ∂f(i, j)

∂Ac(i, j)
(26)

Two distinct cases appear for the derivatives of the term f(i, j), depending on whether
i = j or not. The formulation below compiles the two possibilities

∂f(i, j)

∂R(i, k)
=

1 + 1i=j

6
·Ac(i, j) ·At(i, k)(R(i, k)− x(i, k)) · e

−
d−1∑
k=0

At(i,k)(R(i,k)−x(i,k))2)
(27)

∂f(i, j)

∂At(i, k)
=

1 + 1i=j

6
·Ac(i, j) · (R(i, k)− x(j, k)) · e

−
d−1∑
k=0

At(i,k)(R(i,k)−x(j,k))2)
(28)

∂f(i, j)

∂Ac(i, j)
=

1

6
· (e
−

d−1∑
k=0

At(i,k)(R(i,k)−x(i,k))2
+ e
−

d−1∑
k=0

At(j,k)(R(j,k)−x(j,k))2
) (29)

And �nally, the exploitation of the forward and backward matrices leads to

∂C̃n,n

∂f(i, j)
=(1i=jC̃i−1,j−1 + C̃i−1,j + C̃i,j−1)·

(r1i=jC̃|r|−i−1,|x|−j−1 +
rC̃|r|−i−1,|x|−j +

rC̃|r|−i,|x|−j−1) (30)

5.2 Loss function for the full teNN architecture training

In the absence of knowledge on the data, the Categorical Cross-Entropy (CCE) loss seems
to be an acceptable choice for training the teNN architecture, although it is known to be
sensitive to imbalance data and outliers. Usually, in most neural networks architecture
optimization, CCE is used in conjunction with a softmax output layer. For the teNN
architecture however, we use it with the normalizing function o (Eq.14). In addition to the
CCE loss, we add two regularization terms to force the search for parsimonious solutions.
We use the L1 norm to constrain the matrices Ac and At of all teNN cells to be sparse.
λ1 ≥ 0 and lambda2 ≥ 0 are two meta parameters that weight the importance of these two
regularizing terms in the �nal loss function.
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L(X, y) = −
|X|∑
l=1

C∑
i=1

yl,i ln(ol,i) + λ1

C∑
i=1

||At,i||L1 + λ2

C∑
ki1

||Ac,i||L1 (31)

where yi is a one-hot vector and ol,i the normalized output vector of teNN layer i (corre-
sponding to the ith category) when xl is presented as input.

The training of the teNN architecture corresponds therefore to the following optimization
problem

Θ∗ = Min
Θ

L(o, y) (32)

s.t. 0 ≤ Ac,i ≤ 1

0 ≤ At,i

for i ∈ {1, 2, · · · , C}

Θ is the set of parameters that are optimized, namely {(Ac,k, At,k, Rk)} for k ∈ {1, 2, · · · , C}.
Di�erentiating the CEL function according to any parameter θi characterizing any teNN

layer i can be expressed as:

∂L(X, y)

∂θ
=

∂L(o, y)
∂θ

=
∂L(o, y)

∂zi

∂zi
∂θ

(33)

where oi is the output of teNN layer i.

∂oi
∂θ is obtained through the process described from Eq.15 to Eq.30.

And it is easy to get that

∂L(oi, y)
∂zi

=
1

zi

(
zi∑C
j=1 zj

− yi

)
(34)

where y is a one hot vector.

Finally, to solve the optimization problem, which is quadratic but not convex, we adopt
a classical stochastic gradient descent.

5.2.1 Algorithmic complexity of the training procedure

For the previous di�erentiation procedure, the evaluation of the forward and backward
alignment matrices Cn,n and C̃n,n requires 4n2 local kernel evaluations, whose complexity is
in O(d). As n2 derivatives need to be evaluated for the Ac (activation) matrix, nd derivatives
for the attention matrix At and nd derivatives for the reference time series R, we get that
the overall complexity requirement to di�erentiate a teNN cell is about 4 ·d ·n2+n2+2n ·d
macro operations, leading to a O(d·n2) time complexity and a O(n2+n·d) space complexity.
hence, for a full teNN architecture containing Nr cells, the computational time and space
complexities are O(Nr · d · n2).
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Algorithm 1: Stochastic gradient descent on the categorical cross entropy loss for
the teNN architecture (Eq.31)
Data: X, y, L, dim {(teNNk, yk, nck, fk), k = 1 · · ·Nc}, max_epoch, batchsize, ν0, α0, η, λ1, λ2

Result: The trained teNN
nepoch← 0;
nbatch← max(1, f loor(|X|/batch_size));
C ← set_of_categories(y);
n← length_of_time_series(X);
Rk ← InitializeWithCentroidR(yk, X, y, nck), for k = 0 to Nc;
At,k ← ν0, for k = 0 to Nc;
Ac,k ← α0, for k = 0 to Nc;
while nepoch < max_epoch do

list_of_batch← Random_split(X, y, nbatch);
for nc = 0 to nbatch do

Xb, yb ← list_of_batch[nc];
Gr[Nc, L, dim]← 0; GAc[Nc, n, n]← 0; GAt[Nc, L, dim]← 0;;
for l = 0 to |Xb| do

x← Xb(l);
sumZ ← 0;
for i = 0 to |C| do

i∗ ← argmaxk {teNNk(x, rk, At,k, Ac,k) s.t. yk = Ci} ;
zi∗ ←teNNi∗ (x, ri∗ , At,ri∗ , Ac,i∗ );
sumZ ← sumZ + zi∗ ;
∇ri∗ ,∇At,i∗ ,∇Ac,i∗ ← Grads(zi∗ );

end

for i = 0 to |C| do
oi∗ ←

zi∗
sumZ

;

if yi∗ = yb(l) then
loss ← loss −np.log(oi∗ );
Gr(i∗)← Gr(i∗)−∇ri∗ ∗ (1/sumZ − 1/zi∗ );
GAt(i∗)← GAt(i∗)−∇At,i∗ ∗ (1/sumZ − 1/zi∗ );
GAc(i∗)← GAc(i∗)−∇Ac,i∗ ∗ (1/sumZ − 1/zi∗ ;

end

else

Gr(i∗)← Gr(i∗)−∇ri∗ ∗ 1/sumZ;
GAt(i∗)← GAt(i∗)−∇At,i∗ ∗ 1/sumZ;
GAc(i∗)← GAc(i∗)−∇Ac,i∗ ∗ 1/sumZ;

end

end

end

for k = 0 to Nc do

norm_factor ← ||Gr(k)||+ ||GAt(k)||+ ||GAc(k)||+ ϵ)/fk;
Rk ← rk + ηGr(k)/norm_factor;
At,k ← At,k + ηGAt(k)/norm_factor;
Ac,k ← Ac,k + ηGAc(k)/norm_factor;

end

end

if No Progress then

/* No accuracy gain on train data or loss reduction over a given number of epochs */

η ← η/1.05;

end

nepoch← nepoch+ 1;

end
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Algorithm 2: Averaging a set of time series by means of a gradient descent on the
KDTW kernel.
Data: X, L, dim, ν0, max_epoch
Result: An estimate of the centroid of X
nepoch← 0;
M ← medoidof(X);
while nepoch < max_epoch do

Gr[L, dim]← 0;;
for x ∈ X do

Gr ← Gr +∇KDTW (x,M, ν0) /* see Eq.16 and Eq.24 */

end

M ←M + ηGr(k)/(||Gr(k)||);
nepoch← nepoch+ 1;

end

5.3 Training procedure for teNN

Algorithm 1 presents the implementation of a stochastic gradient descent that seeks to
minimize the CCE loss on a teNN architecture, namely a set of Nc teNN cells {(teNNu,
yu, fu), u = 1 · · ·Nc}. It takes as arguments a set of labeled time series (X, y), the max
number of epochs, the batch size. The main meta parameters are

1. ν0, the bandwidth of the local kernel which is used to initialize the attention matrices
At.

2. α0, used to initialize the activation matrices Ac.

3. nr the number of references used to represent each category (Nr = nrṄc).

4. the relaxation coe�cient η > 0.

5. λ1 ≥ 0 which weights the sparsity penalty of the activation matrices (Ac).

6. λ2 ≥ 0 which weights the sparsity penalty of the attention matrices (At).

The initial references {Ru}u=1,··· ,Nr are determined using algorithm 2 which averages a
set of time series thanks to a gradient descent on the KDTW kernel, exploiting Eq.16 and
Eq.24. If multiple references per category are required, spectral clustering is �rst applied
with the required number of clusters, then the algorithm 2 is run on each discovered subset
of time series.

6 Validation

To validate the teNN architecture and its training algorithm, we propose here after some
experiments carried out on three datasets, two are univariate (BME, ECG200) and one is
multivariate (ERing). These datasets are selected from the Time Series Classi�cation (TSC)
website 1.

The meta parameters used for these experiments are given in the following table:

1. https://timeseriesclassification.com/d
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Table 1: Selected values for the teNN meta parameters

Parameter value comment

λt 1e− 3 sparsity penalty for the attention matrices
λa 1e− 3 sparsity penalty for the activation matrices
η 1e− 1 relaxation coe�cient
batch_size 64
ν0 1e− 3 initialization of the attention matrices At

α0 1.0 initialization of the activation matrices Ac

nr 1 the number of reference time series per category.

The following subsections present for each of these three data sets the contents of matrices
At, Ac and R, once the learning procedure has converged. We then evaluate the degree of
parsimony of the matrices At and Ac. We �nally carry out an ablation study to estimate
the impact of each of these parameter matrices on the accuracy metric.

6.1 The BME dataset

BME (Begin-Middle-End) is a synthetic univariate dataset provided by Laboratoire d'informatique
de Grenoble(LIG), at Université Grenoble Alpes. It contains with three classes as shown in
Fig.12:

1. Category 1 series (Begin), are characterized by the presence of a small positive peak
arising at the initial period.

2. Category 2 series (Middle) are characterized by the absence of any peak at the begin-
ning or are the end of the series.

3. Category 3 series (End) are characterized by the presence of a positive peak arising at
the �nal period.

Figure 12: Samples of the BME dataset (3 samples per category are presented). The time
elastic centroid used to initialize the references of the teNN cells are represented
in red dotted lines.
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All series, whatever their category, are constituted by a central plateau. The central
plateau may be positive or negative. Hence, the discriminant part is the presence or absence
of a positive peak, located at the beginning or at the end of the series.

Figure 13: Loss(epoch) for the BME dataset.

Fig.13 shows the loss function as a function of the epoch for the BME dataset. The
convergence appears regular and smooth although a large number of iteration (> 1000) is
required to reach a minimum.

Figure 14: Activation matrices for the BME dataset. From left to right, activation for
categories 1 (Begin), 2 (Middle) and 3 (End).

The activation matrices Ac, one for each of the three categories, are presented as colored
encoded images in Fig.14. Red color corresponds to a maximum level of activation (Ac(i, j) =
1), while blue color encodes a zero level of activation. On this example, the teNN architecture
has been able to learn corridors that limit the search spaces for the alignment paths quite
sharply.
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Figure 15: Reference ({Ru}, u ∈ {1, 2, 3}) time series for the BME dataset (blue curve, plain
line). The centroid of the category used for initializing the teNN cell is presented
in orange dotted line. Time is the horizontal axis.

Figure 16: Attention weights (At(i))for the BME dataset (orange curve, plain line). The
corresponding reference vector Ru is presented in blue dotted line. Time is the
horizontal axis.

Since the BME dataset contains univariate time series, the attention matrices At reduce
to attention vectors that are associated to each of the reference vectors R. These vectors
are shown in Fig. 16.

As expected, the attention of the teNN components are focused on the discriminant part
of the reference time series, basically at the beginning and the end of the time series to
test the presence or absence of a discriminative peak. The centers of the time series are
characterized by a quasi-null attention, meaning that the associated subsequences have no
weight in the computation of the output of the teNN component.

Fig. 15 shows the initial references for each category in dotted lines. The reference
obtained once the training is completed is indicated in solid blue lines. For categories 1 and
3, the central part of the �nal references having zero attention weight is becoming closer to
0. Here, optimizing simultaneously on the references R and on the attention matrices At is
somehow redundant: it sets a null attention on the central plateau and move the reference
towards zero, the average value between positive and negative plateaux.

For this example, we could have proposed two reference vectors for categories 1 and 2,
to account for positive or negative plateaux in the central part of the series. However, as
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shown in Fig. 16, attention weights o�er a more parsimonious solution, allowing the use of
a single reference per category.

6.2 The ECG200 dataset

For this second dataset (Olszewski et al., 2001), each univariate series is a subsequence of an
electrocardiogram corresponding to a single heartbeat. The two classes gather respectively
normal heart rhythm time series (category 0) and a myocardial infarction (category 1) time
series (typical shapes are given in Fig.17 from (Olszewski et al., 2001)). Few time series
extracted randomly from the train dataset for each category are presented in Fig.18 along
with the estimate centroid time series presented in red dash-dot line.

Figure 17: ECG200 categories, Normal is category 0 and Myocardial Infarction is category
1. Figures are from (Olszewski et al., 2001)

Figure 18: Samples of the ECG200 dataset (3 samples per category are presented). The time
elastic centroid used to initialize the references of the teNN cells are represented
in red dotted lines.
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Figure 19: Loss(epoch) for the ECG200 dataset.

Fig.19 shows the loss function as a function of the epoch for the ECG200 dataset. Here
again the convergence appears regular and smooth. The slope of the curve is steep, although
a large number of iteration is required before reaching a minimum.

Figure 20: Activation matrices for the ECG200 dataset. From left to right, activation for
category 0 and 1.

The activation matrices Ac, one for each of the two categories, are presented as colored
encoded images in Fig.20. Red color corresponds to a maximum level of activation, while
blue color encodes a zero level of activation and white color corresponds to in-between
activation levels (Ac(i) ≈ .5). On this example, we show that the teNN architecture has
been able to learn complex corridors with 'holes' that forbid the passing of alignment paths.
Here again, the search spaces for the alignment paths is reduced quite sharply.
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Figure 21: {Ru} time series for the ECG200 dataset (blue curve, plain line). The centroid
of the category used to initialize the teNN cell is presented in orange dotted line.
Time is the horizontal axis.

Figure 22: Attention weights for the ECG200 dataset. Left, category 'Normal' (0), right,
category Abnormal (1)

The ECG200 dataset is composed with univariate time series, hence the attention ma-
trices {At} reduce again to attention vectors that are associated to each of the reference
vectors R shown in Fig.21. The attention vectors are shown in Fig. 22 in plain orange
curves, while the reference vectors are presented in blue dash-dot curves. The interpretation
is not obvious and required some medical expertise, but one can see that the attention vec-
tors focus mostly on the shape of the big negative valley and on the shape of the subsequent
plateau.

6.3 The ERing dataset

The ERing dataset (Wilhelm et al., 2015) is composed with multivariate times series in
4 dimensions (d = 4) that characterize captured hand and �nger gestures belonging to 6
categories. These data have been captured using a �nger ring and an electromagnetic sensor.
Fig.23 shows few samples for the 6 categories.
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Figure 23: Samples of the ERing dataset. The time elastic centroid used to initialize the
references of the teNN cells are represented in red dotted lines.

Figure 24: Loss as a function of the epoch for the ERing dataset.

Similarly to the previous examples, for the ERing multivariate data, the loss function
presented in Fig.24 shows a smooth and regular convergence of the training process.
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Figure 25: Activation matrices for the ERing dataset.

The activation matrices given in Fig.25 are very contrasted. Either the neurons are
activated (red pixels) or deactivated (blue pixels). On this example, the teNN cells were
able to signi�cantly reduce the alignment search spaces, as shown by the narrow corridors.

Figure 26: Attention weights for the ERing dataset. Red pixels stand for high attention,
blue ones for low attention. White pixels identify in between level of attention.
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As the time series are multivariate, the attention matrices do not reduce to vectors. They
are shown in Fig.26. From this example, we see that, after training, the teNN architecture
was able to focus its attention on a spatio-temporal basis, basically, at any given time,
attention is generally focused on a small subset of dimensions. The attention matrix is
sparse which was expected using a L1 penalty (meta parameter λ2 in Eq.31).

Figure 27: Reference ({Ri}) time series for the ERing dataset.

Fig.27 shows the reference time series after learning. For this example, they are staying
close to the initial centroids although some details of the shapes have been erased or added.
Without a precise knowledge of the motion capture process, we cannot interpret further this
example.

6.4 How parsimonious is the teNN model?

Beyond limiting the number of class references, we need to estimate the sparsity of the
teNN components, namely the Ac and At matrices. The sparsity of any matrix can be
evaluated as the % of zero elements it contains. The sparsity of the matrix Ac estimates
the size of the useful corridor in which the alignment paths could be con�ned. For the
matrix At, it indicates the area of the reference time series R on which the network focuses
its attention. Zero values correspond to unimportant local sample alignments. Although
the teNN architecture is based on the KDTW global alignment kernel, At sparsity allows
extracting local segments with high attention interconnected via "don't care" segments.
Somehow, this provides teNN with local alignment capability.

Note that there is no reason for the matrix R, which represents a reference time series,
to be sparse.
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Table 2: Sparsity (in %) of the Ac and At matrices of the teNN architecture

BME ECG200 ERing

Ac 90.0 87.7 75.7
At 62.5 68.8 69.0

Table 2 shows the sparsity of the matrices Ac and At once the teNN architecture has
been trained on the BME, ECG200 and ERing datasets with meta-parameters λt and λc set
to the value 1e−2. For the synthetic BME dataset the sparsity of matrix Ac reaches 90%,
while it is a bit less for the ECG200 and the ERing datasets (≈ 87% and 75% respectively).
The sparsity of the At matrix is also signi�cant (≈ 62% tà 69%) for the three datasets.

6.5 Ablation study

To evaluate the importance of the three main components (Ac, At and R matrices) which
compose the teNN architecture, we have carried out an ablation study and compared the
classi�cation accuracies obtained on the three previous datasets.

Table 3: Accuracies (in %) obtained when none, one or several components of the teNN
architecture are not optimized. First value corresponds to the last minimum train-
ing error con�guration, while the second value corresponds to the minimum loss
con�guration. Best accuracies are in bold characters.

BME ECG200 ERing

R only 72/71.33 84/82 86.67/84.44
Ac only 74.67/74.67 78/78 86.30/86.30
At only 100/85.33 87/87 93.70/91.48
R and Ac 70.67/70.67 90/91 86.67/85.19
R and At 100/99.33 84/87 93.70/86.30
Ac and At 100/83.33 86/88 94.44/89.26
Full model 100/100 92/92 95.18/95.18

1NN-DTW 89.33 80.00 93.33
1NN-KDTW 98.66 83 92.59

Table 3 presents the accuracies obtained for the fully optimized teNN architecture (last
raw), and for con�gurations in which one or to of the three components (Ac, At and R) are
not optimized. When At is not optimized, the attention matrix is initialized by a constant ν
value selected such as minimizing the training error of a one near neighbor classi�er (using
a leave one out procedure).

Clearly, this study shows that the joint optimization of the three components leads to
the best accuracies. Apparently, the component having the most impact on the drop in
accuracy is the attention matrix At. The R and Ac component have a signi�cant impact on
the ECG200 task, but not so much on the BME and ERing tasks. The Ac component, as
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already mentioned, primarily serves to balance precision and parsimony. Not optimizing it,
as expected, does not have a catastrophic impact on accuracy.

As a baseline, we added in the table 3 the accuracies of the �rst DTW and KDTW near
neighbor classi�ers. We observe that the full teNN architecture achieves better classi�cation
accuracies even though it uses a single reference time series R to represent each category.

6.6 Wrapping-up the �rst results

At the light of these few previous examples, we have shown that with a single reference time
series per category, the teNN classi�er outperforms the 1-NN classi�er based on KDTW or
DTW, which leads to a signi�cant speedup. Furthermore, we have established that:

1. the stochastic gradient descent is e�ective to train the teNN architecture, as the loss
functions decreases rapidly in general,

2. the teNN architecture is able to learn sparse attention matrices that reduce the com-
putational cost of the teNN cells and can be interpretable if expertise is available.

3. the teNN is able to learn part of its interconnection by deactivating unnecessary neu-
rons. This makes it possible to learn complex alignment corridors and opens prospects
for optimizing the implementation of teNN, notably by reducing its memory require-
ments and computational complexity.

7 Experimentation

The preliminary tests we have performed on univariate time series classi�cation shows that
teNN achieves comparable results to those presented in (Ouyang et al., 2021). In this section,
we focus on multivariate time series classi�cation tasks, which are more di�cult and prone
to over�tting. We therefore compare the teNN architecture on these tasks with some state-
of-the-art methods, while following the extensive empirical study that was designed and
carried out in (Baldán and Benítez, 2021).

7.1 Datasets

The datasets made up of multivariate time series on which the evaluation is carried out are
those used in this previous study (Baldán and Benítez, 2021). These are 30 datasets from
various �elds (economy, health, biology, energy, industry, etc.), freely accessible on the UEA
archive2.

The characteristics of these datasets (size, length of series, dimension) are given in table
4 directly provided in (Baldán and Benítez, 2021).

Since the current implementation of the teNN architecture requires a �xed length for
time series, when the series in a dataset are of variable size, we reduce them all to the length
of the longest series by zero-padding.

2. https://timeseriesclassification.com/
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Table 4: Datasets information from the UEA repository

Dataset Train Test Length Dims Class

ArticularyWordRecognition 275 300 144 9 25
AtrialFibrillation 15 15 640 2 3
BasicMotions 40 40 100 6 4
CharacterTrajectories 1422 1436 60-182 3 20
Cricket 108 72 1197 6 12
DuckDuckGeese 50 50 270 1345 5
EigenWorms 128 131 17984 6 5
Epilepsy 137 138 206 3 4
EthanolConcentration 261 263 1751 3 4
ERing 30 270 65 4 6
FaceDetection 5890 3524 62 144 2
FingerMovements 316 100 50 28 2
HandMovementDirection 160 74 400 10 4
Handwriting 150 850 152 3 26
Heartbeat 204 205 405 61 2
InsectWingbeat 25000 25000 2-22 200 10
JapaneseVowels 270 370 7-29 12 9
Libras 180 180 45 2 15
LSST 2459 2466 36 6 14
MotorImagery 278 100 3000 64 2
NATOPS 180 180 51 24 6
PenDigits 7494 3498 8 2 10
PEMS-SF 267 173 144 963 7
PhonemeSpectra 3315 3353 217 11 39
RacketSports 151 152 30 6 4
SelfRegulationSCP1 268 293 896 6 2
SelfRegulationSCP2 200 180 1152 7 2
SpokenArabicDigits 6599 2199 4-93 13 10
StandWalkJump 12 15 2500 4 3
UWaveGestureLibrary 120 320 315 3 8

7.2 Compared methods

In (Baldán and Benítez, 2021), the authors developed a feature based approach called Com-
pexity Measures and Features for Multivariate Time series (CMFM) to improve the inter-
pretability of classi�cation results. More precisely, time series are represented with 41 de-
scriptive features (in particlar curvature, linearity, Shannon entropy, skewness, trend, etc.).
Several models of classi�cation are evaluated, namely C5.0 with boosting (CMFM-C5.0B),
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Random Forest (CMFM-RF), Support vector machine (CMFM-SVM) and 1-Nearest Neigh-
bors with Euclidean distance (CMFM-1NN-ED).

In addition, they included in their experimental study the following SOTA models :

� 1-Nearest Neighbors with Euclidean distance (1NN-ED).

� 1-Nearest Neighbors with DTW distance using multidimensional points (1NN-DTW-
D), with or without normalization (Shokoohi-Yekta et al., 2016).

� 1-Nearest Neighborsbased on the sum of 1 dimensional DTW distances (1NN-DTW-I),
with or without normalization (Shokoohi-Yekta et al., 2016).

� Multivariate LSTM with fully Convolutional Networks (MLSTM-FCN) (Karim et al.,
2018) with the settings speci�ed by the authors.

� Word ExtrAction for time SEries cLassi�cation plus Multivariate Unsupervised Sym-
bols and dErivatives (WEASEL + MUSE) (Schäfer and Leser, 2018) with the settings
speci�ed by their authors.

� Local Cascade Ensemble for Multivariate data classi�cation (LCEM) (Fauvel et al.,
2020), optimized hyper-parameters for each dataset.

� Random Forest for Multivariate (RFM) algorithm, from the sklearn library, applied
to the transformation proposed in the LCEM paper (Fauvel et al., 2020).

� Extreme Gradient Boosting for multivariate (XGBM), Extreme Gradient Boosting
algorithm, from the xgboost library,applied to the transformation proposed in the
LCEM paper (Fauvel et al., 2020).

All the reported classi�cation results from these methods presented in Table 6 are from
(Fauvel et al., 2020) and (Baldán and Benítez, 2021). We use them for comparison purposes,
to position the teNN architecture within the state of the art in the �eld.

7.3 Heuristic selection for the teNN meta parameters

The convergence of the training process depends strongly on the choice of three meta-
parameters: η, the relaxation parameter, ν0, the initialization of the attention matrices and
nr the number of reference time series per category.

The heuristic we have adopted consists in selecting the highest values for η and ν0 and
the lowest value for nr so that the learning procedure converges.

Table 5: Selected values for the teNN meta parameters

Parameter value comment

λt 1e− 6 sparsity penalty for the attention matrices
λa 1e− 6 sparsity penalty for the activation matrices
η 1e− 1 relaxation coe�cient
batch_size size of dataset
α0 1.0 initialization of the activation matrices Ac
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For the other meta parameters, we have retained the values listed in Table 5.

7.4 Results

Two teNN models were evaluated. The �rst, teNN-lm, corresponds to the last minimum
learning error strategy. The second, teNN-ml, corresponds to the last minimum loss strategy.
The classi�cation accuracies obtained by these two models are shown in the last two columns
of the Table 6.

The last column of the Table 6 shows the average rank achieved by each model.

Figure 28: Critical di�erence diagram

As a post-hoc test, we considered the Wilcoxon signed rank test. The null hypothesis for
this test is that the di�erence between the accuracies of the two compared models is zero.
If the p-value is below the chosen signi�cance level (0.05), we reject the null hypothesis
and conclude that there is a signi�cant di�erence between the accuracies of the two models.
Otherwise, we consider that there is no signi�cant di�erence between the two models.

Fig. 28 shows the Critical Di�erence Diagram (CDD) for the set of evaluated models.
CDD is a way of visualizing post-hoc test statistics. Firstly, in a block design scenario, the
values within each block are ranked, and the average rank across all blocks for each treatment
is plotted along the x axis. A crossbar is then drawn over each group of treatments that do
not show a statistically signi�cant di�erence among themselves. Here, the signi�cance level
is set to 0.05 (less than 5%).

Based on this benchmark, we conclude that the teNN architecture has classi�cation
performance very similar to that of state-of-the-art models, in particular Random Forest
and MLSTM-FCN models. The only model that performs better, although not signi�cantly
so according to the Wilcoxon post-hoc analysis, is the LCEM model, which is a meta-model
combining Random Forest and XGBoost. The gain/loss/tie ratios are very close between
teNN and the best models, LCEM, CMFM+RF and MLSTM-FCN.

Furthermore, the two tested decision strategies, last minimum training error (teNN-lm)
and last minimum loss (teNN-ml) lead to the similar classi�cation accuracies, although
teNN-lm achieves a slightly better average rank.
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Table 6: Accuracy results on the UEA repository datasets: accuracy (%), average accuracy,
median, average rank, and Win/Loss/Tie Ratio. Best results are in bold.
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8 Conclusion

We have introduced and detail in this article an atypical neural network architecture for
multivariate time series classi�cation purpose. More precisely, we have proposed a neural
network architecture that explicitly incorporates time warping capability. The approach we
have develop is rooted into the theory of kernels (Schoenberg, 1938), which are essentially
similarity measures to which corresponds an inner product in the so-called Reproducing
Kernel Hilbert Space.

Behind the design of this architecture, our overall objective was threefold: �rstly, we
were aiming at improving the accuracy of instance based classi�cation approaches that
shows quite good performances as far as enough training data is available. Secondly we
have seek to reduce the computational complexity inherent to these methods to improve
their scalability. In practice, we have tried to �nd an acceptable balance between these �rst
two criteria. And �nally, we have seek to enhance the explainability of the decision provided
by this kind of neural architecture.

The novelty of the teNN, compared to classical neural networks is the following.

1. The complete network architecture is an assembly of competitive subnetworks called
teNN cells. Each teNN cell is associated with three main components: i) an abstract
time series, called reference, ii) an activation matrix and iii) an attention matrix.

2. In a cell, the output of any elementary neuron is the sum of its inputs (at most three)
multiplied by the local kernel which evaluates the pairwise correspondence of time
series samples (thus, samples of the input time series input are compared to that of
the reference time series).

3. For each neuron, the inverse of the local kernel bandwidth is a parameter (ν) that
is learned during training. A high value means high local attention, while a low
value means low attention, basically an area in the time series where we don't care
about sample comparison. All attention parameters (inverse of bandwidth values) are
grouped within a teNN cell into an attention matrix.

4. each elementary neuron is associated with an activation weight learned during training.
Therefore, neurons inactivated after training can be removed to simplify the neuronal
architecture. In a way, the network is able to learn a drop-out strategy, hence opti-
mizing its own architecture. All activation weights in a teNN cell are grouped into an
activation matrix.

5. Finally, the reference time series samples are also adapted during training, which
provides interpretable discriminative cues in areas where attention is high.

The experiment demonstrates that the stochastic gradient descent implemented to train
a teNN is quite e�ective. To the extent that the selection of some critical meta-parameters
is correct, convergence is generally smooth and fast.

While maintaining good accuracy, we show a drastic gain in scalability by �rst reduc-
ing the required number of reference time series, i.e. the number of teNN cells required.
Secondly, we demonstrate that, during the training process, the teNN succeeds in reducing
the number of neurons required within each cell. Finally, we show that the analysis of the
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activation and attention matrices as well as the reference time series after training provides
relevant information to interpret and explain the classi�cation results.

The comparative study that we have carried out and which concerns around thirty di-
verse and multivariate datasets shows that the teNN obtains results comparable to those
of the state of the art, in particular similar to those of a network mixing LSTM and CNN
architectures for example.

However, the study of TeNN architecture is still in its infancy. The impact of meta-
parameters (initialization of attention matrices, number of reference time series, relaxation
parameter, etc.) needs to be studied in detail.

The current implementation of the architecture itself also needs to be optimized to reduce
memory requirements, in particular, inactivated neurons have to be e�ectively pruned to
recover memory space. Very long and high dimensional time series will not �t in memory.
Segmentation or multiresolution approaches could be considered to handle this issue. Finally,
the implementation could be adapted to run on highly parallel computing platforms, i.e.
GPUs and FPGAs.
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