
HAL Id: hal-04588018
https://hal.science/hal-04588018v2

Preprint submitted on 15 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Quantifying Treatment Effects: Estimating Risk Ratios
in Causal Inference

Ahmed Boughdiri, Julie Josse, Erwan Scornet

To cite this version:
Ahmed Boughdiri, Julie Josse, Erwan Scornet. Quantifying Treatment Effects: Estimating Risk Ratios
in Causal Inference. 2024. �hal-04588018v2�

https://hal.science/hal-04588018v2
https://hal.archives-ouvertes.fr


Quantifying Treatment Effects: Estimating Risk Ratios via
Observational Studies

Ahmed Boughdiri Julie Josse Erwan Scornet
INRIA Sophia-Antipolis INRIA Sophia-Antipolis Sorbonne Université and

Université Paris Cité

Abstract

Randomized Controlled Trials (RCT) are the
current gold standards to empirically measure
the effect of a new drug. However, resorting
to complementary non-randomized data (ob-
servational data), which are larger and more
diverse, is promising. Medical guidelines rec-
ommend reporting the Risk Difference (RD)
and the Risk Ratio (RR), which may pro-
vide a different comprehension of the effect
of the same drug. Contrary to RD, only few
methods exist to estimate the RR for observa-
tional data. In this paper, we analyze the well-
known RR estimator used in RCT and pro-
pose several RR estimators in observational
data. For all estimators, we establish their
asymptotic normality and derive asymptotic
confidence intervals. We compare the empiri-
cal performances of the different estimators in
a simulation study. We also analyze the cover-
age and the length of the proposed confidence
intervals.

1 INTRODUCTION

Treatment effect estimation in trials. Modern
evidence-based medicine prioritizes Randomized Con-
trolled Trials (RCTs) as the cornerstone of clinical
evidence. Randomization in RCTs allows for the quan-
tification of the average treatment effect (ATE) by
removing confounding influences from extraneous or
undesirable factors. The medical guideline CONSORT
(Moher et al., 2010) recommends reporting the treat-
ment effect with relative measures like the Risk Ratio
(RR) along with absolute measures like the Risk Differ-
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ence (RD) to provide a more comprehensive understand-
ing of the effect and its implications, as neither measure
alone offers a complete picture. Indeed, selecting one
measure over another carries several implications. Nay-
lor et al. (1992) and Forrow et al. (1992) demonstrated
that physicians’ inclination to treat patients, based on
their perception of therapeutic impact, is influenced
by the scale utilized to present clinical effects. In ad-
dition, the treatment effect may be heterogeneous in
one scale, i.e. the treatment effect varies according to
patient characteristics, but homogeneous in another
scale (Rothman, 2011), which significantly disrupts
interpretation. Colnet et al. (2024) discusses causal
measure properties with a focus on generalization of
the treatment effect from a trial to a target population.

Consequently, both RD and RR measures are widely
used in the analysis of clinical trial data as explained
in Malenka et al. (1993), Sinclair and Bracken (1994)
and Nakayama et al. (1998). The Risk Ratio is partic-
ularly relevant in scenarios where outcomes are always
either positive or negative (Malenka et al., 1993) and
in cases where the two proportions being compared
are small, as it is more stable and interpretable than
the RD. Moreover, when probabilities are low, the RR
closely approximates the Odds Ratio (OR), further
enhancing its utility in clinical analyses Schechtman
(2002). Barratt et al. (2004) recommend using the RR
from clinical trials with an estimation of the individual
patient baseline to provide the right treatment.

Treatment effect estimation in observational
data. Despite being the gold standard to assess treat-
ment effects, RCTs may face limitations due to strin-
gent eligibility criteria, unrealistic real-world compli-
ance, short study durations, and limited sample sizes.
Medical journals such as JAMA (Bibbins-Domingo,
2024) and others (Hernan and Robins, 2016) have ad-
vocated the use of real-world data, often referred to
as observational data, to provide additional sources of
evidence. These data sets are typically less expensive
to collect, more representative of the target population,
and usually encompass large sample sizes.
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In the context of observational studies, various estima-
tors exist to measure the treatment effect, mainly on an
absolute scale. Different methods such as re-weighting
using Inverse Probability Weighting (IPW) (Hirano
et al., 2003), outcome modeling with the G-formula,
and doubly robust approaches like Augmented Inverse
Probability Weighting (AIPW) (Robins, 1986) aim to
estimate the RD while minimizing confounding effects.

However, to the best of our knowledge, there exist
no work proposing or using estimators of the ATE
measured with RR in observational studies based on
(non-)parametric estimation (G-formula or AIPW ap-
proaches), nor derivations of their theoretical properties.
There is a clear gap and a need for robust estimators
and comprehensive analyses of their properties to offer
better assessments of treatment effects and follow med-
ical recommendations even in observational studies.

Contributions. In this paper, we propose and ana-
lyze different estimators of the Risk Ratio in observa-
tional studies. Considering first the well studied RCT
setting in Section 2, we analyze the first RR estimator
introduced by Cornfield (1956), establishing a Central
Limit Theorem and asymptotic confidence intervals.
As for the RD, we prove that in RCT adjusting for
covariates as well as estimating the probability of being
treated rather than using the true probability is better
in terms of estimator variance. As the probability of
being treated varies across individuals in observational
studies, the above estimator is no longer valid. In Sec-
tion 3, we detail different estimators that can be used
for estimating the RR in observational studies: Inverse
Propensity Weighting (RR-IPW), G-formula (RR-G)
or doubly robust estimators (RR-OS and RR-AIPW).
For the first two, we prove their asymptotic normal-
ity when the true surface responses and propensity
scores are known. For the last two, using influence
function theory (see, e.g., Kennedy, 2022), we prove
that they are asymptotically unbiased and have the
minimal variance among all asymptotically unbiased es-
timators. Surprisingly, the RR-AIPW estimator turns
out to be a plug-in version of AIPW estimators for
both the numerators and denominators, which requires
weaker assumptions than RR-OS to be asymptotically
normal. All Central Limit Theorems allow us to build
asymptotic confidence intervals.

Compared to the Risk Difference, studying the Risk
Ratio induces additional technical difficulties, due to
its non-linear nature. Dedicated mathematical tools
are used based on semi-parametric theory. In Section 4,
we evaluate all estimators on observational data, and
study the empirical properties in terms of coverage and
confidence intervals lengths of all asymptotic confidence
intervals established in Section 2 and Section 3.

Related work - Estimation of RR. To the best of
our knowledge, Cornfield (1956) was the first to propose
an estimate of the RR, together with exact and asymp-
totic confidence intervals, for binary responses, in a
RCT scenario. Following this seminal work, Kupper
et al. (1975); Katz et al. (1978); Bailey (1987); Morris
and Gardner (1988); Sato (1992) also propose asymp-
totic confidence intervals for the risk ratio for binary
outcomes. Considering a logistic model, Schouten et al.
(1993) propose a RR estimator. Later on, exact confi-
dence intervals were derived by Wang and Shan (2015).
Recently, Inverse Propensity Weighting schemes have
been used in different study designs to estimate the
Odds Ratios, quantities close to the Risk Ratio in some
scenario (Staus et al., 2022). Besides, pseudo-Poisson
and pseudo normal distribution have been proposed
with IPW strategies to estimate RD and RR in clinical
trials (Noma et al., 2023).

In observational studies, one can mention the work of
Richardson et al. (2017), Yadlowsky et al. (2021) and
Shirvaikar and Holmes (2023) who focus on estimators
of the conditional average treatment effect (CATE)
for the RR. Curth et al. (2020) introduces an “IF-
learning” approach with pseudo outcome regression
and derive the influence function for the CATE of the
RR. Unfortunately, CATE estimations do not directly
yield ATE for the RR. This departs from the RD, for
which the ATE is simply the expectation of the CATE.

2 A WELL-KNOWN RISK RATIO
ESTIMATOR IN RCT

Problem setting Following the potential out-
come framework (see Rubin, 1974; Splawa-Neyman
et al., 1990), we consider the random variables
(X,T, Y (0), Y (1)), where X ∈ Rp denotes covariates
describing a patient, T is the treatment assignment
(T = 1 when the treatment is given to an individual,
T = 0 otherwise) and Y (0) (resp. Y (1)) is the outcome
of interest, describing the status of a patient without
treatment (and with treatment respectively). In prac-
tice, we do not have access simultaneously to Y (1) and
Y (0), and we only observe

Y = TY (1) + (1− T )Y (0).

Causal effect measures are functions of the joint dis-
tribution of potential outcomes (see Pearl, 2009). In
particular, the Risk Difference (RD) and the Risk Ratio
(RR) contrast the two states as followed

τRD = E[Y (1)]− E[Y (0)] and τRR =
E[Y (1)]

E[Y (0)]
. (1)

The aim of this paper is to propose and study estimators
of τRR. To estimate this quantity, we assume to be
given an i.i.d dataset (X1, T1, Y1), . . . , (Xn, Tn, Yn).
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The most simple estimator of the risk ratio consists
in replacing expectations by empirical means in τRR

(Equation 1). Such an estimator has already been
proposed outside the causal inference framework, with
confidence intervals for the binary case (where Y ∈
{0, 1}, see Katz et al., 1978; Bailey, 1987). In the
potential outcome framework, inspired by the Neyman
estimator of the Risk Difference (Splawa-Neyman et al.,
1990), we call this estimator the Risk Ratio Neyman
estimator.
Definition 1 (Risk Ratio Neyman estimator).
Let N1 =

∑n
i=1 Ti and N0 = n − n1. The Risk Ratio

Neyman estimator, denoted τ̂RR,N,n, is defined as

τ̂RR,N,n =
1
N1

∑n
i=1 TiYi

1
N0

∑n
i=1(1− Ti)Yi

, (2)

if the denominator is nonzero and 0 otherwise.

With our notation, the 95% confidence interval for τRR

proposed by Katz et al. (1978) for binary outcomes
takes the form[

τ̂RR,N,ne
−z1−α/2σ̂n , τ̂RR,N,ne

z1−α/2σ̂n
]

(3)

where z1−α/2 is the 1 − α/2 quantile of a standard
Gaussian N (0, 1) and

σ̂n =

√
1∑n

i=1 TiYi
− 1

N1
+

1∑n
i=1(1− Ti)Yi

− 1

N0
.

(4)

In the sequel, we establish under which theoretical
assumptions the RR-N is an accurate estimator of the
Risk Ratio in Randomized Clinical Trials.

Randomized Controlled Trials (RCT) randomly assign
treatment to patients in order to evaluate treatment
effects. We focus on the Bernoulli design, one of the
most widely used RCT designs (Rubin, 1974; Imbens
and Rubin, 2015), where each participant has the same
probability e ∈ (0, 1) of being treated, independently
of the treatments of others. In this section, we use the
following assumptions.
Assumption 1 (Bernoulli Trial). We consider the
following assumptions:

1. Ignorability or Exchangeability, that is: T ⊥⊥
(Y (0), Y (1)).

2. SUTVA (Stable Unit Treatment Value Assump-
tion): Y = TY (1) + (1− T )Y (0).

3. i.i.d. The data set is i.i.d.
(Xi, Ti, Y

(0)
i , Y

(1)
i )i=1,...,n

i.i.d.∼ P. In particu-
lar, the treatment assignment of one participant
does not influence that of another, that is, for all
i ̸= j, Ti ⊥⊥ Tj.

4. Trial positivity: Each participant i has a fixed
probability e ∈ (0, 1) of being assigned to the inter-
vention group P [Ti = 1] = e.

To ensure our estimates are valid, we need to guarantee
the existence of the ratio we aim to estimate.
Assumption 2 (Outcome positivity). We suppose
that both Y (0) and Y (1) are squared integrable and that
E
[
Y (0)|X

]
,E
[
Y (1)|X

]
> 0.

Proposition 1 (Asymptotic normality of τ̂RR,N,n).
Grant Assumption 1 and Assumption 2, the Risk Ra-
tio Neyman estimator is asymptotically unbiased and
satisfies

√
n (τ̂RR,N,n − τRR)

d→ N (0, VRR,N) (5)

where

VRR,N = τ2RR

(
Var

(
Y (1)

)
eE[Y (1)]2

+
Var

(
Y (0)

)
(1− e)E[Y (0)]2

)
.

Proposition 1 establishes the asymptotic normality of
the RR-N estimator, a simple ratio of mean estimates,
which leads to asymptotic confidence intervals (CI).
Indeed, according to Proposition 1, for all α ∈ (0, 1), a
(1− α) asymptotic confidence interval for τRR is given
by [

τ̂RR,N,n ± z1−α/2

√
V̂RR,N/n

]
. (6)

Throughout this paper, based on the Central Limit
Theorems we establish, we will consider such CI. The
properties of the different CI are studied in Section 4.3.

Contrary to Katz et al. (1978), Proposition 1 is valid
for both continuous and binary outcomes. However,
considering binary outcomes in Proposition 1 leads to
an asymptotic confidence interval equivalent to that
presented in Katz et al. (1978) (see Section 6.2.3). De-
riving a Central Limit Theorem for log(τ̂RR,N,n) instead
of τ̂RR,N,n would lead to the exact same CI (see Sec-
tion 6.2.4).

Probability of receiving treatment As the prob-
ability of treatment e is known in an RCT, one could
be tempted to consider what we call the Risk Ratio
Horvitz-Thomson estimator (in reference of the Risk
Difference Horvitz-Thomson estimator of the RD, see
Horvitz and Thompson, 1952) defined as

τ̂RR,HT,n =

∑n
i=1

TiYi

e∑n
i=1

(1−Ti)Yi

1−e

(7)

if
∑n
i=1 Ti < n and 0 otherwise. Indeed, the frequency

of treatments assignments in the sample may be differ-
ent from the actual probability of receiving treatment
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e. Similarly to what Hirano et al. (2003); Hahn (1998);
Robins et al. (1992) noticed for the RD, we prove in
6.2.2 that opting for ê over e in the Risk Ratio estimator
(thereby employing the RR-N instead of the RR-HT)
results in a reduced asymptotic variance, with a larger
reduction when e is close to zero or one. More precisely,
letting VRR,HT the asymptotic variance of τ̂RR,HT,n, we
have

VRR,N = VRR,HT − τ2RR/e(1− e). (8)

3 RISK RATIO ESTIMATORS IN
OBSERVATIONAL STUDIES

Observational studies reveal the complexities of real-
world scenarios, which may be missed by the controlled
designs of RCTs. A key difference between RCTs and
observational studies is the handling of confounding
variables. If not properly addressed, these can dis-
tort the true causal association between exposure and
outcome due to their correlation with both. There-
fore, estimating the Risk Ratio in observational studies
is more complex than in RCTs, as randomization as-
sumptions do not apply (i.e. the propensity score now
depends on the covariates X).

Assumption 3 (Observational study identifiabil-
ity assumptions). We have

1. Unconfoundedness or Conditional Exchange-
ability: (Y (0), Y (1)) ⊥⊥ T | X.

2. Overlap or Positivity, ∃η ∈ (0, 1/2] such that,
almost surely, η ≤ P[T = 1|X] ≤ 1− η.

3. SUTVA (Stable Unit Treatment Value Assump-
tion) holds: Y = TY (1) + (1− T )Y (0).

4. i.i.d. We still assume that the data set is i.i.d.
(Xi, Ti, Y

(0)
i , Y

(1)
i )i=1,...,n

i.i.d.∼ P.

Unconfoundedness means that after accounting for
known confounding variables, no hidden factors af-
fect both treatment assignment and outcomes. It is a
relaxed form of exchangeability.

The RR-N estimator (or the RR-HT estimator) can-
not be used in the context of observational studies,
since they are built on the assumption of a constant
propensity score. However, the RR-N estimator can be
extended to observational studies as follows.

3.1 Risk Ratio Inverse Propensity Weighting
(RR-IPW)

Treatment effect in observational studies can be esti-
mated via reweighting individuals by the inverse of

their propensity score, thus giving more weights to peo-
ple who are very likely/unlikely to be treated. Such a
method, called Inverse Propensity Weighting (IPW, see
Hirano et al., 2003) for estimating the Risk Difference,
can be straightforwardly extended to build Risk Ratio
estimators.
Definition 2 (RR-IPW). Grant Assumption 2 and
Assumption 3. Given an estimator 0 < ê(·) < 1 of
the propensity score e(x) = P [T = 1|X = x], the Risk
Ratio IPW, denoted by τ̂RR,IPW,n, is defined as

τ̂RR,IPW,n =

∑n
i=1

TiYi

ê(Xi)∑n
i=1

(1−Ti)Yi

1−ê(Xi)

.

Proposition 2 demonstrates the asymptotic normality
of the Oracle Ratio IPW estimator, defined as the RR-
IPW but where ê(·) is replaced by the oracle propensity
score e(·).
Proposition 2 (RR-IPW asymptotic normality).
Grant Assumption 2 and Assumption 3. Then the
Oracle Risk Ratio IPW defined above is asymptotically
unbiased and satisfies

√
n
(
τ⋆RR,IPW − τRR

) d→ N (0, VRR,IPW) (9)

where VRR,IPW = τ2RR

E
[

(Y (1))2

e(X)

]
E[Y (1)]

2 +
E
[

(Y (0))2

1−e(X)

]
E[Y (0)]

2

.

Note that when the propensity score is constant, one
can retrieve the variance of the RR-HT as expected.
Note also that the asymptotic variance may be large,
due to strata on which the propensity score is close
to zero or one. In other words, a correct estimation is
difficult when some subpopulations are unlikely to be
treated (or untreated).

3.2 Risk Ratio G-formula estimator (RR-G)

For all x ∈ Rp, let µ(0)(x) = E
[
Y (0)|X = x

]
and

µ(1)(x) = E
[
Y (1)|X = x

]
be the surface responses of

the potential outcomes. Assume that we have at our
disposal two estimators µ̂(0)(·) and µ̂(1)(·) which re-
spectively estimate µ(0)(·) and µ(1)(·). We then employ
the ratio of these two potential outcome estimations
to compute the Risk Ratio. This method, termed the
plug-in G-formula or outcome-based modeling, was first
introduced by Robins (1986) for the Risk Difference.
Definition 3 (Ratio plug-in G-formula). Given two
estimators µ̂(0)(·) and µ̂(1)(·), the Risk Ratio G-formula
estimator, denoted τ̂RR,G,n, is defined as

τ̂RR,G,n =

∑n
i=1 µ̂(1)(Xi)∑n
i=1 µ̂(0)(Xi)

, (10)

if
∑n
i=1 µ̂(0)(Xi) ̸= 0 and zero otherwise.
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The properties of RR-G depend on the estimators µ̂(0)

and µ̂(1). We analyze in the following the behavior
of Oracle Risk Ratio G-formula estimator defined as
τ⋆RR,G = (

∑n
i=1 µ(1)(Xi))/(

∑n
i=1 µ(0)(Xi)).

Proposition 3 (Asymptotic Normality of τ⋆RR,G).
Grant Assumption 1 and Assumption 2. Then, the Or-
acle Risk Ratio G-formula estimator, τ⋆RR,G, is asymp-
totically unbiased and satisfies

√
n
(
τ⋆RR,G − τRR

) d→ N (0, VRR,G) , (11)

where VRR,G = τ2RR Var

(
µ(1)(X)

E[Y (1)]
− µ(0)(X)

E[Y (0)]

)
.

Proposition 3 establishes that the Oracle Risk Ratio
G-formula estimator is asymptotically normal. Surpris-
ingly, in the case where there is no effect (i.e. τRR = 1),
the asymptotic variance is driven by the variance of
the Risk Difference on each strata determined by X,
namely Var(µ(1)(X)−µ(0)(X)). By considering the Or-
acle RR-G instead of RR-G, we remove the additional
randomness related to the estimation of the surface
responses. It is thus likely that the true variance of
RR-G is larger than that of Oracle RR-G.

If we assume a linear model for the Y (t) and estimate
both response surfaces µ̂(0) and µ̂(1) using ordinary
least squares, the variance of the RR-G can be derived,

Assumption 4 (Linear model). For all t ∈ {0, 1},

Y (t) = c(t) +X⊤β(t) + ε(t) E[X] = µ

E[ε(t)|X] = 0 Var[ε(t)|X] = σ2,

where we assume that Y (t) ≥ c > 0 for some c.

For any positive semi-definite matrix A and any vector
X, let ∥X∥A =

√
X⊤AX.

Proposition 4 (Asymptotic normality of τ̂RR,OLS).
Grant Assumption 4. Then, the Risk Ratio G-formula
estimator τ̂RR,OLS that uses linear regression to esti-
mate µ(t) satisfies

√
n(τ̂RR,OLS − τRR)

d→ N (0, VRR-OLS)

where, letting νt = E[X|T = t] and Σt = Var(X|T = t),

VRR-OLS

τ2RR
=

∥∥∥∥∥ β(1)

E
[
Y (1)

] − β(0)

E
[
Y (0)

]∥∥∥∥∥
2

Σ

+ σ2

×

(
1 + (1− e)2∥ν1 − ν0∥2Σ−1

1

eE
[
Y (1)

]2 +
1 + e2∥ν1 − ν0∥2Σ−1

0

(1− e)E
[
Y (0)

]2
)
.

The variance of RR-OLS can be decomposed in two
terms, one which corresponds to the oracle variance of
RR-G and another term which is due to the fact that

the response surfaces are estimated by OLS estimators.
Note, that if we use RR-G in a Bernoulli Trial under a
linear model then one can show that even in an RCT
setting, adjusting for covariates is beneficial as the
variance of the RR-G is smaller than the variance of
RR-N. These results are provided in Appendix 6.3.3.

3.3 Risk Ratio One-step estimator (RR-OS)

A popular estimator for the RD is the augmented
inverse probability weighted estimator (AIPW, see
Robins et al., 1992). AIPW combines the properties
of G-formula and IPW estimator and is doubly robust
in the sense that it is consistent as soon as either the
propensity or outcome models to be correctly specified.
By calculating the influence function of the statistical
estimand ψRD = E [E [Y |T = 1, X]− E [Y |T = 0, X]]
we obtain an efficient estimator, since it has no asymp-
totic bias and the minimal asymptotic variance.

(Kennedy, 2022). Therefore, to estimate the Risk Ratio
(RR), a natural approach is to derive an efficient estima-
tor using semi-parametric theory (Tsiatis, 2006). Con-
sidering the statistical estimand ψRR = E[E[Y |T=1,X]]

E[E[Y |T=0,X]] ,
we obtain an estimator RR-OS presented below, which
is efficient using non-parametric estimation of the nui-
sance components combined with cross-fitting (see
Chernozhukov et al., 2017, for cross-fitting).
Definition 4 (Crossfitted RR-OS). For all t ∈
{0, 1} and all x, let µ(t)(x) = E

[
Y (0)|X = x

]
and

e(t)(x) = P [T = t|X = x]. We denote I = {1, . . . , n},
let I1, I2, ..., IK be a partition of I. For all t ∈ {0, 1},
let

τ̂AIPW,t =

K∑
k=1

∑
i∈Ik

µ̂I−k

(t) (Xi) +
Yi − µ̂

I−k

(t) (Xi)

ê
I−k

(t) (Xi)
1Ti=t


(12)

and τ̂G,t =

K∑
k=1

∑
i∈Ik

µ̂
I−k

(t) (Xi), (13)

where µ̂I−k

(t) (X) and êI−k

(t) (X) are estimators of µ(t) and
e(t) built on the sample I−k = I\Ik. The crossfit-
ted Risk Ratio One-Step (RR-OS) estimator τ̂RR-OS is
defined as

τ̂RR-OS =
τ̂G,1

τ̂G,0

(
1− τ̂AIPW,0

τ̂G,0

)
+
τ̂AIPW,1

τ̂G,0
.

Proposition 5 (Asymptotic normality of τ̂RR-OS).
Grant Assumption 2 and Assumption 3. Assume that
for all 1 ≤ k ≤ K, and for all t ∈ {0, 1},

E
[(
µ̂
I−k
(t)

(Xi)−µ(t)(X)
)2

]
E
[
(êI−k (X)−e(X))

2
]
=o(n−1) (14)

E
[
µ̂
I−k
(0)

(X)
]
−E

[
µ
I−k
(0)

(X))
]
=o(n−1/4) (15)
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E
[
(µ̂

I−k
(0)

(X)−µ
I−k
(0)

(X))2
]
E
[
(µ̂

I−k
(1)

(X)−µ
I−k
(1)

(X))2
]
=o(n−1),

(16)

with η ≤ êI−k(·) ≤ 1 − η (see Positivity in Assump-
tion 3). Then the One-Step estimator is asymptotically
unbiased and satisfies

√
n (τ̂RR-OS − τRR)

d→ N (0, VRR,OS) ,

where

VRR,OS

τ2RR
= Var

(
µ(1)(X)

E
[
Y (1)

] − µ(0)(X)

E
[
Y (0)

])

+ E

[
Var

(
Y (1)|X

)
e(X)E

[
Y (1)

]2
]
+ E

[
Var

(
Y (0)|X

)
(1− e(X))E

[
Y (0)

]2
]
.

Similar to the Risk Difference AIPW, this estimator is
efficient: its asymptotic variance is optimal. The semi
parametric theory develops efficient estimators by com-
pensating for the first-order bias (Kennedy, 2022), this
can be achieved either by estimating and subtracting
the first-order bias, leading to the RR-OS estimator
or by finding values for the target parameter and nui-
sance parameters that solve the estimating equation
(see A.Schuler, 2024, for the RD case) and eliminate the
first-order bias (as detailed in Section 6.3.5), resulting
in RR-AIPW presented below.

3.4 Risk Ratio Augmented Inverse Propensity
Weighting (RR-AIPW)

Definition 5 (Crossfitted RR-AIPW). The Risk
Ratio AIPW crossfitted is defined as

τ̂RR,AIPW :=
τ̂AIPW,1

τ̂AIPW,0
,

where τ̂AIPW,0, and τ̂AIPW,1 are defined in 4.

The RR-AIPW is simply the ratio of two one-step es-
timators, one for E

[
Y (1)

]
and one for E

[
Y (0)

]
. This

method may seem simplistic at first glance, since ap-
proximating both the numerator and denominator usu-
ally results in a non-zero asymptotic bias. However, RR-
AIPW is derived via the estimating equation method
using influence function theory, which results in an
efficient (asymptotically unbiased) estimator. Note
that in the case of the Risk Difference (RD), both
approaches (One-step bias correction and estimating
equation) yield the same AIPW estimator. However,
because our statistical estimand for the Risk Ratio is
nonlinear, the resulting estimators differ. It remains
that they are both efficient, as shown below.

Proposition 6 (Risk Ratio AIPW asymptotic
normality). Grant Assumption 2 and Assumption 3.

Assume that Equation (14) holds and that, for all
1 ≤ k ≤ K and all t ∈ {0, 1},

E
[(
µ̂
I−k
(t)

(X)−µ(t)(X)
)2

]
=o(1), E

[
(êI−k (X)−e(X))

2
]
=o(1),

(17)

with η ≤ êI−k(·) ≤ 1 − η. Then, the crossfitted Risk
Ratio AIPW estimator is asymptotically unbiased and
satisfies

√
n (τ̂RR,AIPW − τRR)

d→ N (0, VRR,OS) ,

where VRR,OS is defined in Proposition 5.

Assumptions in Proposition 6 are the same as those
used in the Risk Difference AIPW estimator (Wager,
2020) to achieve double robustness. Additionally, As-
sumption 14, often referred to as risk decay, holds when
either surfaces responses or propensity score achieve
a parametric rate, while the other is only consistent.
This departs from RR-OS where asymptotic normality
is not achieved when only the propensity score has a
parametric convergence rate. Consequently, we recom-
mend RR-AIPW over RR-OS as they have the same
asymptotic properties, with weaker assumptions for
RR-AIPW.

4 SIMULATION

Simulations for randomized controlled trials are pro-
vided in Appendix 7. For observational studies, we
generate datasets (X,T, Y (0), Y (1)) according to the
following model

Y (1) = m(X) + b(X) + ε(1) P [T = 1|X] = e(X),
Y (0) = b(X) + ε(0) with ε(t) ∼ N

(
0, σ2

)
.

Each of the following setups has specificities regarding
the m(.), b(.), and e(.) functions, which respectively
correspond to the treatment effect, the baseline and
propensity score. The true Risk Ratio can be expressed
as τRR = E

[
Y (1)

]
/E
[
Y (0)

]
= E [m(X)] /E [b(X)] + 1.

We compare the performances of all estimators defined
in Section 3 where nuisance components (regression
surfaces and propensity score) are estimated via para-
metric (linear/logistic regression) or non-parametric
methods (random forests). Each simulation is repeated
3000 times. More details are provided in Appendix 7.

4.1 Linear and Logistic DGP

The first observational data generating process (DGP)
is a parametric setup introduced in Lunceford and
Davidian (2004), composed of linear outcome models
(linear treatment effect and baseline) and a logistic
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Figure 1: Risk Ratio estimators computed for a Linear/Logistic DGP, with 3000 repetitions.
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Figure 2: Risk Ratio estimators computed for a non-Linear-Logistic DGP, with 3000 repetitions.

propensity score, that is m(X,V ) = 2 and :

b(X,V ) = β⊤
0 [X,V ], e(X) = (1 + exp(−β⊤

e X))−1

β0 = (−1, 1,−1,−1, 1, 1) βe = (−0.6, 0.6,−0.6),

The covariates X = (X1, X2, X3)
T are associated with

both treatment exposure and potential response while
V = (V1, V2, V3)

T are associated with the potential
response but not directly related to treatment expo-
sure. [X,V ] follow a joint distribution by taking X3 ∼
Bernoulli (0.2) and then generating V3 as Bernoulli
with P (V3 = 1 | X3) = 0.75X3 + 0.25 (1−X3). Condi-
tional on X3, (X1, V1, X2, V2)

T was then generated as
multivariate normal N (λX3

,Σ), where

λ1 = −λ0 = (1, 1,−1,−1)

and

Σ =


1 0.5 −0.5 −0.5
0.5 1 −0.5 −0.5
−0.5 −0.5 1 0.5
−0.5 −0.5 0.5 1

 .

Results are depicted in Figure 1. Only confounding
variables are used as inputs in the different estimators.
As expected, since the generative process is linear,
methods that use parametric estimators (logistic/linear
regression) outperform those using non-parametric ap-
proaches (random forests) in finite-sample settings.

While all methods (except maybe Forest RR-IPW)
converge to the correct RR, methods based on para-
metric estimators exhibit a faster rate of convergence
and are unbiased (except for Logistic RR-IPW) even
for small sample sizes. Indeed, random forests are not
suited for linear generative process and require here
more than 10000 samples to estimate correctly the RR.

All in all, when the outcome modelling and the propen-
sity scores are linear, the two doubly robust estimators
(RR-AIPW and RR-OS) and the RR-G, all based on
linear estimators, achieve the best performances: they
are unbiased, even for small sample sizes, and converge
quickly to the true RR.

Furthermore, both Linear RR-OS and RR-AIPW esti-
mators give very similar results.

4.2 Non-Linear and Logistic DGP

We use a semi-parametric setup (see Nie and Wager,
2020) with non-linear baseline models, a constant treat-
ment effect and a logistic propensity score:

b(X) = 2 log
(
1 + eX1+X2+X3

)
,

e(X) = 1/
(
1 + eX2+X3

)
and m(X) = 1,

where X ∼ N (0, Id×d). Results are presented in Fig-
ure 2. The Forest IPW and Linear G-formula estima-
tors yield poor RR estimates for the largest sample
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Figure 3: Coverage (left) and Length (right) of asymptotic CI derived from Section 2 and Section 3 for different
estimators with n = 1000 and 300 repetitions.

size. The forest IPW uses random forests to estimate
a logistic model, which may still converge, but at a
slower rate than other methods. The Linear G-formula
employs linear regressions to estimate the response sur-
faces, potentially leading to an irreducible asymptotic
bias.

The Forest RR-G, Forest RR-AIPW, and Forest RR-
OS estimators converge slowly to the true RR. This
simulation highlights the doubly robust properties of
the Linear RR-AIPW and Linear RR-OS estimators:
they target the true RR even at small sample sizes, as
they have at least one well-specified model.

4.3 Confidence intervals (CI)

In the Linear/Logistic DGP presented in Section 4.1,
we build asymptotic 95% CI for the RR-AIPW, RR-
G and RR-N estimators based on their asymptotic
normality. Variances were estimated following the pro-
tocol described in equation 132, 33, 47, 48 and 30. We
generate 300 datasets and present, in Figure 3, the dis-
tribution of the length and coverage (probability that
the CI contains the risk ratio) for each estimator. The
IPW was excluded due to poor performances (too large
CI). As expected, RR-N CI has nearly zero coverage,
since we are not in a RCT setting. The Forest RR-G
and RR-AIPW confidence intervals also exhibit poor
coverage, which is in agreement with the linear and
logistic DGP context. In contrast, Linear RR-G and
RR-AIPW demonstrate good coverage. Note that the
CI for OLS RR-G, built based on Proposition 4, has
a better coverage than the Linear RR-G method, as
it takes into account the additional randomness due
to linear estimations. Although only the RR AIPW
has coverage above 95%, the OLS RR-G has a shorter
average predicted length compared to the Linear RR
AIPW. Results for the Non-Linear/Logistic and Non-
Linear/Non-Logistic DGP can be found in Section 7.2.

5 CONCLUSION

Quantifying treatment effects presents challenges, since
different measures may lead to different understanding
of the same phenomenon. In our study, we focus on one
of these measures, the Risk Ratio and introduced sev-
eral estimators, valid in RCT or observational studies.
Using dedicated mathematical tools (influence func-
tion theory, M-estimation), we establish their asymp-
totic normality, limiting variance and derive asymptotic
confidence intervals. Empirical evaluations show that
RR-N and RR-IPW have poor performances. Either
Linear or Forest RR-AIPW (or RR-OS) show similar
(good) behaviors to estimate the Risk Ratio, with the
best theoretical guarantees among all studied estima-
tors. Since RR-AIPW requires fewer assumption and
is simpler to compute, we would recommend to use
RR-AIPW. As for the doubly robust approaches, G-
formula is competitive, with performances that depend
on the setting and the estimation method used for the
nuisance components.

Identifying guidelines establishing when linear nuisance
components should be used instead of non-parametric
ones still remains an open problem. In practice, obser-
vational studies may be used to generalize the treatment
effect from a RCT population to the general population
of interest. Our work is a first step toward proposing
procedures to generalize the Risk Ratio to general pop-
ulations.
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6 Proofs

6.1 Preliminary results

Since we are studying the asymptotic properties of the risk ratio, we cannot directly apply a central limit theorem
as in Wager (2020). We will therefore rely on Theorem 1 to prove most of our asymptotic results.

Theorem 1 (Asymptotic normality of the ratio of two estimators). Let (Z1, . . . , Zn) be n i.i.d. random
variables, g0 and g1 two functions square integrable such that E [g0(Zi)] = τ0 and E [g1(Zi)] = τ1, where τ0 ̸= 0.
Then, we have that

√
n

(∑n
i=1 g1(Zi)∑n
i=1 g0(Zi)

− τ1
τ0

)
d→ N (0, V ⋆RR) ,

where

V ⋆RR =

(
τ1
τ0

)2

Var

(
g1(Z)

τ1
− g0(Z)

τ0

)
.

Proof. We rely on M-estimation theory to prove Theorem 1. Let

θ̂n =


1
n

∑n
i=1 g0(Zi)

1
n

∑n
i=1 g1(Zi)∑n
i=1 g1(Zi)∑n
i=1 g0(Zi)

 and ψ(Z,θ) =

 g0(Z)− θ0
g1(Z)− θ1
θ1 − θ2θ0

 , (18)

where θ = (θ0, θ1, θ2). We have that

n∑
i=1

g0(Zi)− 1

n

n∑
j=1

g0(Zj)

 =

n∑
i=1

g0(Zi)−
n∑
j=1

g0(Zj) = 0,

and similarly

n∑
i=1

g1(Zi)− 1

n

n∑
j=1

g1(Zj)

 =

n∑
i=1

g1(Zi)−
n∑
j=1

g1(Zj) = 0.

Besides,

n∑
i=1

 1

n

n∑
j=1

g1(Zj)−
∑n
j=1 g1(Zj)∑n
j=1 g0(Zj)

1

n

n∑
j=1

g0(Zj)

 = 0.

Gathering the three previous equalities, we obtain

n∑
i=1

ψ(Zi,θn) = 0, (19)
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which proves that θ̂n is an M-estimator of type ψ (see Stefanski and Boos, 2002). Furthermore, letting
θ∞ = (τ0, τ1, τ1/τ0), simple calculations show that

E [ψ(Z,θ∞)] = 0. (20)

Since the first two components of ψ are linear with respect to θ0 and θ1 and since the third component is linear
with respect to θ2, θ∞ defined above is the only value satisfying (20). Define

A (θ∞) = E
[
∂ψ

∂θ
|θ=θ∞

]
and B(θ∞) = E

[
ψ(Z, θ∞)ψ(Z, θ∞)T

]
. (21)

We now check the conditions of Theorem 7.2 in Stefanski and Boos (2002). First, let us compute A (θ∞) and
B (θ∞). Since

∂ψ

∂θ
(Z, θ) =

 −1 0 0
0 −1 0

−θ2 1 −θ0

 , (22)

we obtain

A (θ∞) =

 −1 0 0
0 −1 0

− τ1
τ0

1 −τ0

 , (23)

which leads to

A−1 (θ∞) =

 −1 0 0
0 −1 0
τ1
τ2
0

− 1
τ0

− 1
τ0

 . (24)

Regarding B (θ∞), elementary calculations show that

ψ(Z, θ∞)ψ(Z, θ∞)T =

 (g0(Z)− τ0)
2

(g0(Z)− τ0) (g1(Z)− τ1) 0

(g0(Z)− τ0) (g1(Z)− τ1) (g1(Z)− τ1)
2

0
0 0 0

 ,

which leads to

B(θ∞) =

 Var [g0(Z)] Cov (g0(Z), g1(Z)) 0
Cov (g0(Z), g1(Z)) Var [g1(Z)] 0

0 0 0

 .

Based on the previous calculations, we have

• ψ(z,θ) and its first two partial derivatives with respect to θ exist for all z and for all θ in the neighborhood
of θ∞.

• For each θ in the neighborhood of θ∞, we have for all i, j, k ∈ {0, 2}:∣∣∣∣ ∂2

∂θi∂θj
ψk(z,θ)

∣∣∣∣ ≤ 1

and 1 is integrable.

• A(θ∞) exists and is nonsingular.

• B(θ∞) exists and is finite.
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Since we have:
n∑
i=1

ψ(Ti, Yi, θ̂n) = 0 and θ̂n
p→ θ∞.

Then the conditions of Theorem 7.2 in Stefanski and Boos (2002) are satisfied, we have
√
n
(
θ̂n − θ∞

)
d→ N

(
0, A(θ∞)−1B(θ∞)(A(θ∞)−1)⊤

)
,

where

A(θ∞)−1B(θ∞)(A(θ∞)−1)⊤

=


Var [g0(Z)] Cov (g0(Z), g1(Z))

Cov(g0(Z),g1(Z))
τ0

− τ1 Var[g0(Z)]
τ2
0

Cov (g0(Z), g1(Z)) Var [g1(Z)] −Cov(g0(Z),g1(Z))τ1
τ2
0

+ Var[g1(Z)]
τ0

Cov(g0(Z),g1(Z))
τ0

− τ1 Var[g0(Z)]
τ2
0

−Cov(g0(Z),g1(Z))τ1
τ2
0

+ Var[g1(Z)]
τ0

V ⋆RR

, (25)

with

V ⋆RR =

(
τ1
τ0

)2

Var

(
g1(Z)

τ1
− g0(Z)

τ0

)
. (26)

In particular,

√
n

(∑n
i=1 g1(Zi)∑n
i=1 g0(Zi)

− τ1
τ0

)
d→ N (0, V ⋆RR) . (27)

Theorem 2 (Finite sample bias and variance of the ratio of two estimators). Let T1(Z) and T0(Z) be
two unbiased estimators of τ1 and τ0 > 0 where Z = (Z1, . . . , Zn) be n i.i.d. random variables. We assume that
M0 ≥ T0(Z) ≥ m0 > 0, |T1(Z)| ≤ M1. We also assume that Var(T1(Z)) = Op

(
1
n

)
and Var(T0(Z)) = Op

(
1
n

)
Then, we have that

Bias

(
T1(Z)

T0(Z)
,
τ1
τ0

)
=

∣∣∣∣E [T1(Z)

T0(Z)

]
− τ1
τ0

∣∣∣∣ ≤ M1M0

nm2
0

(
M0

m0
+ 1

)
,

and ∣∣∣∣∣Var
(
T1(Z)

T0(Z)

)
−
(
τ1
τ0

)2

Var

(
T1(Z)

τ1
− T0(Z)

τ0

)∣∣∣∣∣ ≤ 2M0M1

nm4
0

(
M0M1

m2
0

+ 1

)
.

Proof. We rely on the multivariate version of Taylor’s theorem to prove Theorem 2. We first introduce the
multi-index notation:

|α| = α1 + · · ·+ αn, α! = α1! · · ·αn!, xα = xα1
1 · · ·xαn

n

and

Dαf =
∂|α|f

∂xα1
1 · · · ∂xαn

n
, |α| ≤ k

Let f be the ratio function

f : R∗
+ × R∗

+ −→ R
(x1, x2) 7−→ x1/x2.

Since f is two times continuously differentiable then one can derive an exact formula for the remainder in terms
of 2nd order partial derivatives of f . Namely, if we define x = (x1, x2) and for a ∈ R∗

+ × R∗
+

f(x) =
∑
|α|≤1

Dαf(a)

α!
(x− a)α +Rk+1(x), (28)
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with

Rk+1(x) =
∑

|β|=k+1

(x− a)β
|β|
β!

∫ 1

0

(1− t)|β|−1Dβf(a+ t(x− a)) dt.

Bias:
Computing 28 for the ratio function with x = (T1(Z), T0(Z)), a = (τ1, τ0) and taking the expectation gives us:

E [f(T1(Z), T0(Z))]

= E
[
f(τ1, τ0) +

∂f(τ1, τ0)

∂T1(Z)
(T1(Z)− τ1) +

∂f(τ1, τ0)

∂T0(Z)
(T0(Z)− τ0) +R2(T1(Z), T0(Z))

]
= E [f(τ1, τ0)] +

∂f(τ1, τ0)

∂T1(Z)
E [(T1(Z)− τ1)]

+
∂f(τ1, τ0)

∂T0(Z)
E [(T0(Z)− τ0)] + E [R2(T1(Z), T0(Z))]

=
τ1
τ0

+ E [R2(T1(Z), T0(Z))]

In order to produce Theorem 2, we just need to show that E [R2(T1(Z), T0(Z))] = Op
(
1
n

)
. To do so, we first

compute R2(T1(Z), T0(Z))

R2(T1(Z), T0(Z)) = 2(T0(Z)− τ0)
2

∫ 1

0

(1− t)(τ1 + t(T1(Z)− τ1))

(τ0 + t(T0(Z)− τ0))3
dt︸ ︷︷ ︸

R1
2(T1(Z),T0(Z))

− 2(T0(Z)− τ0)(T1(Z)− τ1)

∫ 1

0

1− t

(τ0 + t(T0(Z)− τ0))2
dt︸ ︷︷ ︸

R2
2(T1(Z),T0(Z))

Since we assume that T0(Z) ≥ m0 > 0 and that |T1(Z)| ≤M1 we have:∣∣R1
2(T1(Z), T0(Z))

∣∣ = ∣∣∣∣2(T0(Z)− τ0)
2

∫ 1

0

(1− t)(τ1 + t(T1(Z)− τ1))

(τ0 + t(T0(Z)− τ0))3
dt

∣∣∣∣
≤ 2(T0(Z)− τ0)

2

∫ 1

0

∣∣∣∣ (1− t)max(τ1,M1)

min(m0, τ0)3

∣∣∣∣ dt
= (T0(Z)− τ0)

2 M1

m3
0︸︷︷︸

C1

Similarly, we have:∣∣R2
2(T1(Z), T0(Z))

∣∣ = ∣∣∣∣2(T0(Z)− τ0)(T1(Z)− τ1)

∫ 1

0

1− t

(τ0 + t(T0(Z)− τ0))2
dt

∣∣∣∣
= 2 |(T0(Z)− τ0)(T1(Z)− τ1)|

∣∣∣∣∫ 1

0

1− t

(τ0 + t(T0(Z)− τ0))2
dt

∣∣∣∣
≤ |(T0(Z)− τ0)(T1(Z)− τ1)|

1

m2
0︸︷︷︸

C2

Finally we get that:

|E [R2(T1(Z), T0(Z))]| ≤ E
[
|R1

2(T1(Z), T0(Z))|+ |R2
2(T1(Z), T0(Z))|

]
≤ C1 Var(T0(Z)) + C2E [|(T0(Z)− τ0)(T1(Z)− τ1)|]

≤ C1 Var(T0(Z)) + C2

√
Var(T0(Z))Var(T1(Z))

≤ C1M
2
0 + C2M0M1
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Since we have that Var(T1(Z)) = Op
(
1
n

)
and Var(T0(Z)) = Op

(
1
n

)
, we can conclude by:

Bias

(
T1(Z)

T0(Z)
,
τ1
τ0

)
=

∣∣∣∣E [T1(Z)

T0(Z)

]
− τ1
τ0

∣∣∣∣ ≲ M1M0

nm2
0

(
M0

m0
+ 1

)
Variance:
Let us begin by expanding the variance of the function f :

Var f(T1(Z), T0(Z)) = E
[
(f(T1(Z), T0(Z))− E [f(T1(Z), T0(Z))])2

]
Next, apply Taylor’s expansion around the means τ1 and τ0:

= E
[
(f(τ1, τ0) +

∂f(τ1, τ0)

∂T1(Z)
(T1(Z)− τ1) +

∂f(τ1, τ0)

∂T0(Z)
(T0(Z)− τ0)

+R2(T1(Z), T0(Z))− E [f(T1(Z), T0(Z))])2
]

Simplify by focusing on the first-order derivatives and residual terms:

= E
[
(
∂f(τ1, τ0)

∂T1(Z)
(T1(Z)− τ1) +

∂f(τ1, τ0)

∂T0(Z)
(T0(Z)− τ0)

+R2(T1(Z), T0(Z))− E [R2(T1(Z), T0(Z))])2
]

Decompose the variance into linear, cross-term, and residual contributions:

= E
[
(
∂f(τ1, τ0)

∂T1(Z)
(T1(Z)− τ1) +

∂f(τ1, τ0)

∂T0(Z)
(T0(Z)− τ0))

2

]
+ 2E

[
∂f(τ1, τ0)

∂T1(Z)
(T1(Z)− τ1)

+
∂f(τ1, τ0)

∂T0(Z)
(T0(Z)− τ0)

]
E [R2(T1(Z), T0(Z))− E [R2(T1(Z), T0(Z))]]

+ Var(R2(T1(Z), T0(Z)))

Finally, re-express the result using a simplified ratio of variances:

=

(
τ1
τ0

)2

Var

(
T1(Z)

τ1
− T0(Z)

τ0

)
+Var(R2(T1(Z), T0(Z))

We now focus on Var(R2(T1(Z), T0(Z))):

Var(R2(T1(Z), T0(Z))) ≤ E
[
(R2(T1(Z), T0(Z)))2

]
≤ 2E

[
|R1

2(T1(Z), T0(Z))|2
]
+ 2E

[
|R2

2(T1(Z), T0(Z))|2
]

We first focus on the first term:

E
[
|R1

2(T1(Z), T0(Z))|2
]
≤ E

[(
C02(T0(Z)− τ0)

2
)2]

≤ C2
1E
[
(T0(Z)− τ0)

4
]

≤ C2
1M

2
0E
[
(T0(Z)− τ0)

2
]

T0(Z) ≤M0

≤ C2
1M

2
0 Var(T0(Z))

For the second term we have:

E
[
|R2

2(T1(Z), T0(Z))|2
]
= C2

2E
[
(T0(Z)− τ0)

2(T1(Z)− τ1)
2
]

≤ C2
2

√
E [(T0(Z)− τ0)4]E [(T1(Z)− τ1)4]

T1(Z), T0(Z) bounded ≤ C2
2M0M1

√
E [(T0(Z)− τ0)2]E [(T1(Z)− τ1)2]

≤ C2
2M0M1

√
Var(T0(Z))Var(T1(Z))
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Hence we get that:

Var(R2(T1(Z), T0(Z))) ≲
2M0M1

nm4
0

(
M0M1

m2
0

+ 1

)

6.2 Proofs of Section 2

6.2.1 Risk Ratio Neyman estimator

Proof of Proposition 1.
Asymptotic Bias and Variance: we proceed with M-estimations to prove asymptotic bias and variance of the
Ratio Neyman estimator, we first define the following:

θ̂n =

 1
n0

∑
Ti=0 Yi

1
n1

∑
Ti=1 Yi

τ̂R−N,n

 and ψ(T, Y,θ) =

 ψ0(θ)
ψ1(θ)
ψ2(θ)

 =:

 (1− T ) (Y − θ0)
T (Y − θ1)
θ1 − θ2θ0

 , (29)

where θ = (θ0, θ1, θ2).

Next, we verify that for θ̂n = ( 1
n0

∑
Ti=0 Yi,

1
n1

∑
Ti=1 Yi, τ̂R−N,n), we have:

n∑
i=1

ψ(Ti, Yi, θ̂n) = 0.

We begin by demonstrating this for ψ1:

n∑
i=1

ψ1(Ti, Yi, θ̂n) =

n∑
i=1

Ti

Yi − 1

n1

∑
Tj=1

Yj


=

n∑
i=1

Ti

Yi − 1

n1

n∑
j=1

TjYj


=

n∑
i=1

TiYi −
1

n1

n∑
i=1

Ti

n∑
j=1

TjYj

=

n∑
i=1

TiYi −
n∑
j=1

TjYj

= 0.

Similarly, we can show:
n∑
i=1

ψ0(Ti, Yi, θ̂n) = 0.

Moreover, by construction:
n∑
i=1

ψ2(Ti, Yi, θ̂n) = 0.

Thus, we have established that θ̂n is an M-estimator of type ψ (see Stefanski and Boos, 2002). Given that we are
in a Bernoulli Trial, we now demonstrate that E [ψ(T, Y, θ∞)] = 0 where θ∞ = (E[Y (0)],E[Y (1)], τRR). Therefore,
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we have:

E [ψ1(θ∞)] = E
[
T
(
Y − E[Y (1)]

)]
= E

[
T
(
Y (1) − E[Y (1)]

)]
(by SUTVA)

= E [T ]E
[
Y (1) − E[Y (1)]

]
(by ignorability)

= 0.

Similarly, we can show:
E [ψ0(θ∞)] = 0.

Furthermore, we have:
E [ψ2(θ∞)] = E[Y (1)]− τRRE[Y (0)] = 0.

At this point, we note that θ∞ is the only value of θ such that E [ψ(T, Y,θ)] = 0. We proceed by defining:

A (θ∞) = E
[
∂ψ

∂θ
|θ=θ∞

]
and B(θ∞) = E

[
ψ(Z, θ∞)ψ(Z, θ∞)T

]
.

Next, we check the conditions of Theorem 7.2 in Stefanski and Boos (2002). First, we compute A (θ∞) and
B (θ∞). Since:

∂ψ

∂θ
(Z, θ) =

 −(1− T ) 0 0
0 −T 0

−θ2 1 −θ0

 ,

we obtain:

A (θ∞) =

 −(1− e) 0 0
0 −e 0

−τRR 1 −E[Y (0)]

 ,

which leads to:

A−1 (θ∞) =

 1
e−1 0 0

0 − 1
e 0

τRR
1

E[Y (0)](1−e) − 1
eE[Y (0)]

− 1
E[Y (0)]

 .

Regarding B (θ∞), elementary calculations show that:

ψ(Z, θ∞)ψ(Z, θ∞)T

=


(
(1− T )(Y − E[Y (0)])

)2
(1− T )(Y − E[Y (0)])T (Y − E[Y (1)]) 0

(1− T )(Y − E[Y (0)])T (Y − E[Y (1)])
(
T (Y − E[Y (1)])

)2
0

0 0 0

 ,

which leads to:

B(θ∞) =

 (1− e)Var
[
Y (0)

]
0 0

0 eVar
[
Y (1)

]
0

0 0 0

 .

Based on the previous calculations, we have:

• ψ(z,θ) and its first two partial derivatives with respect to θ exist for all z and for all θ in the neighborhood
of θ∞.
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• For each θ in the neighborhood of θ∞, we have for all i, j, k ∈ {0, 2}:∣∣∣∣ ∂2

∂θi∂θj
ψk(z,θ)

∣∣∣∣ ≤ 1

and 1 is integrable.

• A(θ∞) exists and is nonsingular.

• B(θ∞) exists and is finite.

Since we have:
n∑
i=1

ψ(Ti, Yi, θ̂n) = 0 and θ̂n
p→ θ∞.

Then, the conditions of Theorem 7.2 in Stefanski and Boos (2002) are satisfied, we have:

√
n
(
θ̂n − θ∞

)
d→ N

(
0, A(θ∞)−1B(θ∞)(A(θ∞)−1)⊤

)
,

where:

A(θ∞)−1B(θ∞)(A(θ∞)−1)⊤ =


Var[Y (0)]
(1−e) 0 − τ Var[Y (0)]

τ0(1−e)

0
Var[Y (1)]

e

Var[Y (1)]
eτ0

− τ Var[Y (0)]
τ0(1−e)

Var[Y (1)]
eτ0

VR−N

 ,
with:

VR−N = τ2RR

(
Var

(
Y (1)

)
eE[Y (1)]2

+
Var

(
Y (0)

)
(1− e)E[Y (0)]2

)
.

In particular, we obtain: √
n (τ̂RR,N,n − τRR)

d→ N (0, VRR,N) .

Finally, note that:

VR−N = τ2RR

(
Var

(
Y (1)

)
eE[Y (1)]2

+
Var

(
Y (0)

)
(1− e)E[Y (0)]2

)

= τ2RR

(
E[(Y (1))2]− E[Y (1)]2

eE[Y (1)]2
+

E[(Y (0))2]− E[Y (0)]2

(1− e)E[Y (0)]2

)
= VR−HT − τ2RR

e(1− e)
.

As a consequence an estimator V̂R−N can be derived :

V̂R−N = τ̂2RR,N,n

(
1
n

∑
Ti=1

(
Yi − 1

n

∑
Ti=1 Yi

)2
ê
(
1
n

∑
Ti=1 Yi

)2 +
1
n

∑
Ti=0

(
Yi − 1

n

∑
Ti=0 Yi

)2
(1− ê)

(
1
n

∑
Ti=0 Yi

)2
)

(30)

Optimal choice of e: the optimal value of eopt is the one that minimizes the variance of the Ratio Neyman
estimator. Therefore, we need to solve:

inf
e∈(0,1)

τ2RR

(
Var

(
Y (1)

)
eE
[
Y (1)

]2 +
Var

(
Y (0)

)
(1− e)E

[
Y (0)

]2
)
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Noting that the variance we want to minimize is convex in e, we can derive the variance and set it to 0 to find
eopt. We have:

C1

e2opt
=

C0

(1− eopt)2

where C1 =
Var(Y (1))
E[Y (1)]

2 and C0 =
Var(Y (0))
E[Y (0)]

2 .

• If
Var(Y (1))
E[Y (1)]2

=
Var(Y (0))
E[Y (0)]2

:
eopt = 0.5

• otherwise:

eopt =
C1 −

√
C1C0

C1 − C0
∈ (0, 1)

6.2.2 Risk Ratio Horvitz-Thomson estimator

Definition 6 (Risk Ratio Horvitz-Thomson estimator). Grant Assumption 1 and Assumption 2. The Risk
Ratio Horvitz-Thomson estimator denoted τ̂RR,HT,n is defined as,

τ̂RR,HT,n =

∑n
i=1

TiYi

e∑n
i=1

(1−Ti)Yi

1−e

(31)

if
∑n
i=1 Ti < n and 0 otherwise.

Within the context of a Bernoulli trial, Proposition 7 proves that the Risk Ratio Horvitz-Thompson estimator is
asymptotically unbiased and normally distributed.
Proposition 7 (Asymptotic normality of τ̂RR,HT,n). Under Assumption 1 and Assumption 2, the Risk Ratio
Horvitz-Thompson estimator is asymptotically unbiased and satisfies

√
n (τ̂RR,HT,n − τRR)

d→ N (0, VRR,HT) (32)

where VRR,HT = τ2RR

(
E
[
(Y (1))

2
]

eE[Y (1)]
2 +

E
[
(Y (0))

2
]

(1−e)E[Y (0)]
2

)
.

If we assume that for all i, M ≥ Yi ≥ m > 0 and 0 <
∑n
i=1 Ti < n, we also have:

|Bias(τ̂RR, HT, n| ≤
2M3(1− e)3

nm3e3

|Var(τ̂RR, HT, n)| ≤
4M4(1− e)6

nm6e4

Proof of Proposition 7.

Asymptotic Bias and Variance. Let Zi := (Ti, Yi) and define g0(Zi) =
(1−Ti)Yi

1−e and g1(Zi) = TiYi

e . First, we
evaluate the expectation of g1(Zi):

E [g1(Zi)] = E
[
TiYi
e

]
(by i.i.d)

= E

[
TiY

(1)
i

e

]
(by SUTVA)

= E
[
Ti
e

]
E
[
Y

(1)
i

]
(by ignorability)

= E
[
Y

(1)
i

]
(by Trial positivity)
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Similarly, we can find the expectation of g0(Zi):

E [g0(Zi)] = E
[
Y (0)

]
> 0.

Thus, according to Theorem 1, we have
√
n (τ̂RR-HT, n − τRR)

d→ N (0, VRR-HT), with

VRR-HT =

(
τ1
τ0

)2

Var

(
g1(Z)

τ1
− g0(Z)

τ0

)
= τ2RR Var

(
TY

eE
[
Y (1)

] − (1− T )Y

(1− e)E
[
Y (0)

]) .
Next, we evaluate the variance terms separately:

Var

(
TY

eE
[
Y (1)

]) =
1

E
[
Y (1)

]2
e2

Var (TY )

=
1

E
[
Y (1)

]2
e2

(
E
[
(TY )

2
]
− E [TY ]

2
)

=
1

E
[
Y (1)

]2
e2

(
E
[
T (Y )

2
]
− E [TY ]

2
)

(T is binary)

=
1

E
[
Y (1)

]2
e2

(
E
[
T
(
Y (1)

)2]
− E

[
TY (1)

]2)
(by SUTVA)

=
1

E
[
Y (1)

]2
e2

(
eE
[(
Y (1)

)2]
− e2E

[
Y (1)

]2)
(by ignorability)

=
E
[(
Y (1)

)2]
eE
[
Y (1)

]2 − 1.

Similarly, we find the variance of the second term:

Var

(
(1− T )Y

(1− e)E
[
Y (0)

]) =
E
[(
Y (0)

)2]
(1− e)E

[
Y (0)

]2 − 1.

Finally, we compute the covariance between the two terms:

Cov

(
TY

eE
[
Y (1)

] , (1− T )Y

(1− e)E
[
Y (0)

]) =
Cov(TY, (1− T )Y )

eE
[
Y (1)

]
(1− e)E

[
Y (0)

]
=

(
E
[
T (1− T )Y 2

]
− E [TY ]E [(1− T )Y ]

)
eE
[
Y (1)

]
(1− e)E

[
Y (0)

]
=

−E [TY ]E [(1− T )Y ]

eE
[
Y (1)

]
(1− e)E

[
Y (0)

]
= −1.

Using Bienayme’s identity, we finally obtain:

VRR-HT = τ2RR

E
[(
Y (1)

)2]
eE
[
Y (1)

]2 +
E
[(
Y (0)

)2]
(1− e)E

[
Y (0)

]2
 .
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As a consequence an estimator V̂RR−HT can be derived:

V̂RR−HT = τ̂2RR,HT,n

(
1
n

∑
Ti=1 Y

2
i

ê
(
1
n

∑
Ti=1 Yi

)2 +
1
n

∑
Ti=0 Y

2
i

(1− ê)
(
1
n

∑
Ti=0 Yi

)2
)

(33)

Finite sample Bias and Variance. Let T1(Z) = 1
n

∑n
i=1

TiYi

e and T0(Z) = 1
n

∑n
i=1

(1−Ti)Yi

1−e where Z =
(Z1, . . . , Zn). First, consider the variance of T1(Z):

Var(T1(Z)) =
1

ne2
Var (TiYi) (by i.i.d)

=
1

ne2

(
E
[
(TiYi)

2
]
− E [TiYi]

2
)

=
E
[(
Y (1)

)2]− eE
[
Y (1)

]2
ne

.

Thus Var(T1(Z)) = Op (1/n) and similarly Var(T0(Z)) = Op (1/n). Next, we show that T0(Z) is bounded:

T0(Z) =
1

n

n∑
i=1

(1− Ti)Yi
1− e

=
1

n(1− e)

n∑
i=1

(1− Ti)Yi

≥ m

(1− e)

n∑
i=1

(1− Ti) (since Yi ≥ m > 0)

≥ m

(1− e)
(as

n∑
i=1

Ti < n).

Similarly, we also have the upper bound

T0(Z) =
1

n

n∑
i=1

(1− Ti)Yi
1− e

=
1

ne

n∑
i=1

(1− Ti)Yi

≤ 1

ne

n∑
i=1

Yi (since T is binary)

≤ M

e
(since Yi ≤M).

Similarly, we have T1(Z) ≤ M
e . Therefore, we have shown that T1(Z) and T0(Z) are unbiased estimators

of E
[
Y (1)

]
and E

[
Y (0)

]
> 0, respectively. We also established that M/e ≥ T0(Z) ≥ m/(1 − e) > 0 and

|T1(Z)| ≤ M/e. Furthermore, we pointed out that Var(T1(Z)) = Op
(
1
n

)
and Var(T0(Z)) = Op

(
1
n

)
. Applying

Theorem 2, we obtain:

|E [τ̂RR, HT, n]− τRR| ≤
M2(1− e)2

ne2m2

(
M(1− e)

me
+ 1

)
≤ 2M3(1− e)3

nm3e3
,

and

|Var(τ̂RR, HT, n)− VRR, HT| ≤
2M2(1− e)4

nm4e2

(
M2(1− e)2

m2e2
+ 1

)
≤ 4M4(1− e)6

nm6e4
.
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Optimal choice of e The optimal value of eopt is the one that minimizes the variance of the Ratio Horvitz-
Thomson estimator. Therefore, we need to solve:

inf
e∈(0,1)

τ2RR

E
[(
Y (1)

)2]
eE
[
Y (1)

]2 +
E
[(
Y (0)

)2]
(1− e)E

[
Y (0)

]2


Noting that the variance we want to minimize is convex in e, we can derive the variance and set it to 0 to find
eopt. We have:

C1

e2opt
=

C0

(1− eopt)2

where C1 =
E
[
(Y (1))

2
]

E[Y (1)]
2 and C0 =

E
[
(Y (0))

2
]

E[Y (0)]
2 .

• If
Var(Y (1))
E[Y (1)]2

=
Var(Y (0))
E[Y (0)]2

:
eopt = 0.5

• otherwise:

eopt =

E
[(
Y (1)

)2]E [Y (0)
]2 −√E

[(
Y (1)

)2]E [(Y (0)
)2]E [Y (1)

]
E
[
Y (0)

]
E
[(
Y (1)

)2]E [Y (0)
]2 − E

[(
Y (0)

)2]E [Y (1)
]2 ∈ (0, 1)

6.2.3 Link with existing asymptotic confidence intervals

According to Proposition 1, a (1− α) asymptotic confidence interval for τRR is given byτ̂RR,N,n ±

√
V̂RR,Nz1−α/2

n

 (34)

with V̂RR,N an estimator of

VRR,N = τ2RR

(
Var

(
Y (1)

)
eE[Y (1)]2

+
Var

(
Y (0)

)
(1− e)E[Y (0)]2

)
.

Now, assume that Y (0), Y (1) ∈ {0, 1} with associated probabilities P[Y (0) = 1] = p0 and P[Y (1) = 1] = p1. In this
setting, the variance VRR,N takes the form

VRR,N

n
=
τ2RR

n

(
Var

(
Y (1)

)
eE[Y (1)]2

+
Var

(
Y (0)

)
(1− e)E[Y (0)]2

)

= τ2RR

(
p1(1− p1)

N1p21
+
p0(1− p0)

N0p20

)
= τ2RR

(
1− p1
N1p1

+
1− p0
N0p0

)
= τ2RR

(
1

N1p1
− 1

N1
+

1

N0p0
− 1

N0

)
= τ2RR

(
1

N1p1
− 1

N1
+

1

N0p0
− 1

N0

)
.
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An estimation of such a quantity can be constructed by replacing p1 (resp. p0) by (1/N1)
∑n
i=1 TiYi (resp.

(1/N0)
∑n
i=1(1− Ti)Yi), which leads to

V̂RR,N

n
= τ̂2RR

(
1∑n

i=1 TiYi
− 1

N1
+

1∑n
i=1(1− Ti)Yi

− 1

N0

)
. (35)

Thus, a (1− α) asymptotic confidence interval for τRR is given by[
τ̂RR,N,n ± z1−α/2τ̂RR,N,n

√(
1∑n

i=1 TiYi
− 1

N1
+

1∑n
i=1(1− Ti)Yi

− 1

N0

)]
(36)

=

[
τ̂RR,N,n

(
1± z1−α/2

√(
1∑n

i=1 TiYi
− 1

N1
+

1∑n
i=1(1− Ti)Yi

− 1

N0

))]
. (37)

Finally, since ex is equivalent to 1 + x near x = 0, the above interval is equivalent to that given by (3), which
concludes the proof.

6.2.4 Delta method with log function

According to Proposition 1, we know that
√
n (τ̂RR,N,n − τRR)

d→ N (0, VRR,N) , (38)

where

VRR,N = τ2RR

(
Var

(
Y (1)

)
eE[Y (1)]2

+
Var

(
Y (0)

)
(1− e)E[Y (0)]2

)
.

Using the Delta method, with the function θ 7→ log(θ), we obtain
√
n (log(τ̂RR,N,n)− log(τRR))

d→ N
(
0, (1/τRR)

2VRR,N

)
. (39)

Thus, a (1− α) asymptotic confidence interval for log(τRR) is given by[
log(τ̂RR,N,n)± z1−α/2

√
VRR,N

nτ2RR

]
. (40)

Letting Vlog RR,N = VRR,N/τ
2
RR, a (1− α) asymptotic confidence interval for τRR is[

τ̂RR,N,n exp

(
±z1−α/2

√
Vlog RR,N

n

)]
. (41)

Now, note that, if Y (0), Y (1) ∈ {0, 1} with P[Y (t) = 1] = pt, we have

Vlog RR,N =
Var

(
Y (1)

)
eE[Y (1)]2

+
Var

(
Y (0)

)
(1− e)E[Y (0)]2

(42)

=
p1(1− p1)

ep21
+
p0(1− p0)

(1− e)p20
(43)

=
1

ep1
− 1

e
+

1

ep0
− 1

1− e
. (44)

Hence,

Vlog RR,N

n
=

1

enp1
− 1

en
+

1

enp0
− 1

n(1− e)
, (45)

which can be estimated replacing ne (resp. n(1− e)) by N1 =
∑n
i=1 Ti (resp. N0 = n−N1 and enp1 (resp. enp0)

by
∑n
i=1 YiTi (resp.

∑n
i=1 Yi(1− Ti)). Replacing Vlog RR,N/n by such an estimate in the asymptotic confidence

interval (41) leads to the well-known formula presented in Equation (3).
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6.3 Proofs of Section 3

6.3.1 Risk Ratio Inverse Propensity Weighting

Proof of Proposition 2.
Asymptotic bias and variance of the oracle Risk Ratio IPW estimator Recall that the oracle Risk Ratio
IPW is defined as

τ⋆RR,IPW =

(
n∑
i=1

TiYi
e(Xi)

)/( n∑
i=1

(1− Ti)Yi
1− e(Xi)

)
,

where the propensity score e is assumed to be known. Let us define g1(Z) = TY/e(X) and g0(Z) = (1−T )Y/(1−
e(X)) with Z = (X,T, Y ). Since

m

1− η
≤ g1(Z) ≤

M

η
and g0(Z) ≤

M

η
,

the function g0 and g1 are bounded from above and below and thus square integrable. Besides, E [g0(Zi)] = E
[
Y (0)

]
and E [g1(Zi)] = E

[
Y (1)

]
. We can therefore apply Theorem 2 and conclude that

√
n(τ⋆RR,IPW − τRR) → N (0, VRR,IPW),

where

VRR,IPW = τ2RR Var

 TiYi

e(Xi)

E
[
Y (1)

] − (1−Ti)Yi

1−e(Xi)

E
[
Y (1)

]
 . (46)

Moreover,

Var

(
TY

e(X)

)
= E

[(
TY

e(X)

)2
]
− E

[
TY

e(X)

]2
= E

[
TY 2

e(X)2

]
− E

[
Y (1)

]2
= E

[
1

e(X)2
E
[
T (Y (1))2|X

]]
− E

[
Y (1)

]2
= E

[
1

e(X)
E
[
(Y (1))2|X

]]
− E

[
Y (1)

]2
= E

[
1

e(X)
E
[
(Y (1))2|X

]]
− E

[
Y (1)

]2
= E

[
(Y (1))2

e(X)

]
− E

[
Y (1)

]2
.

Similarly

Var

(
(1− T )Y

1− e(X)

)
= E

[
(Y (0))2

1− e(X)

]
− E

[
Y (0)

]2
.

Additionally, the covariance satisfies

Cov

(
TY

e(X)
,
(1− T )Y

1− e(X)

)
= E

[(
TY

e(X)
− E

[
Y (1)

])( (1− T )Y

1− e(X)
− E

[
Y (0)

])]
= E

[
TY

e(X)

(1− T )Y

1− e(X)

]
− E

[
Y (1)

]
E
[
(1− T )Y

1− e(X)

]
− E

[
Y (0)

]
E
[
TY

e(X)

]
+ E

[
Y (1)

]
E
[
Y (0)

]
= −E

[
Y (1)

]
E
[
Y (0)

]
.
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Therefore, we get that

VRR,IPW = τ2RR

E
[
(Y (1))2

e(X)

]
E
[
Y (1)

]2 +
E
[
(Y (0))2

1−e(X)

]
E
[
Y (0)

]2
 .

As a consequence an estimator V̂RR−IPW can be derived:

V̂RR−IPW = τ̂2RR,IPW,n

 1
n

∑
Ti=1

(
Yi

ê(xi)

)2
(
1
n

∑
Ti=1 Yi

)2 +

1
n

∑
Ti=0

(
Yi

1−ê(xi)

)2
(
1
n

∑
Ti=0 Yi

)2
 (47)

Since we have E
[(

TY
e(X)

)2]
= E

[
(Y (1))2

e(X)

]
.

Finite sample bias and variance of the oracle Risk Ratio IPW estimator Let T1(Z) = 1
n

∑n
i=1

TiYi

e(Xi)
and

T0(Z) = 1
n

∑n
i=1

(1−Ti)Yi

1−e(Xi)
where Z = (Z1, . . . , Zn). We first show that Var(T1(Z)) = Op

(
1
n

)
and Var(T0(Z)) =

Op
(
1
n

)
:

Var(T1(Z)) =
1

n2
Var

(
n∑
i=1

TiYi
e(Xi)

)

=
1

n2

n∑
i=1

Var

(
TiYi
e(Xi)

)
(by i.i.d.)

=
1

n

(
E

[(
TiYi
e(Xi)

)2
]
− E

[
TiYi
e(Xi)

]2)
(by law of total expectation)

=
E
[
(Y (1))2

e(Xi)

]
− E

[
Y (1)

]2
n

= Op

(
1

n

)
Similarly, Var(T0(Z)) = Op

(
1
n

)
. And we also have:

E [T1(Z)] = E
[
TiYi
e(Xi)

]
= E

[
Y (1)

]

E [T0(Z)] = E
[
(1− Ti)Yi
1− e(Xi)

]
= E

[
Y (0)

]
Therefore, we showed that T1(Z) and T0(Z) are respectively unbiased estimators of E

[
Y (1)

]
and E

[
Y (0)

]
> 0

such that Var(T1(Z)) = Op
(
1
n

)
and Var(T0(Z)) = Op

(
1
n

)
. By assumption,

m

1− η
≤ T0(Z) ≤ M

η
and T1(Z) ≤ M

η
,

thus T0(Z) and T1(Z) are bounded. Applying Theorem 2, we obtain

|E [τ̂RR, HT, n]− τRR| ≤
2M3(1− η)3

nm3η3
,
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and

|Var(τ̂RR, HT, n)− VRR, HT| ≤
4M4(1− η)6

nm6η4
.

6.3.2 Risk Ratio G formula estimator

Proof of Proposition 3.
Asymptotic bias and variance of the oracle risk ratio G formula estimator Recall that the oracle risk
ratio G formula is defined as

τ⋆RR,G,n =

∑n
i=1 µ(1)(Xi)∑n
i=1 µ(0)(Xi)

,

where the response surfaces µ(0) and µ(1) are assumed to be known. Let us define g1(Z) = µ(1)(Xi) and
g0(Z) = µ(0)(Xi) with Z = X. Since g1(Z) and g0(Z) are bounded, they are square integrable. We also have
that E [g0(Zi)] = E

[
Y (0)

]
and E [g1(Zi)] = E

[
Y (1)

]
. We can therefore apply Theorem 2 and conclude that

√
n(τ⋆RR,G,n − τRR) → N (0, VRR,G),

where VRR,G = τ2RR Var

(
µ⋆
1(X)

E[Y (1)]
− µ⋆

0(X)

E[Y (0)]

)
. As a consequence an estimator V̂RR,G can be derived:

V̂RR,G =
τ̂2RR,G,n

n

n∑
i=1

(
µ̂1(Xi)

1
n

∑
Ti=1 Yi

− µ̂0(Xi)
1
n

∑
Ti=0 Yi

− 1

n

n∑
i=1

µ̂1(Xi)
1
n

∑
Ti=1 Yi

− µ̂0(Xi)
1
n

∑
Ti=0 Yi

)2

(48)

Finite sample bias and variance of the oracle ratio G formula estimator Let T1(Z) = 1
n

∑n
i=1 µ(1)(Xi) and

T0(Z) = 1
n

∑n
i=1 µ(0)(Xi) where Z = (X1, . . . , Xn). We first show that Var(T1(Z)) = Op

(
1
n

)
and Var(T0(Z)) =

Op
(
1
n

)
:

Var(T1(Z)) =
1

n2
Var

(
n∑
i=1

µ(1)(Xi)

)

=
1

n2

n∑
i=1

Var(µ(1)(Xi)) (by i.i.d.)

=
1

n

(
E
[
(µ(1)(Xi))

2
]
− E

[
Y (1)

]2)
(by law of total expectation)

≤
M2 − E

[
Y (1)

]2
n

(µ(1)(Xi)) ≤M)

= Op

(
1

n

)
.

Similarly, Var(T0(Z)) = Op (1/n). Since we also have that

E [T1(Z)] = E
[
Y (1)

]
E [T0(Z)] = E

[
Y (0)

]
Therefore, we showed that T1(Z) and T0(Z) are unbiased estimators of E

[
Y (1)

]
and E

[
Y (0)

]
> 0 such that

Var(T1(Z)) = Op (1/n) and Var(T0(Z)) = Op (1/n). We also have that T0(Z) and T1(Z) are bounded:

m0 ≤ T0(Z) ≤M0 and T1(Z) ≤M1

Applying Theorem 2, we obtain:

|E [τ̂RR, HT, n]− τRR| ≤
2M1M

2
0

nm3
0

and |Var(τ̂RR, HT, n)− VRR, HT| ≤
2M2

0M1(M1 +M0)

m6
0
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6.3.3 Risk Ratio G-formula in linear models

Lemma 1 (see, e.g. Seber and Lee (2012)). Grant Assumption 4 linear model. Let γ(t) = (c(t), β(t)) ∈ Rd+1 and
Z = (1, X). We rearrange the Yi and Zi so that the first n1 observations correspond to T = 1. We then define
Y1 = (Y1, . . . , Yn1

)⊤ and Y0 = (Yn1+1, . . . , Yn)
⊤, as well as Z1 = (Z1, . . . , Zn1

)⊤ and Z0 = (Zn1+1, . . . , Zn)
⊤.

Then for t ∈ {0, 1}, the linear model can be formulated as:

Y (t) = Z⊤γ(t) + ε(t), E[ε(t)|Z] = 0, Var[ε(t)|Z] = σ2,

and the least square estimator is given as

γ̂(t) =

(
1

nt
Z⊤
t Zt

)−1
1

nt
Z⊤
t Yt

Proposition 8. Grant Assumption 4. Let ê = (
∑n
i=1 Ti)/n and for all t ∈ {0, 1},

Z̄(t) =
1∑n

i=1 1Ti=t

n∑
i=1

1Ti=tZi. (49)

Defining νt = E[X|T = t] and Σt = Var(X|T = t), we have

√
n(θ̂n − θ∞)

d→ N (0,Σ) ,

where

θn =


Z̄(0)

Z̄(1)

γ̂(0)
γ̂(1)
ê

 , θ∞ =


E[Z|T = 0]
E[Z|T = 1]

γ(0)
γ(1)
e

 , Σ =



Var[Z|T=0]
(1−e) 0 0 0 0

0 Var[Z|T=1]
e 0 0 0

0 0
σ2Q−1

0

1−e 0 0

0 0 0
σ2Q−1

1

e 0
0 0 0 0 e(1− e)

 ,

with Q−1
t =

[
1 + νTt Σ

−1
t νt −νTt Σ−1

t

−Σ−1
t νt Σ−1

t

]
.

Proof. Using M-estimation theory to prove asymptotic normality of the θn, we first define the following:

ψ(T,Z,θ) =


ψ0(T,Z,θ)
ψ1(T,Z,θ)
ψ2(T,Z,θ)
ψ3(T,Z,θ)
ψ4(T,Z,θ)

 :=


(1− T )(Z − θ0)
T (Z − θ1)

(1− T )
(
Zϵ(0)− ZZ⊤ (θ2 − γ(0)

))
T
(
Zϵ(1)− ZZ⊤ (θ3 − γ(1))

)
T − θ4


where θ = (θ0, θ1, θ2, θ3, θ4). We still have that θ̂n = (Z̄(0), Z̄(1), γ̂(0), γ̂(1), ê) is an M-estimator of type ψ (see
Stefanski and Boos, 2002) since

n∑
i=1

ψ(Ti, Zi, θ̂n) = 0.

We now demonstrate that E [ψ(T, Y,θ∞)] = 0. We directly have that E [ψ4(T, Y,θ∞)] = 0. For the other terms
we have:

E [ψ1(T,Z,θ∞)] = E [T (Z − E[Z|T = 1])]

= E [E [T (Z − E[Z|T = 1]) |T ]]
= E [T (E [Z|T ]− E[Z|T = 1])]

= E [T (E [Z|T ]− E[Z|T = 1])]

= P [T = 1] (E [Z|T = 1]− E[Z|T = 1])

= 0
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We also have that:

E [ψ3(T,Z,θ∞)] = E
[
TZϵ(1)

]
= E

[
ZE

[
Tϵ(1)|Z

]]
= E

[
ZE

[
ϵ(1)|Z, T = 1

]]
= 0.

Similarly, we can show:
E [ψ0(T,Z,θ∞)] = 0 and E [ψ2(T,Z,θ∞)] = 0.

At this point, we note that since ψ(T,Z,θ) is a linear function of θ, θ∞ is the only value of θ such that
E [ψ(T,Z,θ)] = 0 We proceed by defining:

A (θ∞) = E
[
∂ψ

∂θ

∣∣∣
θ=θ∞

]
and B(θ∞) = E

[
ψ(T,Z, θ∞)ψ(T,Z, θ∞)T

]
.

Next, we check the conditions of Theorem 7.2 in Stefanski and Boos (2002). First, we compute A (θ∞) and
B (θ∞). Since:

∂ψ

∂θ
(T,Z, θ) =


−(1− T ) 0 0 0 0

0 −T 0 0 0
0 0 −(1− T )ZZ⊤ 0 0
0 0 0 −TZZ⊤ 0
0 0 0 0 −1

 ,

we obtain:

A (θ∞) =


−(1− e) 0 0 0 0

0 −e 0 0 0
0 0 −(1− e)Q0 0 0
0 0 0 −eQ1 0
0 0 0 0 −1

 , where Qt = E
[
ZZ⊤|T = t

]
.

which leads to:

A−1 (θ∞) =


− 1

1−e 0 0 0 0

0 − 1
e 0 0 0

0 0 −Q−1
0

1−e 0 0

0 0 0 −Q−1
1

e 0
0 0 0 0 −1

 .

Regarding B(θ∞), since we have T (1− T ) = 0, elementary calculations show that:

B(θ∞)1,2 = B(θ∞)2,1 = 0
B(θ∞)3,4 = B(θ∞)4,3 = 0

and B(θ∞)1,4 = B(θ∞)4,1 = 0
B(θ∞)2,3 = B(θ∞)3,2 = 0.

Besides

B(θ∞)2,2 = E
[
T 2(Z − E [Z|T = 1])(Z − E [Z|T = 1])⊤

]
= E

[
T (Z − E [Z|T = 1])(Z − E [Z|T = 1])⊤

]
= E

[
TE

[
(Z − E [Z|T = 1])(Z − E [Z|T = 1])⊤|T

]]
= P [T = 1]E

[
(Z − E [Z|T = 1])(Z − E [Z|T = 1])⊤|T = 1

]
= eVar [Z|T = 1] ,

and similarly,
B(θ∞)1,1 = (1− e)Var [Z|T = 0] .
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We can also note that:

B(θ∞)4,4 = E
[
T 2ZZ⊤ϵ2(1)

]
= E

[
TZZ⊤ϵ2(1)

]
= E

[
TE

[
ZZ⊤ϵ2(1)|T

]]
= P [T = 1]E

[
ZZ⊤ϵ2(1)|T = 1

]
= eE

[
ZZ⊤E

[
ϵ2(1)|T = 1, Z

]
|T = 1

]
= eσ2E

[
ZZ⊤|T = 1

]
:= eσ2Q1,

and similarly,
B(θ∞)3,3 = (1− e)σ2Q0.

Finally,

B(θ∞)2,4 = B(θ∞)4,2 = E
[
T 2(Z − E [Z|T = 1])Z⊤ϵ(1)

]
= E

[
T (Z − E [Z|T = 1])Z⊤ϵ(1)

]
= P [T = 1]E

[
(Z − E [Z|T = 1])Z⊤ϵ(1)|T = 1

]
= eE

[
(Z − E [Z|T = 1])Z⊤E

[
ϵ(1)|T = 1, Z

]
|T = 1

]
= 0,

and similarly,
B(θ∞)1,3 = B(θ∞)3,1 = 0.

We also have that:

B(θ∞)2,5 = B(θ∞)5,2 = E [T (Z − E [Z|T = 1])(T − e)]

= E
[
T 2Z − T 2E [Z|T = 1]− eTZ + eTE [Z|T = 1]

]
= E

[
T 2Z − T 2E [Z|T = 1]− eTZ + eTE [Z|T = 1]

]
= eE [Z|T = 1]− eE [Z|T = 1]− e2E [Z|T = 1] + e2E [Z|T = 1]

= 0

and similarly,
B(θ∞)1,5 = B(θ∞)5,1 = 0.

We also have that :

B(θ∞)4,5 = B(θ∞)5,4 = E
[
(T − e)TZϵ(0)

]
= E

[
(TZϵ(0)

]
− eE

[
(TZϵ(0)

]
= (1− e)E

[
TZϵ(0)

]
= (1− e)E

[
ZE

[
Tϵ(0)|Z

]]
= (1− e)E

[
ZE

[
ϵ(0)|Z, T = 1

]]
= 0

and similarly,
B(θ∞)3,5 = B(θ∞)5,3 = 0.

Gathering all calculations, and since B(θ∞)5,5 = e(1− e), we have

B(θ∞) =


(1− e)Var [Z|T = 0] 0 0 0 0

0 eVar [Z|T = 1] 0 0 0
0 0 (1− e)σ2Q0 0 0
0 0 0 eσ2Q1 0
0 0 0 0 e(1− e)

 ,

Based on the previous calculations, we have:
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• ψ(z,θ) and its first two partial derivatives with respect to θ exist for all z and for all θ in the neighborhood
of θ∞.

• For each θ in the neighborhood of θ∞, we have for all i, j, k ∈ {0, 2}:∣∣∣∣ ∂2

∂θi∂θj
ψk(z,θ)

∣∣∣∣ ≤ 1

and 1 is integrable.

• A(θ∞) exists and is nonsingular.

• B(θ∞) exists and is finite.

Since we have:
n∑
i=1

ψ(Ti, Zi, θ̂n) = 0 and θ̂n
p→ θ∞.

Then, the conditions of Theorem 7.2 in Stefanski and Boos (2002) are satisfied, we have:
√
n
(
θ̂n − θ∞

)
d→ N

(
0, A(θ∞)−1B(θ∞)(A(θ∞)−1)⊤

)
,

where:

A(θ∞)−1B(θ∞)(A(θ∞)−1)⊤ =



Var[Z|T=0]
(1−e) 0 0 0 0

0 Var[Z|T=1]
e 0 0 0

0 0
σ2Q−1

0

1−e 0 0

0 0 0
σ2Q−1

1

e 0
0 0 0 0 e(1− e)

 ,

Proposition 9 (asymptotical normality of τ̂RR,OLS). Assume we have linear model then we have:
√
n(τ̂RR,OLS − τRR)

d→ N (0, VRR-OLS)

with
VRR-OLS

τ2RR
=

∥∥∥∥∥ β(1)

E
[
Y (1)

] − β(0)

E
[
Y (0)

]∥∥∥∥∥
2

Σ

+ σ2

(
1 + (1− e)2∥ν1 − ν0∥2Σ−1

1

eE
[
Y (1)

]2 +
1 + e2∥ν1 − ν0∥2Σ−1

0

(1− e)E
[
Y (0)

]2
)
.

Proof. Let β̂(1) and ĉ(1) be the parameters obtained via fitting an ordinary least square method on the treated
individuals only, that is

(β̂(1), ĉ(1)) ∈ arg min
c(1),β(1)

n∑
i=1

(Y
(1)
i − c(1) − β(1)Xi)

21Ti=1. (50)

Similarly, let β̂(0) and ĉ(0) be the parameters obtained via fitting an ordinary least square method on the control
individuals only, that is

(β̂(0), ĉ(0)) ∈ arg min
c(0),β(0)

n∑
i=1

(Y
(0)
i − c(0) − β(0)Xi)

21Ti=0. (51)

An estimator of the RR using the G-formula approach is thus given by

τ̂RR,OLS =

∑n
i=1

(
ĉ(1) +X⊤

i β̂(1)

)
∑n
i=1

(
ĉ(0) +X⊤

i β̂(0)

) (52)

=
ĉ(1) + X̄⊤β̂(1)

ĉ(0) + X̄⊤β̂(0)
. (53)
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Besides, note that assuming a linear model implies that

τ̂RR,OLS =
c(1) + E[X]⊤β(1)

c(0) + E[X]⊤β(0)
. (54)

Let, for all i, Zi = (1, Xi) and γ(j) = (c(j), β(j)) for all j ∈ {0, 1}. Expanding the following difference, we have:

√
n(τRR,OLS − τRR) =

√
n

(
ĉ(1) + X̄⊤β̂(1)

ĉ(0) + X̄⊤β̂(0)
−
c(1) + E[X]⊤β(1)

c(0) + E[X]⊤β(0)

)
(55)

=
√
n
(
ĉ(1) + X̄⊤β̂(1)

)( 1

ĉ(0) + X̄⊤β̂(0)
− 1

c(0) + E[X]⊤β(0)

)
(56)

+

√
n

c(0) + E[X]⊤β(0)

(
ĉ(1) + X̄⊤β̂(1) − c(1) − E[X]⊤β(1)

)
(57)

=
√
n
(
Z̄⊤γ̂(1)

)( 1

Z̄⊤γ̂(0)
− 1

E[Z]⊤γ(0)

)
(58)

+

√
n

E[Z]⊤γ(0)

(
Z̄⊤γ̂(1) − E[Z]⊤γ(1)

)
(59)

=
√
n

Z̄⊤γ̂(1)

Z̄⊤γ̂(0)E[Z]⊤γ(0)

(
E[Z]⊤γ(0) − Z̄⊤γ̂(0)

)
(60)

+

√
n

E[Z]⊤γ(0)

(
Z̄⊤γ̂(1) − E[Z]⊤γ(1)

)
. (61)

Besides, we have

Z̄ − E[Z] = êZ̄(1) + (1− ê)Z̄(0) − eE[Z|T = 1]− (1− e)E[Z|T = 0]

= (1− e)
(
Z̄(0) − E[Z|T = 0]

)
+ e

(
Z̄(1) − E[Z|T = 1]

)
+
(
Z̄(1) − Z̄(0)

)
(ê− e)

= ζ(θn − θ∞),

where ζ =
[
(1− e)Id+1, eId+1, 0d+1, 0d+1, (Z̄(1) − Z̄(0))

]
∈ R(d+1)×4(d+1)+1 and

θn =


Z̄(0)

Z̄(1)

γ̂(0)
γ̂(1)
ê

 , θ∞ =


E[Z|T = 0]
E[Z|T = 1]

γ(0)
γ(1)
e

 .

Note that for all t ∈ {0, 1},

Z̄⊤γ̂(t) − E[Z]⊤γ(t) = γ̂⊤(t)
(
Z̄ − E[Z]

)
+ E[Z]⊤

(
γ̂(t) − γ(t)

)
= γ̂⊤(t)ζ(θn − θ∞) + E[Z]⊤

(
γ̂(t) − γ(t)

)
= α̂⊤

(t)(θn − θ∞),

with

α̂(t) =


(1− e)γ̂(t)
eγ̂(t)

1t=0E[Z]
1t=1E[Z]

(Z̄(1) − Z̄(0))
⊤γ̂(t).
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. Therefore
√
n(τRR,OLS − τRR) =

√
n

Z̄⊤γ̂(1)

Z̄⊤γ̂(0)E[Z]⊤γ(0)

(
E[Z]⊤γ(0) − Z̄⊤γ̂(0)

)
+

√
n

E[Z]⊤γ(0)

(
Z̄⊤γ̂(1) − E[Z]⊤γ(1)

)
=

√
n

E[Z]⊤γ(0)
α̂⊤
(1)(θn − θ∞)

−
√
n

Z̄⊤γ̂(1)

Z̄⊤γ̂(0)E[Z]⊤γ(0)
α̂⊤
(0)(θn − θ∞)

Therefore, we get that

√
n(τRR,OLS − τRR) =

√
n

(
1

E[Z]⊤γ(0)
α̂(1) −

Z̄⊤γ̂(1)

Z̄⊤γ̂(0)E[Z]⊤γ(0)
α̂(0)

)⊤

(θn − θ∞).

According to the Law of Large Numbers,

1

E[Z]⊤γ(0)
α̂(1) −

Z̄⊤γ̂(1)

Z̄⊤γ̂(0)E[Z]⊤γ(0)
α̂(0)

p→
E[Z]⊤γ(1)
E[Z]⊤γ(0)

(
α(1)

E[Z]⊤γ(1)
−

α(0)

E[Z]⊤γ(0)

)
:= α∞,

with, for all t ∈ {0, 1},

α(t) =


(1− e)γ(t)
eγ(t)

1t=0E[Z]
1t=1E[Z]

(E[Z|T = 1]− E[Z|T = 0])⊤γ(t)


and

α∞ =
E[Z]⊤γ(1)
E[Z]⊤γ(0)



(1−e)γ(1)
E[Z]⊤γ(1)

− (1−e)γ(0)
E[Z]⊤γ(0)

eγ(1)
E[Z]⊤γ(1)

− eγ(0)
E[Z]⊤γ(0)

− E[Z]
E[Z]⊤γ(0)
E[Z]

E[Z]⊤γ(1)
γ⊤
(0)(E[Z|T=1]−E[Z|T=0])

E[Z]⊤γ(0)
− γ⊤

(1)(E[Z|T=1]−E[Z|T=0])

E[Z]⊤γ(1)


. (62)

According to Proposition 8, letting Qt = E
[
ZZ⊤|T = t

]
for all t ∈ {0, 1}, we have

√
n(θn − θ∞)

d→ N (0,Σ) where Σ =



Var[Z|T=0]
(1−e) 0 0 0 0

0 Var[Z|T=1]
e 0 0 0

0 0
σ2Q−1

0

1−e 0 0

0 0 0
σ2Q−1

1

e 0
0 0 0 0 e(1− e)

 .

By Slutsky’s theorem,

√
n

(
1

E[Z]⊤γ(0)
α̂(1) −

Z̄⊤γ̂(1)

Z̄⊤γ̂(0)E[Z]⊤γ(0)
α̂(0)

)⊤

(θn − θ∞)
d→ N

(
0, α⊤

∞Σα∞
)
. (63)

We now compute the covariance matrix

α⊤
∞Σα∞(

E[Z]⊤γ(1)
E[Z]⊤γ(0)

)2 = (1− e)

∥∥∥∥ γ(1)

E[Z]⊤γ(1)
−

γ(0)

E[Z]⊤γ(0)

∥∥∥∥2
Var[Z|T=0]

+ e

∥∥∥∥ γ(1)

E[Z]⊤γ(1)
−

γ(0)

E[Z]⊤γ(0)

∥∥∥∥2
Var[Z|T=1]

(64)

+
σ2

1− e

∥∥∥∥ E[Z]
E[Z]⊤γ(0)

∥∥∥∥2
Q−1

0

+
σ2

e

∥∥∥∥ E[Z]
E[Z]⊤γ(1)

∥∥∥∥2
Q−1

1

+ e(1− e)

∥∥∥∥ γ(1)

E[Z]⊤γ(1)
−

γ(0)

E[Z]⊤γ(0)

∥∥∥∥2
∆∆⊤

, (65)
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where ∆ = E[Z | T = 1]− E[Z | T = 0]. This variance can be rewritten as follows. Summing the first two terms
and the last term in (65) leads to ∥∥∥∥ γ(1)

E[Z]⊤γ(1)
−

γ(0)

E[Z]⊤γ(0)

∥∥∥∥2
J

,

where J = (1− e)Var(Z | T = 0) + eVar(Z | T = 1) + e(1− e)∆∆⊤. Let us prove that J = Var(Z). Letting Zi
the components of Z for all 1 ≤ i ≤ d+ 1, by the law of total covariance, we have

Cov[Zi, Zj ] = E[Cov[Zi, Zj |T ]] + Cov[E[Zi|T ],E[Zj |T ]], (66)

with, since T ∈ {0, 1},

E[Cov[Zi, Zj |T ]] = eCov[Zi, Zj |T = 1] + (1− e) Cov[Zi, Zj |T = 0]. (67)

Besides, since E[Z] = (1− e)E[Z | T = 0] + eE[Z | T = 1], we can compute the deviations from the unconditional
mean:

E[Z | T = 0]− E[Z] = E[Z | T = 0]− ((1− e)E[Z | T = 0] + eE[Z | T = 1])

= (1− (1− e))E[Z | T = 0]− eE[Z | T = 1]

= −e (E[Z | T = 1]− E[Z | T = 0])

= −e∆.

and
E[Z | T = 1]− E[Z] = E[Z | T = 1]− ((1− e)E[Z | T = 0] + eE[Z | T = 1])

= (1− e) (E[Z | T = 1]− E[Z | T = 0])

= (1− e)∆.

Now, we can compute the second term in (66)

Cov[E[Zi|T ],E[Zj |T ]] = E[(E[Zi|T ]− E[Zi])(E[Zj |T ]− E[Zj ])] (68)
= e(E[Zi|T = 1]− E[Zi])(E[Zj |T = 1]− E[Zj ]) (69)
+ (1− e)(E[Zi|T = 0]− E[Zi])(E[Zj |T = 0]− E[Zj ]) (70)

= e(1− e)2∆i∆j + e2(1− e)∆i∆j (71)
= e(1− e)∆i∆j . (72)

Consequently, according to (66),

Cov[Zi, Zj ] = eCov[Zi, Zj |T = 1] + (1− e) Cov[Zi, Zj |T = 0] + e(1− e)∆i∆j , (73)

which leads to

Var[Z] = (1− e)Var(Z | T = 0) + eVar(Z | T = 1) + e(1− e)∆∆⊤. (74)

Similarly the last two remaining terms we have for t ∈ {0, 1}:∥∥∥∥ E[Z]
E[Z]⊤γ(t)

∥∥∥∥2
Q−1

t

=
1

(E[Z]⊤γ(t))2
∥E[Z]∥2Q−1

t

=
1

(E[Z]⊤γ(t))2
E[Z]⊤Q−1

t E[Z]

Note that we have E[Z] = eE[Z|T = 1] + (1− e)E[Z|T = 0] and that for t ∈ {0, 1},

E[Z|T = t]⊤Q−1
t E[Z|T = t] =

(
1
νt

)⊤(
1 + ν⊤t Σ

−1
t νt −ν⊤t Σ−1

t

−Σ−1
t νt Σ−1

t

)(
1
νt

)
= 1,
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and

E[Z|T = 1− t]⊤Q−1
t E[Z|T = 1− t] =

(
1

ν1−t

)⊤(
1 + ν⊤t Σ

−1
t νt −ν⊤t Σ−1

t

−Σ−1
t νt Σ−1

t

)(
1

ν1−t

)
= 1 + ∥ν1−t − νt∥2Σ−1

t
,

and

E[Z|T = t]⊤Q−1
t E[Z|T = 1− t] =

(
1
νt

)⊤(
1 + ν⊤t Σ

−1
t νt −µ⊤

t Σ
−1
t

−Σ−1
t νt Σ−1

t

)(
1

ν1−t

)
= 1.

Therefore, we have

E[Z]⊤Q−1
0 E[Z] = e2∥E[Z|T = 1]∥Q−1

0
+ (1− e)2∥E[Z|T = 0]∥Q−1

0
+ 2e(1− e)⟨E[Z|T = 0],E[Z|T = 1]⟩Q−1

0

= e2∥E[Z|T = 1]∥Q−1
0

+ (1− e)2 + 2e(1− e)⟨E[Z|T = 0],E[Z|T = 1]⟩Q−1
0

= (1− e)2 + e2
(
1 + ∥µ1 − µ0∥2Σ−1

0

)
+ 2e(1− e)

= 1 + e2∥ν1 − ν0∥2Σ−1
0
,

and similarly E[Z]⊤Q−1
1 E[Z] = 1 + (1− e)2∥ν1 − ν0∥2Σ−1

1

. Finally, noting that for all t ∈ {0, 1}

E[Z]⊤γ(t) = E
[
Y (t)

]
and Var [Z] =

0 · · · 0
... Var [X]
0

 ,

we have, letting Σ = Var [X]

VRR,G,OLS = τ2RR

∥∥∥∥∥ β(1)

E
[
Y (1)

] − β(0)

E
[
Y (0)

]∥∥∥∥∥
2

Σ

+ σ2

(
1 + (1− e)2∥ν1 − ν0∥2Σ−1

1

eE
[
Y (1)

]2 +
1 + e2∥ν1 − ν0∥2Σ−1

0

(1− e)E
[
Y (0)

]2
) .

Lemma 2 (Comparison of the asymptotic variances of τ̂RR,N and τ̂RR,G under a linear model). Grant
Assumption 1, Assumption 2 and Assumption 4. Recalling that VRR,G,OLS (resp. VRR,G,OLS) is the asymptotic
variance of the G-formula when oracle surface responses are used (resp. when they are estimated via OLS), we
have

VRR,N = τ2RR

(∥∥β(1)∥∥2Σ + σ2

eE
[
Y (1)

]2 +

∥∥β(0)∥∥2Σ + σ2

(1− e)E
[
Y (0)

]2
)
, (75)

VRR,G,OLS = τ2RR

∥∥∥∥∥ β(1)

E
[
Y (1)

] − β(0)

E
[
Y (0)

]∥∥∥∥∥
2

Σ

+ σ2

(
1

eE
[
Y (1)

]2 +
1

(1− e)E
[
Y (0)

]2
) (76)

= VRR,G + τ2RRσ
2

(
1

eE
[
Y (1)

]2 +
1

(1− e)E
[
Y (0)

]2
)
, (77)

and

VRR,N − VRR,G,OLS = τ2RR

e(1− e)

∥∥∥∥∥ β(1)

eE
[
Y (1)

] − β(0)

(1− e)E
[
Y (0)

]∥∥∥∥∥
2

Σ

 ≥ 0. (78)

Proof of Lemma 2.
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First equality The variance of Y (a) satisfies

Var[Y (a)] = Var[c(t) +X⊤β(t) + ε(t)]

= Var[X⊤β(t) + ε(t)] c(t) is a constant

= Var[X⊤β(t)] + Var[ε(t)] + 2Cov(X⊤β(t), ε(t)) Bienaymé’s identity

= ||β(t)||Σ + σ2, (by linear model)

since

Cov(X⊤β(t), ε(t)) = E[X⊤β(t)ε(t)]− E[X⊤β(t)]E[ε(t)]
= E[X⊤β(t)E[ε(t)|X]]− E[X⊤β(t)]E[E[ε(t)|X]] (by total expectation)
= 0, E[ε(t)|X] = 0,

and, using Eve’s law, Var[ε(t)] = E[Var[ε(t)|X]] + Var[E[ε(t)|X]] = σ2. Thus, VRR,N satisfies

VRR,N = τ2RR

(
Var(Y (1))

eE[Y (1)]2
+

Var(Y (0))

(1− e)E[Y (0)]2

)
(79)

= τ2RR

( ||β(1)||2Σ + σ2

eE[Y (1)]2
+

||β(0)||2Σ + σ2

(1− e)E[Y (0)]2

)
. (80)

Second and third equality According to Proposition 4 ,

VRR,G,OLS

τ2RR
=

∥∥∥∥∥ β(1)

E
[
Y (1)

] − β(0)

E
[
Y (0)

]∥∥∥∥∥
2

Σ

+ σ2

(
1 + (1− e)2∥ν1 − ν0∥2Σ−1

1

eE
[
Y (1)

]2 +
1 + e2∥ν1 − ν0∥2Σ−1

0

(1− e)E
[
Y (0)

]2
)

Since we are in a RCT setting, we have that ν1 = ν0 and Σ1 = Σ0 = Σ. Therefore

VRR,G,OLS

τ2RR
=

∥∥∥∥∥ β(1)

E
[
Y (1)

] − β(0)

E
[
Y (0)

]∥∥∥∥∥
2

Σ

+ σ2

(
1

eE
[
Y (1)

]2 +
1

(1− e)E
[
Y (0)

]2
)

The first term corresponds to the Oracle variance of the G-formula. Indeed, for all t ∈ {0, 1},

Var[µ(t)(X)] = Var[E[Y (t)|X]]

= Var[E[c(t)|X] + E[X⊤β(t)|X] + E[ε(t)|X]]

= Var[c(t) + E[X⊤β(t)|X]]

= Var[E[X⊤β(t)|X]]

= Var[X⊤β(t)]

= ∥β(t)∥2Σ.

Besides, the covariance between µ1(X) and µ0(X) satisfies

Cov(µ(1)(X), µ(0)(X)) =E[µ(1)(X)µ(0)(X)]− E[Y (0)]E[Y (1)]

=E[(c(1) +X⊤β(1))(c(0) +X⊤β(0))]− E[Y (0)]E[Y (1)]

=E[c(1)c(0)] + E[c(1)X⊤β(0)] + E[c(0)X⊤β(1)]

+ E[X⊤β(0)X
⊤β(1)]− E[Y (0)]E[Y (1)]

=E[X⊤β(0)X
⊤β(1)]

=E

∑
j

Xjβ(0),j
∑
k

Xkβ(1),k


=
∑
j

∑
k

β(0),jβ(1),kE[XkXj ]

=⟨β(0), β(1)⟩Σ.
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Therefore,

VRR,G = τ2RR Var

(
µ1(X)

E
[
Y (1)

] − µ0(X)

E
[
Y (0)

]) = τ2RR

(
Var(µ1(X))

E
[
Y (1)

]2 +
Var(µ0(X))

E
[
Y (0)

]2 − 2
Cov(µ0(X), µ1(X))

E
[
Y (0)

]
E
[
Y (1)

] )

= τ2RR

∥∥∥∥∥ β(1)

E
[
Y (1)

]∥∥∥∥∥
2

Σ

+

∥∥∥∥∥ β(0)

E
[
Y (0)

]∥∥∥∥∥
2

Σ

− 2
⟨β(0), β(1)⟩Σ

E
[
Y (0)

]
E
[
Y (1)

]


= τ2RR

∥∥∥∥∥ β(1)

E
[
Y (1)

] − β(0)

E
[
Y (0)

]∥∥∥∥∥
2

Σ

.

Last inequality A simple computation leads to

VRR,N − VRR,G

τ2RR
=

∥∥β(1)∥∥2Σ + σ2

eE
[
Y (1)

]2 +

∥∥β(0)∥∥2Σ + σ2

(1− e)E
[
Y (0)

]2
−

∥∥∥∥∥ β(1)

E
[
Y (1)

] − β(0)

E
[
Y (0)

]∥∥∥∥∥
2

Σ

+ σ2

(
1

eE
[
Y (1)

]2 +
1

(1− e)E
[
Y (0)

]2
)

=

(
1− e

e

) ∥∥β(1)∥∥2Σ
E
[
Y (1)

]2 +

(
e

1− e

) ∥∥β(0)∥∥2Σ
E
[
Y (0)

]2 +
2⟨β(1), β(0)⟩Σ

E
[
Y (1)

]
E
[
Y (0)

]
= e(1− e)

∥∥∥∥∥ β(1)

eE
[
Y (1)

] − β(0)

(1− e)E
[
Y (0)

]∥∥∥∥∥
2

Σ

.

6.3.4 Risk Ratio one-step estimator

Proof of Definition 4. We will use Kennedy (2022, 2015) notation in this proof. If you are not familiar on how to
compute an influence function, note that it is very similar to compute the derivative of a function. We define our
estimand quantity

ψ =
E [E [Y |T = 1, X]]

E [E [Y |T = 0, X]]
=
ψ1

ψ0
.

We can now compute the influence function φ of ψ.

φ = IF (ψ) = IF
(
ψ1

ψ0

)
=

IF (ψ1)ψ0 − IF (ψ0)ψ1

ψ2
0

=
IF (ψ1)

ψ0
− ψ

IF (ψ0)

ψ0
.

According to Example 2 in Kennedy (2022), we have

IF (ψ1) = µ1(X) + T
Y − µ1(X)

e(X)
− ψ1

and IF (ψ0) = µ0(X) + (1− T )
Y − µ0(X)

1− e(X)
− ψ0.
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Therefore,

φ =
IF (ψ1)

ψ0
− ψ

IF (ψ0)

ψ0

=
µ1(X) + T Y−µ1(X)

e(X) − ψ1

ψ0
− ψ

µ0(X) + (1− T )Y−µ0(X)
1−e(X) − ψ0

ψ0

=
µ1(X) + T Y−µ1(X)

e(X)

ψ0
− ψ − ψ

µ0(X) + (1− T )Y−µ0(X)
1−e(X)

ψ0
− 1


=
µ1(X) + T Y−µ1(X)

e(X)

ψ0
− ψ

µ0(X) + (1− T )Y−µ0(X)
1−e(X)

ψ0
.

As referenced in Kennedy (2022) regarding the semiparametric von Mises expansion, consider the functional
ψ : P → R, where P represents the true data distribution and P̂ its estimation. The expansion is formulated as:

ψ(P̂ )− ψ(P ) =

∫
φ(z; P̂ )d(P̂ − P )(z) +R2(P̂ , P ), (81)

for all distributions P̂ and P . The influence function φ(z;P ), associated with ψ, is a function with zero mean
and finite variance as defined by Tsiatis (2006)∫

φ(z;P )dP (z) = 0 and
∫
φ(z;P )2dP (z) <∞, (82)

and R2(P̂ , P ) denotes a second-order remainder term. According to the expansion in (81), most plug-in estimators
ψ(P̂ ) are biased to the first order, evidenced by:

ψ(P ) = ψ(P̂ ) +

∫
φ(z; P̂ )dP (z) +R2(P̂ , P ),

since
∫
φ(z; P̂ )dP̂ (z) = 0. Therefore, a first-order approximation of ψ(P ) is given by ψ(P̂ ) +

∫
φ(z; P̂ )dP (z)

which can be estimated via

τ̂RR-OS = ψ̂ +
1

n

n∑
i=1

φ(Zi)

= ψ̂ +
1

n

n∑
i=1

µ1(Xi) + Ti
Yi−µ1(Xi)
e(Xi)

ψ̂0

− ψ̂
µ0(Xi) + (1− Ti)

Yi−µ0(Xi)
1−e(Xi)

ψ̂0

= ψ̂

1−
1
n

∑n
i=1 µ0(Xi) + (1− Ti)

Yi−µ0(Xi)
1−e(Xi)

ψ̂0

+

1
n

∑n
i=1 µ1(Xi) + Ti

Yi−µ1(Xi)
e(Xi)

ψ̂0

=

∑n
i=1 µ̂1(Xi)∑n
i=1 µ̂0(Xi)

1−
∑n
i=1 µ̂0(Xi) +

(1−Ti)(Yi−µ̂0(Xi))
1−ê(Xi)∑n

i=1 µ̂0(Xi)

+

∑n
i=1 µ̂1(Xi) +

Ti(Yi−µ̂1(Xi))
ê(Xi)∑n

i=1 µ̂0(Xi)
.

Proof of Proposition 5.
Asymptotic bias and variance of the cross-fitted One-step estimator Recall that

ψ(P ) =
EP [EP [Y | X,T = 1]]

EP [EP [Y | X,T = 0]]
=
ψ1

ψ0
(83)

ψ(P̂ ) =

∑n
i=1 µ̂1(Xi)∑n
i=1 µ̂0(Xi)

=
ψ̂1

ψ̂0

(84)

φ(Z; P̂ ) =
µ̂1(Xi) + Ti

Yi−µ̂1(Xi)
ê(Xi)

ψ̂0

− ψ̂
µ̂0(Xi) + (1− Ti)

Yi−µ̂0(Xi)
1−ê(Xi)

ψ̂0

(85)
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where P represents the true underlying data distribution and P̂ the distribution where oracle quantities have
been replaced by plug-in estimates. We express ψ(P ) as follows:

ψ(P ) = ψ(P̂ ) +

∫
φ(z; P̂ )dP (z) +R2(P̂ , P ),

where R2 encapsulates higher order remainder terms.

To elucidate, we rearrange to find ψ(P̂ )− ψ(P ):

ψ(P̂ )− ψ(P ) = R2(P, P̂ )−
∫
φ(z; P̂ )dP (z)

=
1

n

n∑
i=1

φ(Zi;P )−
1

n

n∑
i=1

φ(Zi; P̂ )

+
1

n

n∑
i=1

(
φ(Zi; P̂ )− φ(Zi;P )

)
−
∫ (

φ(z; P̂ )− φ(z;P )
)
dP (z)

+R2(P, P̂ ).

Recalling that τ̂RR-OS = ψ(P̂ ) + 1
n

∑n
i=1 φ(Zi; P̂ ) and τRR = ψ(P ), we have

τ̂RR-OS − τRR = ψ(P̂ ) +
1

n

n∑
i=1

φ(Zi; P̂ )− ψ(P ) (86)

=
1

n

n∑
i=1

φ(Zi;P ) (87)

+
1

n

n∑
i=1

(
φ(Zi; P̂ )− φ(Zi;P )

)
−
∫ (

φ(z; P̂ )− φ(z;P )
)
dP (z) (88)

+R2(P, P̂ ). (89)

The first term is a sample average of centered i.i.d. terms since, by definition (82),
∫
φ(z;P )dP (z) = 0. According

to the central limit theorem, it converges to a normally distributed random variable with variance Var(φ(Z))/n.

Following the work of Vaart (1998), we consider the second term in (89), that is

1

n

n∑
i=1

(
φ(Zi; P̂ )− φ(Zi;P )

)
−
∫ (

φ(z; P̂ )− φ(z;P )
)
dP (z).

Since our estimator is built on a cross-fitting strategy with K folds I1, . . . IK , containing respectively n1, . . . , nK
observations, the above quantity may be written as

1

n

K∑
k=1

∑
i∈Ik

(
φ(Zi; P̂

−k)− φ(Zi;P )
)
−
∫ (

φ(z; P̂ )− φ(z;P )
)
dP (z),

where P̂−k corresponds to a data distribution where oracle quantity are replaced by plug-in estimates built on all
observations except those in Ik. We denote this set of observations as I−k. We let φ̂−k(Z) = φ(Z; P̂−k) and

Uk =
(
P(k)
n − P

) (
φ̂−k(Z)− φ(Z)

)
, (90)

where P(k)
n is the empirical measure over Ik. The quantity of interest can thus be written as

1

n

K∑
k=1

∑
i∈Ik

(
φ−k(Zi)− φ(Zi;P )

)
−
∫ (

φ(z; P̂ )− φ(z;P )
)
dP (z) =

1

n

K∑
k=1

nkUk. (91)
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The expectation and variance of Uk satisfy

E [Uk | I−k] = E
[(

P(k)
n − P

)
(φ̂−k − φ) | I−k

]
(92)

= E
[
P(k)
n (φ̂−k − φ) | I−k

]
− E

[
P (φ̂−k − φ) | I−k

]
(93)

= E
[
φ̂−k(Z)− φ(Z)

]
− E

[
φ̂−k(Z)− φ(Z)

]
(94)

= 0, (95)

and

Var [Uk | I−k] = Var
[(

P(k)
n − P

)
(φ̂−k − φ) | I−k

]
(96)

= Var
[
P(k)
n (φ̂−k − φ)− P (φ̂−k − φ) | I−k

]
(97)

= Var

[
1

nk

nk∑
i=1

(
φ̂−k(Zi)− φ(Zi)

)
| I−k

]
(98)

=
1

nk
Var

[
φ̂−k(Z)− φ(Z) | I−k

]
(99)

≤ 1

nk
E
[
(φ̂−k(Z)− φ(Z))2 | I−k

]
. (100)

Let a > 0. Applying Chebyshev’s inequality leads to

P

(
|Uk − E[Uk | I−k]|√

Var[Uk | I−k]
≥ a | I−k

)
≤ 1

a2
(101)

⇐⇒P

(
|Uk|√

Var[Uk | I−k]
≥ a | I−k

)
≤ 1

a2
. (102)

Thus,

P

(
|Uk|

√
nk√

E [(φ̂−k(Z)− φ(Z))2 | I−k]
≥ a | I−k

)
≤ P

(
|Uk|√

Var[Uk | I−k]
≥ a | I−k

)
≤ 1

a2
, (103)

which leads to

P (|Uk|
√
nk ≥ a | I−k) ≤

E
[
(φ̂−k(Z)− φ(Z))2 | I−k

]
a2

. (104)

Finally, taking the expectation on both sides leads to

P (|Uk|
√
nk ≥ a) ≤

E
[
(φ̂−k(Z)− φ(Z))2

]
a2

. (105)

According to (91), the quantity of interest takes the form

1

n

K∑
k=1

nkUk =

K∑
k=1

nk
n
Uk. (106)

Hence,

P
(√

n
nk
n
|Uk| ≤ a

√
nk√
n

)
≥ 1−

E
[
(φ̂−k(Z)− φ(Z))2

]
a2

. (107)

Therefore,

P

(
√
n

K∑
k=1

nk
n
|Uk| ≤ a

K∑
k=1

√
nk√
n

)
≥ 1−

K∑
k=1

E
[
(φ̂−k(Z)− φ(Z))2

]
a2

(108)

⇒ P

(
√
n

K∑
k=1

nk
n
|Uk| ≤ aK

)
≥ 1−

K∑
k=1

E
[
(φ̂−k(Z)− φ(Z))2

]
a2

, (109)
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which proves that
∑K
k=1

nk

n Uk = oP (1/
√
n) as K is fixed and φ−k is L2 consistent.

Regarding the last term, note that

R2(P, P̂ ) = ψ(P̂ )− ψ(P ) +

∫
φ(z; P̂ )dP (z) (110)

= ψ(P̂ )− ψ(P ) + E[φ(Z; P̂ )] (111)

= ψ(P̂ )− ψ(P ) + E

 µ̂1(X) + T Y−µ̂1(X)
ê(X)

ψ̂0

− ψ̂
µ̂0(X) + (1− T )Y−µ̂0(X)

1−ê(X)

ψ̂0

 (112)

= ψ(P̂ )− ψ(P ) +
E
[
µ̂1(X) + T Y−µ̂1(X)

ê(X)

]
ψ̂0

− ψ̂
E
[
µ̂0(X) + (1− T )Y−µ̂0(X)

1−ê(X)

]
ψ̂0

(113)

= ψ(P̂ )− ψ(P ) +
E
[
µ̂1(X)− µ1(X) + T Y−µ̂1(X)

ê(X)

]
ψ̂0

+
ψ1

ψ̂0

(114)

− ψ̂
E
[
µ̂0(X)− µ0(X) + (1− T )Y−µ̂0(X)

1−ê(X)

]
ψ̂0

− ψ̂
ψ0

ψ̂0

. (115)

Note that

E
[
µ̂1(X)− µ1(X) + T

Y − µ̂1(X)

ê(X)

]
= E

[
1

ê(X)
(µ1(X)− µ̂1(X))(ê(X)− e(X))

]
(116)

Positivity ≤ 1

η
E [(µ1(X)− µ̂1(X))(ê(X)− e(X))] (117)

Cauchy-Schwarz ≤ 1

η
E
[
(ê(X)− e(X))

2
]1/2

E
[
(µ̂1(X)− µ1(X))

2
]1/2

(118)

= op

(
1√
n

)
. (119)

Similarly,

E
[
µ̂1(X)− µ1(X) + T

Y − µ̂1(X)

ê(X)

]
= op

(
1√
n

)
. (120)

For the last term in (115), since ψ = ψ1/ψ0 and ψ̂ = ψ̂1/ψ̂0,

ψ̂ − ψ +
ψ1

ψ̂0

− ψ̂
ψ0

ψ̂0

= ψ1

(
1

ψ̂0

− 1

ψ0

)
+ ψ̂

(
1− ψ0

ψ̂0

)
= ψ1

ψ0 − ψ̂0

ψ0ψ̂0

+ ψ̂

(
ψ̂0 − ψ0

ψ̂0

)

=

(
ψ̂0 − ψ0

ψ̂0

)(
ψ̂ − ψ

)
=

(
ψ̂0 − ψ0

ψ̂0

)((
1

ψ̂0

− 1

ψ0

)
ψ̂1 +

1

ψ0

(
ψ̂1 − ψ1

))
=

1

ψ0ψ̂0

(
(ψ̂0 − ψ0)(ψ̂1 − ψ1)− ψ̂(ψ̂0 − ψ0)(ψ̂0 − ψ0)

)
.

By assumption, we have

(ψ̂0 − ψ0)(ψ̂1 − ψ1) = E [µ̂0(X)− µ0(X)]E [µ̂1(X)− µ1(X)] (121)

≤ (E
[
(µ̂0(X)− µ0(X))2

]
)1/2(E

[
(µ̂1(X)− µ1(X))2

]
)1/2 (122)

= op

(
1√
n

)
(123)
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and

(ψ̂0 − ψ0)(ψ̂0 − ψ0) = (E [µ̂0(X)]− E [µ0(X)])2

= op

(
1√
n

)
.

By assumption, E
[
(µ̂0(X)− µ0(X))2

]
tends to zero. Thus, ψ̂0 = E[µ̂0] tends to ψ0 = E[µ0(X)]. Thus,

ψ̂ − ψ +
ψ1

ψ̂0

− ψ̂
ψ0

ψ̂0

= op

(
1√
n

)
,

which implies that R2(P, P̂ ) = op
(
n−1/2

)
. Finally,

√
n (τ̂RR-OS − τRR) =

1√
n

n∑
i=1

φ(Zi;P ) + op

(
1√
n

)
and thus

√
n (τ̂RR-OS − τRR)

d→ N (0,Var(φ)) ,

where

Var(φ) = Var

µ1(X) + T Y−µ1(X)
e(X)

ψ0
− ψ

µ0(X) + (1− T )Y−µ0(X)
1−e(X)

ψ0

 (124)

= ψ2 Var

µ1(X) + T Y−µ1(X)
e(X)

ψ1

µ0(X) + (1− T )Y−µ0(X)
1−e(X)

ψ0

 (125)

= τ2RR Var

(
g1(Z)

E
[
Y (1)

] − g0(Z)

E
[
Y (0)

]) . (126)

Using Bienaymé’s identity, we get

Var

(
g1(Z)

E
[
Y (1)

] − g0(Z)

E
[
Y (0)

]) = Var

(
µ1(X)

E
[
Y (1)

] − µ0(X)

E
[
Y (0)

])+Var

(
T (Y − µ1(X))

E
[
Y (1)

]
e(X)

− (1− T )(Y − µ0(X))

E
[
Y (0)

]
(1− e(X))

)
(127)

+ 2Cov

(
µ1(X)

E
[
Y (1)

] − µ0(X)

E
[
Y (0)

] ; T (Y − µ1(X))

E
[
Y (1)

]
e(X)

− (1− T )(Y − µ0(X))

E
[
Y (0)

]
(1− e(X))

)
. (128)

The second term can be rewritten as

Var

(
T (Y − µ1(X))

E
[
Y (1)

]
e(X)

− (1− T )(Y − µ0(X))

E
[
Y (0)

]
(1− e(X))

)
(129)

= Var

(
T (Y − µ1(X))

E
[
Y (1)

]
e(X)

)
+Var

(
(1− T )(Y − µ0(X))

E
[
Y (0)

]
(1− e(X))

)
− 2Cov

(
T (Y − µ1(X))

E
[
Y (1)

]
e(X)

,
(1− T )(Y − µ0(X))

E
[
Y (0)

]
(1− e(X))

)
,

(130)

with

Var

(
T (Y − µ1(X))

E
[
Y (1)

]
e(X)

)
= E

(T (Y − µ1(X))

E
[
Y (1)

]
e(X)

)2
− E

[
T (Y − µ1(X))

E
[
Y (1)

]
e(X)

]2
. (131)
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For the first term in (131),

E

(T Y − µ1(X)

e(X)E
[
Y (1)

])2


= E

(T Y (1) − µ1(X)

e(X)E
[
Y (1)

] )2
 Consistency

= E

E
(T Y (1) − µ1(X)

e(X)E
[
Y (1)

] )2

| X

 Total expectation

= E

E
T (Y (1) − µ1(X)

e(X)E
[
Y (1)

] )2

| X

 T is binary

= E

E
1{T=1}

(
Y (1) − µ1(X)

e(X)E
[
Y (1)

] )2

| X

 T written as an indicator

= E

[
1

e(X)2E
[
Y (1)

]2E [1{T=1}

(
Y (1) − µ1(X)

)2
| X
]]

e(X) is a function of X

= E

[
Var

(
Y (1)|X

)
e(X)2E

[
Y (1)

]2E [1{T=1} | X
]]

Uncounf. & µ1(.) is func. of X

= E

[
Var

(
Y (1)|X

)
e(X)2E

[
Y (1)

]2 e(X)

]
Definition of e(X)

= E

[
Var

(
Y (1)|X

)
e(X)E

[
Y (1)

]2
]
.

For the second term in (131),

E

[
T (Y − µ1(X))

E
[
Y (1)

]
e(X)

]

= E

[
T (Y (1) − µ1(X))

E
[
Y (1)

]
e(X)

]
Consistency

= E

[
E

[
T
Y (1) − µ1(X)

e(X)E
[
Y (1)

] | X

]]
Total expectation

= E

[
1

e(X)E
[
Y (1)

]E [T (Y (1) − µ1(X)) | X
]]

e(X) is a function of X

= E

[
e(X)

e(X)E
[
Y (1)

] (µ1(X)− µ1(X))

]
Uncounf. & µ1(.) is func. of X

= 0.

Therefore

Var

(
T (Y − µ1(X))

E
[
Y (1)

]
e(X)

)
= E

[
Var

(
Y (1)|X

)
e(X)E

[
Y (1)

]2
]
,

and similarly

Var

(
(1− T )(Y − µ0(X))

E
[
Y (0)

]
(1− e(X))

)
= E

[
Var

(
Y (0)|X

)
(1− e(X))E

[
Y (0)

]2
]
.
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Besides,

Cov

(
T (Y − µ1(X))

E
[
Y (1)

]
e(X)

,
(1− T )(Y − µ0(X))

E
[
Y (0)

]
(1− e(X))

)
= E

[
T (Y − µ1(X))

E
[
Y (1)

]
e(X)

(1− T )(Y − µ0(X))

E
[
Y (0)

]
(1− e(X))

]

− E

[
T (Y − µ1(X))

E
[
Y (1)

]
e(X)

]
E

[
(1− T )(Y − µ0(X))

E
[
Y (0)

]
(1− e(X))

]
= 0.

Gathering all these results into (130), we obtain

Var

(
T (Y − µ1(X))

E
[
Y (1)

]
e(X)

− (1− T )(Y − µ0(X))

E
[
Y (0)

]
(1− e(X))

)
= E

[
Var

(
Y (1)|X

)
e(X)E

[
Y (1)

]2
]
+ E

[
Var

(
Y (0)|X

)
(1− e(X))E

[
Y (0)

]2
]
.

In order to rewrite the last term in (128), note that

Cov

(
µ1(X),

T (Y − µ1(X))

e(X)

)
= E

[
µ1(X)

T (Y − µ1(X))

e(X)

]
− E [µ1(X)]E

[
T (Y − µ1(X))

e(X)

]
= E

[
µ1(X)

T (Y − µ1(X))

e(X)

]
= E

[
µ1(X)

e(X)
E
[
T (Y (1) − µ1(X))|X

]]
= E

[
µ1(X)

e(X)
E
[
T (Y (1) − µ1(X))

e(X)
|X
]]

= E
[
µ1(X)e(X)

e(X)
(µ1(X))− µ1(X))

]
= 0.

Similar calculations leads to

Cov

(
µ1(X)

E
[
Y (1)

] − µ0(X)

E
[
Y (0)

] ; T (Y − µ1(X))

E
[
Y (1)

]
e(X)

− (1− T )(Y − µ0(X))

E
[
Y (0)

]
(1− e(X))

)
= 0.

Finally

VRR,OS = τ2RR

(
Var

(
µ1(X)

E
[
Y (1)

] − µ0(X)

E
[
Y (0)

])+ E

[
Var

(
Y (1)|X

)
e(X)E

[
Y (1)

]2
]
+ E

[
Var

(
Y (0)|X

)
(1− e(X))E

[
Y (0)

]2
])

.

An estimator V̂RR,OS can be derived as follows:

V̂RR,OS =
τ̂2RR,OS,n

n

n∑
i=1

(
∆i −

1

n

n∑
i=1

∆i

)2

(132)

where

∆i =
Γ̂i(1)

Ŝ(1)
− Γ̂i(0)

Ŝ(0)

with the intermediate for t ∈ {0, 1} quantities defined as:

Γ̂i(t) = µ̂t(Xi) + 1Ti=t
Yi − µ̂t(Xi)

êt(Xi)
and Ŝ(t) =

1

n

n∑
j=1

Γ̂j(t)
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6.3.5 Risk Ratio Augmented Inverse Propensity Weighting

Proof of Proposition 6. We use the derivations established in the proof of Proposition 5. Indeed, we showed in
Section 6.3.4 that the influence function φ of ψ = E[E[Y |T=1,X]]

E[E[Y |T=0,X]] can be written:

φ(Z;P ) =
µ1(X) + T Y−µ1(X)

e(X)

ψ0
− ψ

µ0(X) + (1− T )Y−µ0(X)
1−e(X)

ψ0
.

Using Equation (81), and knowing that
∫
φ(z; P̂ )dP̂ (z) = 0, we have:

ψ(P̂ )− ψ(P ) =

∫
φ(z; P̂ )d(P̂ − P )(z) +R2(P̂ , P )

= R2(P, P̂ )−
∫
φ(z; P̂ )dP (z)

=
1

n

n∑
i=1

φ(Zi;P )−
1

n

n∑
i=1

φ(zi; P̂ )

+
1

n

n∑
i=1

(
φ(Zi; P̂ )− φ(Zi;P )

)
−
∫ (

φ(z; P̂ )− φ(z;P )
)
dP (z)

+R2(P, P̂ ).

As outlined in A.Schuler (2024), in the estimating equation approach, we assume that the efficient influence
function for any given distribution depends solely on the target parameter ψ and a set of nuisance parameters η.
Therefore, instead of denoting the efficient influence function as φ(z;P ), we can express it as φ(Z;ψ, η). If the
influence function can be represented in this form, we proceed by first estimating η̂ = (ê, µ̂1, µ̂0) with crossfitting.
For any fixed value η̂, we find a value ψ̂ such that Pnφψ̂,η̂ = 0, that is

1

n

n∑
i=1

µ̂1(Xi) + Ti
Yi−µ̂1(Xi)
ê(Xi)

ψ̂0

− ψ̂
µ̂0(Xi) + (1− Ti)

Yi−µ̂0(Xi)
1−ê(Xi)

ψ̂0

= 0,

which implies

ψ̂ =

∑n
i=1 µ̂1(Xi) + Ti

Yi−µ̂1(Xi)
ê(Xi)∑n

i=1 µ̂0(Xi) + (1− Ti)
Yi−µ̂0(Xi)
1−ê(Xi)

.

Using this ψ̂ we have that

ψ̂ − ψ =
1

n

n∑
i=1

φ(Zi;P )−
1

n

n∑
i=1

φ(Zi; P̂ ) +R2(P, P̂ )

+
1

n

n∑
i=1

(
φ(Zi; P̂ )− φ(Zi;P )

)
−
∫ (

φ(z; P̂ )− φ(z;P )
)
dP (z)

=
1

n

n∑
i=1

φ(Zi;P ) +R2(P, P̂ )

+
1

n

n∑
i=1

(
φ(Zi; P̂ )− φ(Zi;P )

)
−
∫ (

φ(z; P̂ )− φ(z;P )
)
dP (z).

As detailed in Section 6.3.4, we have R2(P, P̂ ) = op
(
n−1/2

)
and

1

n

n∑
i=1

(
φ(Zi; P̂ )− φ(Zi;P )

)
−
∫ (

φ(z; P̂ )− φ(z;P )
)
dP (z) = oP (1/

√
n).
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Therefore,

√
n (τ̂RR-AIPW − τRR) =

1√
n

n∑
i=1

φ(zi;P ) + op

(
1√
n

)
,

which leads to
√
n (τ̂RR-AIPW − τRR)

d→ N (0,Var(φ)) ,

where Var(φ) = VRR,OS

Hereafter, we propose another proof of Proposition 6 which does not use the influence function theory

Proof of Proposition 6.
Asymptotic bias and variance of the crossfitted Ratio AIPW estimator In this alternative proof, we
further assume that Var[Y |X] ≤ σ2 for some σ > 0. Recall that we want to analyze

√
n (τ̂RR,AIPW − τRR). Letting

τ⋆RR,AIPW =

∑n
i=1 µ1(Xi) +

Ti(Yi−µ1(Xi))
e(Xi)∑n

i=1 µ0(Xi) +
(1−Ti)(Yi−µ0(Xi))

1−e(Xi)

:=
τ⋆RR,AIPW, 1

τ⋆RR,AIPW, 0
(133)

be the oracle version of τ̂RR,AIPW where the propensity score and both response surfaces are assumed to be known,
we can rewrite

τ̂RR,AIPW − τRR = τ̂RR,AIPW − τ⋆RR,AIPW + τ⋆RR,AIPW − τRR. (134)

Regarding the first term in (134), we have∣∣τ̂RR,AIPW − τ⋆RR,AIPW

∣∣ (135)

=

∣∣∣∣ τ̂RR,AIPW, 1

τ̂RR,AIPW, 0
−
τ⋆RR,AIPW, 1

τ⋆RR,AIPW, 0

∣∣∣∣ (136)

=
∣∣∣((τ̂RR,AIPW, 0)

−1 −
(
τ⋆RR,AIPW, 0

)−1
)
τ̂RR,AIPW, 1 (137)

+
(
τ⋆RR,AIPW, 0

)−1 (
τ̂RR,AIPW, 1 − τ⋆RR,AIPW, 1

)∣∣∣ (138)

≤
∣∣∣((τ̂RR,AIPW, 0)

−1 −
(
τ⋆RR,AIPW, 0

)−1
)
τ̂RR,AIPW, 1

∣∣∣ (139)

+
∣∣∣(τ⋆RR,AIPW, 0

)−1 (
τ̂RR,AIPW, 1 − τ⋆RR,AIPW, 1

)∣∣∣ . (140)

We now show that∣∣τ̂RR,AIPW, 1 − τ⋆RR,AIPW, 1

∣∣ = op

(
1√
n

)
and

∣∣τ̂RR,AIPW, 0 − τ⋆RR,AIPW, 0

∣∣ = op

(
1√
n

)
.

The following decomposition holds

√
n
∣∣τ̂RR,AIPW, 1 − τ⋆RR,AIPW, 1

∣∣ = 1√
n

∑
i∈Ik

(
µ̂
I−k

1 (Xi) + Ti
Yi − µ̂

I−k

1 (Xi)

ê (Xi)
− µ1 (Xi)− Ti

Yi − µ1 (Xi)

e (Xi)

)

Further denoted Akn =
1√
n

∑
i∈Ik

((
µ̂
I−k

1 (Xi)− µ1 (Xi)
)(

1− Ti
e (Xi)

))
Further denoted Bkn +

1√
n

∑
i∈Ik

Ti

(
(Yi − µ1 (Xi))

(
1

ê (Xi)
− 1

e (Xi)

))
Further denoted Ckn − 1√

n

∑
i∈Ik

Ti

((
µ̂
I−k

1 (Xi)− µ1 (Xi)
)( 1

ê (Xi)
− 1

e (Xi)

))
.
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In the following, we prove that the first two terms tend to zero in L2.

Regarding Akn One can show that the expectation of Akn/
√
n is null:

E
[
Akn√
n
| I−k

]
=

1

n

∑
i∈Ik

E
[(
µ̂
I−k

1 (Xi)− µ1 (Xi)
)(

1− Ti
e (Xi)

)
| I−k

]
=

|Ik|
n

E
[(
µ̂
I−k

1 (X)− µ1 (X)
)(

1− T

e (X)

)
| I−k

]
i.i.d.

=
|Ik|
n

E
[
E
[(
µ̂
I−k

1 (X)− µ1 (X)
)(

1− T

e (X)

)
| X, I−k

]
| I−k

]
=

|Ik|
n

E
[(
µ̂
I−k

1 (X)− µ1 (X)
)
E
[(

1− T

e (X)

)
| X, I−k

]
| I−k

]
=

|Ik|
n

E
[(
µ̂
I−k

1 (X)− µ1 (X)
)(

1− e (X)

e (X)

)
| I−k

]
= 0.

We will make use of this results in several calculations. Now,

E

[(
Akn√
n

)2

| I−k

]
= Var

[
1

n

∑
i∈Ik

((
µ̂
I−k

1 (Xi)− µ1 (Xi)
)(

1− Ti
e (Xi)

))
| I−k

]

=
1

n2
Var

[∑
i∈Ik

((
µ̂
I−k

1 (Xi)− µ1 (Xi)
)(

1− Ti
e (Xi)

))
| I−k

]

=
1

n2

∑
i∈Ik

Var

[(
µ̂
I−k

1 (Xi)− µ1 (Xi)
)(

1− Ti
e (Xi)

)
| I−k

]
iid

=
|Ik|
n2

E

[((
µ̂
I−k

1 (X)− µ1 (X)
)(

1− T

e (X)

))2

| I−k

]

=
|Ik|
n2

E

[
E

[((
µ̂
I−k

1 (X)− µ1 (X)
)(

1− T

e (X)

))2

|X, I−k

]
| I−k

]

=
|Ik|
n2

E

[(
µ̂
I−k

1 (X)− µ1 (X)
)2

E

[(
1− T

e (X)

)2

|X, I−k

]
| I−k

]

=
|Ik|
n2

E

[(
µ̂
I−k

1 (X)− µ1 (X)
)2 1

e (X)
2E
[
(e (X)− T )

2 |X, I−k
]
| I−k

]

=
|Ik|
n2

E

[(
µ̂
I−k

1 (X)− µ1 (X)
)2 e (X) (1− e (X))

e (X)
2 | I−k

]

=
|Ik|
n2

E
[(
µ̂
I−k

1 (X)− µ1 (X)
)2( 1

e (X)
− 1

)
| I−k

]
≤ |Ik|
ηn2

E
[(
µ̂
I−k

1 (X)− µ1 (X)
)2

| I−k
]

Overlap.

Taking the expectation, we obtain

E

[(
Akn√
n

)2
]
≤ |Ik|
ηn2

E
[(
µ̂
I−k

1 (X)− µ1 (X)
)2]

, (141)

that is

E
[(
Akn
)2] ≤ 1

η
E
[(
µ̂
I−k

1 (X)− µ1 (X)
)2]

. (142)
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Thus Akn converges to zero in L2 and thus in probability.

Regarding Bkn The second term Bkn can also be controlled using similar arguments. By assumption,

η

2
≤ ê(X) ≤ 1− η

2
.

Thus,

1

ê(X)
− 1

e(X)
=
e(X)− ê(X)

ê(X)e(X)
≤ 2

(
e(X)− ê(X)

η2

)
.

Derivations are very close to the ones for the first term, noting that,

E

[
E

[
1

n

∑
i∈Ik

Ti

(
(Yi − µ1 (Xi))

(
1

êI−k (Xi)
− 1

e (Xi)

))
| Xi, I−k

]
| I−k

]
= 0,

so that,

E

[(
Bkn√
n

)2

| I−k

]
= Var

[
1

n

∑
i∈Ik

Ti (Yi − µ1 (Xi))

(
1

êI−k (Xi)
− 1

e (Xi)

)
| I−k

]

=
1

n2

∑
i∈Ik

Var

[
Ti (Yi − µ1 (Xi))

(
1

êI−k (Xi)
− 1

e (Xi)

)
| I−k

]
iid

=
|Ik|
n2

E

[
T (Y − µ1 (X))

2

(
1

êI−k (X)
− 1

e (X)

)2

| I−k

]

≤ 4|Ik|
η4n2

E
[
T (Y − µ1 (X))

2 (
êI−k (X)− e (X)

)2 | I−k
]

≤ 4|Ik|
η4n2

E
[
(Y − µ1 (X))

2 (
êI−k (X)− e (X)

)2 | I−k
]

Sicne T ≤ 1

≤ 4|Ik|
η4n2

E
[
E
[
(Y − µ1 (X))

2 (
êI−k (X)− e (X)

)2 |X, I−k] | I−k]
≤ 4|Ik|
η4n2

E
[
E
[
(Y − µ1 (X))

2 |X, I−k
] (
êI−k (X)− e (X)

)2 | I−k
]

≤ 4|Ik|
η4n2

E
[
Var [Y |X]

(
êI−k (X)− e (X)

)2 | I−k
]

≤ 4Var [Y |X] |Ik|
η4n2

E
[(
êI−k (X)− e (X)

)2 | I−k
]
.

Taking the expectation on both sides, since Var [Y |X] ≤ σ2, we get

E

[(
Bkn√
n

)2
]
≤ 4σ2|Ik|

η4n2
E
[(
êI−k (X)− e (X)

)2 | I−k
]
, (143)

which leads to

E
[(
Bkn
)2] ≤ 4σ2

η4
E
[(
êI−k (X)− e (X)

)2 | I−k
]
. (144)

Since, by assumption, the right-hand side term converges to zero, Bkn converges to zero in L2.

Regarding Ckn Regarding the last term, the approach is different and will involve another assumption on the
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product of residuals. More precisely,

E[|Ckn|] =
√
n
1

n

∑
i∈Ik

E
[∣∣∣∣Ti (µ̂I−k

1 (Xi)− µ1 (Xi)
)( 1

êI−k (Xi)
− 1

e (Xi)

)∣∣∣∣]

=

√
n

η2
1

n

∑
i∈Ik

E
[∣∣∣Ti (µ̂I−k

1 (Xi)− µ1 (Xi)
) (
e(Xi)− êI−k(Xi)

)∣∣∣]
=

√
n|Ik|
η2

1

n
E
[∣∣∣T (µ̂I−k

1 (X)− µ1 (X)
) (
e(X)− êI−k(X)

)∣∣∣]
≤

√
n

η2
E
[∣∣∣(µ̂I−k

1 (X)− µ1 (X)
) (
e(X)− êI−k(X)

)∣∣∣]
≤

√
n

η2

√
E
[(
µ̂
I−k

1 (X)− µ1 (X)
)2]

E
[
(e(X)− êI−k(X))

2
]
,

which tends to zero by assumption. Each term Akn, Bkn, and Ckn has been shown to be bounded by a term in
oP(1). Thus,

√
n
∣∣τ̂RR,AIPW, 1 − τ⋆RR,AIPW, 1

∣∣ = K∑
k=1

Akn +Bkn + Ckn (145)

tends to zero in probability. Similarly, one can show that
√
n
∣∣τ̂RR,AIPW, 1 − τ⋆RR,AIPW, 1

∣∣ p−→ 0. (146)

According to (140), since for all t ∈ {0, 1}, |τ̂RR,AIPW,t| tends to τ⋆RR,AIPW,t which is lower and upper bounded, we
have

√
n
∣∣τ̂RR,AIPW − τ⋆RR,AIPW

∣∣ ≤ √
n

∣∣∣∣ τ̂RR,AIPW, 1

τ̂RR,AIPW, 0τ⋆RR,AIPW, 0

∣∣∣∣ ∣∣τ̂RR,AIPW, 0 − τ⋆RR,AIPW, 0

∣∣
+

√
n

∣∣∣∣ 1

τ⋆RR,AIPW, 0

∣∣∣∣ ∣∣τ̂RR,AIPW, 1 − τ⋆RR,AIPW, 1

∣∣
which tends to zero.

Regarding the second term in (134), we can use Theorem 1 with g1(Z) = µ1(X) + T (Y−µ1(X))
e(X) and g0(Z) =

µ0(X) + (1−T )(Y−µ0(X))
(1−e(X)) where Z = (T,X, Y ). Hence, we have that g1(Z) is square integrable:

E
[
g1(Z)

2
]
≤ 2E

[
(µ1(X)2

]
+ 2E

[(
T (Y − µ1(X))

e(X)

)2
]
,

where E
[
(µ1(X)2

]
= Var(Y (1)) + E

[
Y (1)

]2
is finite. Using Consistency, Unconfoundedness, and definition or

µ1(X) = E[Y | X,T = 1], simple calculations show that

E

[(
T
Y − µ1(X)

e(X)

)2
]
= E

[(
T
Y (1) − µ1(X)

e(X)

)2
]

Consistency

= E

[
E

[(
T
Y (1) − µ1(X)

e(X)

)2

| X

]]
Total expectation

= E

[(
Y (1) − µ1(X)

)2
e(X)

]

≤ Var(µ1(X))

η
.
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Similarly, we can show that g0(Z) is square integrable. Since E [g0(Z)] = E
[
Y (0)

]
and E [g1(Z)] = E

[
Y (1)

]
, we

can apply Theorem 1 and conclude that

√
n(τ⋆RR,AIPW − τRR) → N (0, VRR,OS). (147)

Finally, √
n(τ̂AIPW − τRR) =

√
n(τ̂RR,AIPW − τ⋆RR,AIPW)︸ ︷︷ ︸

p−→ 0

+
√
n(τ⋆RR,AIPW − τRR)︸ ︷︷ ︸

d→ N
(
0, VRR,OS

)
,

where

VRR,OS = τ2RR

(
Var

(
µ1(X)

E
[
Y (1)

] − µ0(X)

E
[
Y (0)

])+ E

[
Var

(
Y (1)|X

)
e(X)E

[
Y (1)

]2
]
+ E

[
Var

(
Y (0)|X

)
(1− e(X))E

[
Y (0)

]2
])

7 Simulation

For the simulations we have implemented all estimators in Python using Scikit-Learn for our regression and
classification models. All our experiments were run on a 8GB M1 Mac. The propensity scores is estimated
based on the provided training data and covariate names. Depending on the chosen method, it either uses
logistic regression with a high regularization parameter (parametric) or a random forest classifier with parameters
determined by the training data size (non-parametric). The response surface is estimated based on the training
data, covariate names, the method (parametric or non-parametric), and whether the response is binary or
continuous. For parametric methods, it uses a stochastic gradient descent classifier for binary responses and
a linear regression model for continuous responses. For non-parametric methods, it employs a random forest
classifier for binary responses and a random forest regressor for continuous responses. Both methods fit the
model using the training data to estimate the respective scores and surfaces, enabling flexible handling of various
datasets and assumptions for causal inference analysis.

7.1 Randomized Controlled Trials

In this part we will simulate Randomized Controlled Trials (RCT) and test the following Ratio estimators: Ratio
Neyman, Ratio Horvitz Thomson and the Ratio G-formula. Since we are in a Randomized Controlled Trials, the
propensity score e(.) is constant.

7.1.1 Linear RCT

The first DGP has linear outcome models (linear treatment effect and the baseline). The data is generated using:

m(X) = (c1 − c0) + (β1 − β0)
⊤X

b(X) = c0 + β⊤
0 X

e(X) = 0.5

c0 = 6, c1 = 12
β1 = (2,−5, 2, 8,−2, 8)
β0 = (3,−7, 1, 4,−2, 2)

Given that X has a zero mean, it follows that τRR = c1/c0 = 2. This scenario aligns with the linear setting
outlined in Assumption 4. Referring to Figure 4, as proved in the previous sections all estimators converge to the
true Risk Ratio as n increases. Additionally, within this linear framework as per Lemma 2, the variance of the
Neyman estimator exceeds the one of the G-formula. In such a linear environment, the parametric G-formula
performs better than its non-parametric counterpart. Additionally, the Ratio Neyman estimator demonstrates
lower variance compared to the Horvitz-Thomson estimator as indicated in Equation (5).

7.1.2 Non-Linear RCT

This DGP is also a Randomized Controlled Trials however, the outcomes are not linear this time:
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Figure 4: Comparison of RCT estimators in a Linear RCT

m(X) = sin(X1) ·X2
2 +

X3

X4 + 1
− log(X5 + 1) +X3

6 + 1

b(X) = 4 ∗max(X1 +X2 +X3, 0)−min(X4 +X6, 0) and e(X) = 0.5
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Figure 5: Comparison of RCT estimators in a Non-Linear RCT

The presence of trigonometric, exponential, logarithmic, and polynomial terms makes this setting non-linear. It’s
important to note that since we are in a Randomized Controlled Trial (RCT), the propensity function remains
constant. As the sample size (n) increases, all proposed estimators converge. A bias can be seen in 5 but decreases
to 0 as (n) increases as predicted in previous sections. Linear regression struggles with small n values, failing to
capture the intricate relationships between features and non-linearities. On the other hand, Random Forest, a
non-parametric method, excels in capturing these complexities by segmenting the feature space and predicting
based on response averages within those segments. However, predicting the complex function can be challenging,
the Neyman estimator might outperform the G-formula, particularly when both parametric and non-parametric
responses may lack consistency. Although we do not fall in assumptions of Equation (5) the Ratio Neyman
estimator demonstrates lower variance compared to the Horvitz-Thomson estimator.

7.2 Observational Studies

7.2.1 Non-Linear and Logistic DGP

Using the Non-Linear and Logistic DGP, Figure 6 represents the coverage and length of the 95% CI obtained for the
AIPW, G-formula, and Neyman estimators. Only the linear RR-AIPW estimator has a satisfying coverage, which
is expected given the non-linear logistic DGP. In this context, the propensity score is likely to be well-estimated,
while estimating non-linear response surfaces using Linear or Forest methods, such as in Linear/Forest RR-G and
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Forest RR-AIPW, proves challenging with a sample size of only n = 1000. As anticipated, the RR-N estimator
shows almost no coverage, consistent with its application in observational studies.
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Figure 6: Average coverage (left) and average length (right) of asymptotic confidence interval derived from
Section 2 and Section 3 for different estimators with n = 1000 and 300 repetitions for a Non-Linear and Logistic
DGP.

7.2.2 Non-Linear and Non-Logistic DGP

We use the same simulations as in Nie and Wager (2020) using nonlinear models for every quantity, as detailed
below, with X ∼ Unif(0, 1)6

m(X) = sin (πX1X2) + 2 (X3 − 0.5)
2
+X4 + 0.5X5 − (X1 +X2) /4

b(X) = (X1 +X2) /2

e(X) = max{0.1,min(sin (πX1) , 0.9)}.
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Figure 7: Estimations of the Risk Ratio with weighting, outcome based and augmented estimators as a function
of the sample size for the non-Linear-non-Logistic DGP. Parametric (Regression) and non parametric (Forest)
estimations of nuisance are displayed.

Results are presented in Figure 7. At first glance, all methods seem to have similar performances. However,
estimators based on parametric estimators (last four) fail to converge to the correct quantity. They present an
intrinsic bias, which does not vanish as the sample size increases. This was expected as linear methods are unable
to model the complex non-linear generative process of this simulation. On the other hand, methods that employ
random forests estimators achieve good performances: they are consistent and unbias even for small sample
sizes. Note that RIPW has a larger variance than the other methods, with a small bias for very small sample
sizes. Therefore, the G-formula and the two doubly-robust estimators that use random forests are competitive in
this setting. Here again, both double robust estimators give similar performances. No estimator achieves 95%
coverage, which is expected given the non-linear, non-logistic DGP. Linear estimators, such as Linear RR-G
and RR-AIPW, struggle to accurately estimate the nuisance functions in this context. Additionally, the limited
number of observations prevents the Forest estimators from converging effectively.
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Figure 8: Average coverage (left) and average length (right) of asymptotic confidence interval derived from Section 2
and Section 3 for different estimators with n = 1000 and 300 repetitions for a Non-Linear and Non-Logistic DGP.
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