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ABSTRACT

We determine the Galactic potential in the solar neigbourhood from RAVE observations. We select red clump stars for which accurate
distances, radial velocities, and metallicities have been measured. Combined with data from the 2MASS and UCAC catalogues, we
build a sample of ∼4600 red clump stars within a cylinder of 500 pc radius oriented in the direction of the South Galactic Pole, in the
range of 200 pc to 2000 pc distances. We deduce the vertical force and the total mass density distribution up to 2 kpc away from the
Galactic plane by fitting a distribution function depending explicitly on three isolating integrals of the motion in a separable potential
locally representing the Galactic one with four free parameters. Because of the deep extension of our sample, we can determine
nearly independently the dark matter mass density and the baryonic disc surface mass density. We find (i) at 1 kpc Kz/(2πG) =
68.5 ± 1.0 M� pc−2; and (ii) at 2 kpc Kz/(2πG) = 96.9 ± 2.2 M� pc−2. Assuming the solar Galactic radius at R0 = 8.5 kpc, we deduce
the local dark matter density ρDM(z = 0) = 0.0143± 0.0011 M� pc−3 = 0.542± 0.042 Gev cm−3 and the baryonic surface mass density
Σbar = 44.4 ± 4.1 M� pc−2. Our results are in agreement with previously published Kz determinations up to 1 kpc, while the extension
to 2 kpc shows some evidence for an unexpectedly large amount of dark matter. A flattening of the dark halo of order 0.8 can produce
such a high local density in combination with a circular velocity of 240 km s−1. It could also be consistent with a spherical cored dark
matter profile whose density does not drop sharply with radius. Another explanation, allowing for a lower circular velocity, could be
the presence of a secondary dark component, a very thick disc resulting either from the deposit of dark matter from the accretion
of multiple small dwarf galaxies, or from the presence of an effective “phantom” thick disc in the context of effective galactic-scale
modifications of gravity.

Key words. galaxies: kinematics and dynamics

1. Introduction

The complexity of the structure, dynamics, and history of our
Galaxy is progressively unveiled with the recent advent of nu-
merous large surveys. The access to positions, velocities, and
chemical abundances with reasonable accuracy for large sam-
ples of stars allows us to explore the detailed properties of our
own Galaxy. In the near future, covering a huge Galactic volume
with an unprecedented accuracy, Gaia observations will revolu-
tionize our understanding of Galactic formation and evolution
(Perryman et al. 2001).

For the time being, we concentrate on the question of the
dynamical estimate of the mass distribution in the solar neigh-
bourhood, the Kz problem (where Kz is the vertical force per-
pendicular to the Galactic plane). We note that a major difficulty,
in any survey analysis, is the identification of systematic errors
when they are an order of magnitude below the dispersions of the
measurement errors. By selecting a sample of red clump (RC)
stars from the RAVE survey (RAdial Velocity Experiment sur-
vey, Kordopatis et al. 2013), we can drastically improve the mea-
surements needed for the Kz problem in terms of number or pre-
cision. In particular, for the first time, we succeed in separating
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the force contributions from the Galactic discs and from the dark
halo, and we find that the local density of dark matter is higher
than previously expected.

Besides a better description of the local morphology of our
Galaxy, our determination of a large local density of dark matter
has implications on the morphology of the dark matter compo-
nent(s) and also has implications for the terrestrial experiments
of direct detection of the dark matter. The local density of dark
matter can also provide a test for the MOND effective theory
(Milgrom 1983; Famaey & McGaugh 2012).

Our new dynamical determination of the Galactic poten-
tial and Kz force perpendicular to the Galactic plane is based
on RAVE observations (DR4, Kordopatis et al. 2013) towards
the South Galactic Pole (SGP). This paper is an extension of
the previous works published by Soubiran et al. (2003), Siebert
et al. (2003), Bienaymé et al. (2006), and Soubiran et al. (2008),
which probed the properties of RC stars within 100 pc of the Sun
and at larger distances towards the North Galactic Pole (NGP).

The advantage of RC stars is that their distances are quite
accurately deduced from photometric measurements as long as
such stars have been identified to belong to the red clump, usu-
ally from their colour and gravity (see Cannon & Lloyd 1969,
for an early recognition of the red clump).

From previous RAVE data releases (Steinmetz et al. 2006;
Zwitter et al. 2008; Siebert et al. 2011b), RC stars were already
used to probe the Galactic structure, for instance for the identi-
fication of stellar populations (Veltz et al. 2008), for a first mea-
surement of the velocity ellipsoid tilt (Siebert et al. 2008), or as
a probe of the local 3D velocity field in a large volume of the
solar neighbourhood (Siebert et al. 2011a; Williams et al. 2013).

Here, we consider a sample of about 4600 RC stars, mainly
selected in the direction of the SGP up to distances of 2 kpc from
the Galactic plane.

A novelty of this work, setting aside the size of the sam-
ple of stars with accurate distances, is our ability to measure
the vertical potential further away from the plane, up to a ver-
tical distance of 2 kpc. From this, we deduce the local surface
mass density and we constrain the shape of the total vertical mass
distribution.

In this paper, the methods developed for the data analysis
and modelling are the standard methods, except for the introduc-
tion of a separable Stäckel potential with an explicit third inte-
gral of the motion to allow for the analysis at z distances higher
than 1 kpc. In addition, the selection function of RAVE obser-
vations of RC stars is well defined and accurately determined.
The completeness of observed RAVE RC stars towards the SGP
is 83% at 700 pc, 66% at 1.5 kpc, and 20% at 2 kpc.

The history of the Kz measurements covers decades of
Galactic astronomy, and various summaries can be found in pre-
vious publications (Read 2014). We just mention here that a
turning point was the advent of the H satellite observa-
tions, which were decisive by increasing the amount of accurate
data and critical by allowing us precise calibrations of the abso-
lute magnitude of stars. In particular, this new set of data from
the H survey (ESA 1997) allowed us to map the kine-
matics and variation of the stellar density close to the plane, re-
sulting in a redetermination of the Oort limit (Crézé et al. 1998;
Holmberg & Flynn 2004). A detailed bibliography of the most
recent works about the Kz force, during the last decade, can be
found in two recent publications (Garbari et al. 2012; Zhang
et al. 2013), and in a review on the Kz problem and related ques-
tions by Read (2014).

This paper proceeds as follows. In Sect. 2, we present
the sample selection, the determination of the vertical volume

Fig. 1. Histograms of J−K colours for 12308 RAVE stars observed to-
wards the South Galactic Pole (black continuous line). Red clump stars
(red dashed), subgiants (blue dash-dotted line), dwarfs (green dotted
line) identified from their gravity.

density of the RC stars, and their kinematics. Section 3 is de-
voted to the methods used to interpret the data. In Sect. 4, we
present the results. Finally, conclusions are given and discussed
in Sects. 5 and 6.

2. RC star selection, vertical density,
and kinematics

2.1. The sample selection

A first sample is drawn from the fourth data release of the
RAVE survey (Kordopatis et al. 2013) that contains stellar
measurements of about 480 000 stars. Measurements for each
star include radial velocity, effective temperature, gravity and
metallicity. Cross-identification with the 2MASS and UCAC3
catalogues give us the corresponding photometry and proper mo-
tions. Our aim is to select RC stars towards the SGP within
a 500 pc-radius cylinder centred at the solar position, and with
its main axis directed towards the SGP. The use of a cylinder for
counts, instead of using a cone, allows us to increase the num-
ber of stars at low z, and to minimize the Malmquist-type bias.
To minimize the consequence of interstellar extinction, we also
restrict the selection to Galactic directions |b| > 22 deg. Thus,
taking into consideration the extinction AK = 0.0116 and a scale
height for the extinction of 90 pc (Groenewegen 2008), we ne-
glect a systematic overestimation of distances that ranges be-
tween 0.6 and 1.5%. To include most of the RC stars and reject
AGB stars, we apply as a colour selection J−K within the range
from 0.5 to 0.8, based on 2MASS magnitudes (Fig. 1).

Based on high-resolution spectroscopy of nearby
H stars, gravity measurements show that the red
clump is defined by a restricted range of gravities from 1.8
to 2.8 (Soubiran et al. 2008; Valentini & Munari 2010). This is
in agreement with expectations from stellar evolution models
(Girardi et al. 2000), though they may suffer from uncertainties
on the amount of mass loss during the first ascent of the giant
branch. The histogram of gravities from the RAVE DR4 stars
with J − K ∈ [0.5−0.8] shows a well-defined peak, allowing
us to distinguish RC stars from subgiants and dwarfs (Fig. 2).
We note a tail, containing a small fraction of stars with gravities
smaller than 1.8, which might correspond to stars with lower ab-
solute magnitudes along the red giant branch or along the AGB.
Considering our colour selection interval, we do not expect such
a significant number of these stars, seen neither among nearby
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Fig. 2. Histogram of gravities for 12308 RAVE stars observed towards
the South Galactic Pole.

H stars nor in model predictions. Here, we believe
that their presence mainly results from the uncertainties in the
determination of RAVE gravities for giants. An indication for
this is the small bias in this range of gravities shown in the
Fig. 6 of Kordopatis et al. (2013), where RAVE and external
gravities are compared. For this reason, we choose the gravity
interval, 1.0 to 2.8, to define our RC sample. Using a sample by
restricting log g within 1.8 and 2.8, reduces the sample by 20%.
This does not modify our final conclusions concerning the
measurement of the Kz force. It is a complementary indication
that these stars, with RAVE log g ∈ [1., 1.8] are also RC stars.

Finally, we only select stars with a proper motion accuracy
better than 4 mas y−1 and better than 5 km s−1 for the radial
velocity, with signal-to-noise ratio (S/N) greater than 20 in the
RAVE spectra, and RVskycorrection < 10. We reject stars without
measurement of gravity or metallicity. In the case of multiple
observations of the same star (about 10 percent of all measured
stars), we keep the measurements with the highest S/N.

2.2. The RC stellar density

The RC stars are located in the HR diagram within restricted in-
tervals of colour, absolute magnitude, and gravities. Using the
last H reduction (van Leeuwen 2007), Groenewegen
(2008) determined the mean absolute magnitude of RC stars, and
found MK = −1.54 with a dispersion of 0.22 mag, but 0.15 just
considering the stars with the most accurately measured paral-
laxes. As noted by Groenevegen, his results could be affected by
the photometry of bright stars that are saturated in the 2MASS
data. This was confirmed by Laney et al. (2012) who measured
new IR photometry of 226 RC H stars. Repeating the
analysis, they obtained MK = −1.613 ± 0.015. We note that
the mean absolute K-magnitude of RC stars does not depend
on metallicity (Groenewegen 2008).

To define our main sample, we apply the supplementary se-
lection criterion:

mK < −1.613 + 5 log (500) − 5 − 5 log (cos |b|). (1)

This criterion includes RC stars located within the 500 pc-radius
cylindric volume oriented towards the Galactic poles. The sam-
ple contains 9522 stars with J−K within [0.5,0.8], among which
there are 5618 RC stars.

A second sample, extracted from the 2MASS catalogue,
is used to determine the degree of completeness of our
main RAVE sample and to quantify the selection function of

Fig. 3. 2MASS star counts towards the South Galactic Pole ver-
sus the Kc magnitude (green circle) corrected for Galactic latitude
(RAVE counts towards both poles are indicated by black crosses, and
RAVE counts of red clump stars are denoted by red plus signs).

RAVE observations. For this sample, the same criteria on J − K
colour, apparent magnitudes (Eq. (1)), and Galactic directions
are applied.

RAVE is a magnitude-limited survey of stars randomly se-
lected in the southern celestial hemisphere. The original design
was to only observe stars in the interval 9 < I < 12, but the
actual selection function includes stars both brighter and fainter.
For sufficiently small intervals of magnitudes and Galactic di-
rections, RAVE stars are randomly selected1. Hence, for these
intervals, the fraction of RC stars in the sky can be directly es-
timated from the ratio of the number of RAVE RC stars to the
number of observed RAVE stars.

We determine this ratio using RAVE counts in both north
and south Galactic directions in order to improve the statistics at
low z. The 2MASS counts are complete down to magnitude K =
14.3 (Skrutskie et al. 2006). Hence, we combine 2MASS counts,
RAVE counts, and RAVE RC counts to estimate the total number
of RC stars at any interval of K magnitudes and directions where
RAVE observations exist.

In practice, since we cover a large range of Galactic latitudes
and are interested in RC counts versus the vertical Galactic dis-
tance z, we do not determine the counts using the apparent mag-
nitudes but using the corrected apparent magnitudes:

KC = mK + 5 log(sin |b|) = MK + 5 log |z| − 5, (2)

which depends only on the absolute magnitude of the star and of
its |z| position.

Figure 3 plots the 2MASS counts as a function of Kc mag-
nitudes. Star counts from our main RAVE sample and from our
RAVE sub-sample of RC stars are also plotted. From these three
counts, we deduce the total number density of RC stars within
the 2MASS sample, as a function of Kc, or equivalently as a
function of the height |z| (Fig. 4). Error bars are determined from
the three counts by using the statistical hypergeometric law.

Two sources of known bias are present but remain small in
this analysis. The first known bias is the degree of homogeneity
of the sample selections. Because of high S/N (K < 10), the ac-
curacy of the various measured or used parameters remains high
independent of the z distance. For instance, the median accuracy
in J − K colours (within 0.5–0.8) is 0.03 from K = 6 to K = 10.
Similarly, the mean S/N of the RAVE spectra used to determine

1 At very low b latitudes, not considered here, a colour cut criterion
has been applied (see Kordopatis et al. 2013).
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Fig. 4. Vertical number density distribution of red clump stars towards
the South Galactic Pole (black symbols: 200 pc binning, red sym-
bols 50 pc binning).

the gravity remains high for RC stars at 2 kpc (K ∼ 10): the
mean S/N is 51 (rms 16). This implies that our selections and
cuts remain homogeneous independent of the distance z.

A second effect is the Malmquist bias: this depends on σM,
the dispersion of luminosity of the stellar candles, and on the
variation of the density along the line of sight. In the case of a
vertical exponential density law, ν ∼ exp(−z/h), with h = 700 pc
and σM = 0.2, at z = 1000 pc the bias on the estimated distances
is +2% using a cone for the counts and is −0.7% using a cylinder.
At z = 2000 pc the bias is +3% using a cone, and +1.2% using a
cylinder. For the dynamical determination of the total mass per-
pendicular to the Galactic plane, we are interested in the density
gradients, and so just in the variation of this bias: in this study, it
is less than 1%. We note that with other tracers with an absolute
magnitude dispersion of 0.5, the bias from star counts would be
significantly larger: for cone counts, it is of the order of 5% at
z = h and 11% at z = 3 h. This implies a systematic error of 6%
on the resulting determination of the Galactic local surface mass
density.

2.3. The RC star kinematics

We need to determine the vertical velocities of RC stars that
combined with counts towards the Galactic poles will constrain
the vertical potential at the solar position.

Radial velocities are obtained from our RAVE observations,
proper motions from the UCAC3 catalogue and distances from
the identification of RC stars (see Sects. 2.1 and 2.2). Radial
velocities, proper motions, and distances of RAVE RC stars
are converted in (u, v, w) velocities relative to the Sun, and in
Galactic velocities, VR − V�,R and Vz − V�,z, uncorrected for the
solar motion, assuming R0 = 8.5 kpc.

The errors on the velocities are obtained from individual er-
rors on proper motions and radial velocity, adopting a mean un-
certainty on distances of 10% (Fig. 5). The median error on the
Vz component is 2.4 km s−1.

The mean vertical velocity is constant with z (Fig. 6).
The velocity dispersions σR and σz are measured by applying
a 3.5-sigma-clipping to the VR, Vz Galactic velocity components.
The uncertainties on the dispersions are σ/

√
n∗ − 1. The vertical

velocity dispersion σVz rises up to 38 km s−1 at 1 kpc and then
remains nearly constant (Fig. 6).

The velocity ellipsoid tilt is null at z = 300 pc and reaches 8±
1 deg at 1 kpc, pointing not far off the Galactic centre. This is in

Fig. 5. Distribution of errors in the vertical Galactic velocity for stars
with |z| < 2000 pc (continuous black line), and for stars with 1300 <
|z| < 2000 pc (dotted red line).

Fig. 6. Vertical (black symbols) and radial (red symbols) velocity dis-
persions: σVz , σVR . Mean vertical velocity Vz (black line).

agreement with the finding by Siebert et al. (2008) and Pasetto
et al. (2012a,b) based on a previous release of the RAVE sur-
vey. As discussed in Siebert et al. (2008) a bias on the mea-
sure of the tilt exists if no corrections are applied to consider
the anisotropy in the errors of radial velocities and tangential
velocities. This bias increases with distance (and with errors on
tangential velocities), small at z = 1 kpc, it is about 7 deg at
z ∼ 2 kpc. Unbiased measurements below 1 kc indicate that the
tilt points not far from the Galactic centre. This is confirmed by
recent measurements (Büdenbender et al. 2014) based on a large
sample of SDSS/SEGUE G dwarfs for which the tilt increases
with z and points in a direction close to the Galactic centre. This
implies a correlation between radial and vertical motions, which
we model using Stäckel potentials (see Sect. 3).

2.4. Metallicities

To improve the analysis of the vertical potential and the Kz force,
we split our sample according to the metallicity in three sub-
samples delimited by the values [M/H] = −0.35 and −0.15. They
contain 2182, 2558 and 2263 stars, respectively, of which 1440,
1741 and 1447 are RC stars. The Kz is mainly sensitive to the
gradients of the density, and thus each sub-sample can probe
more efficiently a different range of z-distances, the lowest
metallicity sample probing the potential for the largest distances.

On the other side, the vertical potential determination
is poorly determined at low z because of the lack of data
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below 300 pc. For this reason, we add a sample of H
and Elodie RC stars (300 stars) towards the North Galactic
Pole. These stars were previously used to constrain the Kz force
(Bienaymé et al. 2006; Soubiran et al. 2008). This small sample
covers distances from 0 to 800 pc.

2.5. Secondary red clump

The tracer distance measurement is essential for the accuracy of
the vertical potential determination.

The red clump giants span a large range in gravity depending
on their metallicity: log g = 2.08 for the metal-poor, low-mass
end and reaches up to log g = 3 for the high-mass, metal-rich red
clump objects (Zhao et al. 2000).

Identification of clump stars from RAVE observations allow
us to achieve a remarkable uncertainty of 7% in distances if we
consider the dispersion of absolute K magnitude for H
clump stars with the best parallaxes (Groenewegen 2008), 10%
otherwise. The existence of a secondary clump at slightly lower
magnitude concerns higher mass stars (3 solar masses) for which
the He burning does not operate in a degenerate gas (Girardi
1999). It may degrade the accuracy of our determination of dis-
tances. These stars are not very numerous compared to ordinary
clump stars in the solar neighbourhood, they are younger and
should not be present in older stellar populations with large ve-
locity dispersions or z larger than about 300 pc.

This is in agreement with two recent findings. The first is
the determination from asteroseismology (Stello et al. 2013) of
the mass and of the main or secondary clump status for giants.
The second is the comparison of histograms of asteroseismo-
logic mass (Miglio et al. 2013) in two COROT fields at different
low Galactic latitudes.

Finally, another source of possible bias is related to binarity,
however, to modify significantly the apparent magnitude, binary
systems consisting of giants are needed. Such systems are ex-
tremely rare, less than 1% (Nataf et al. 2012) since the life time
on the red giant phase is extremely short, and the mass of each
companion must not differ by more than 0.5% to have a binary
consisting of two giants.

3. Methods and models

To measure the vertical potential at the solar Galactic position
up to a vertical distance of 2 kpc, we use and adapt the century-
old method developed by Kapteyn (1922) and Oort (1932). Their
method can be applied when the stellar oscillations through the
Galactic plane remain smaller than ∼1 kpc, so the vertical mo-
tions are approximately decoupled from the horizontal ones.
Thus, below 1 kpc from the mid-plane, the problem becomes
1D dynamical model. In this case, the vertical distribution of
stellar positions and vertical velocities f (z, w) can be written as
the sum of isothermal components depending only on the verti-
cal energy:

f (z, w) = Σi
ci
√

2πσi
exp

−Φ(z) − Φ(0) + 1
2w

2

σ2
i


with the vertical density of the tracer stars as:

ν(z) = Σi ci exp
−Φ(z) − Φ(0)

σ2
i

 ·
A general solution is provided in Appendix A. This solution may
be written in a different, but equivalent form found by Garbari
et al. (2012). Such a solution cannot be applied at higher z,

where the coupling between radial and vertical motions must
be considered in order to achieve an accurate measure of the
vertical potential. For that purpose, Kuijken & Gilmore (1989)
proposed analytic corrections that they applied to their sample
of K dwarfs for the determination of the vertical force. Statler
(1989) building exact stationary solutions with Stäckel poten-
tials found corrections of the order of 10% at 1 kpc in compari-
son with a 1D model.

The closeness of the true Galaxy potential to a Stäckel po-
tential is a very commonly used feature. For instance, Binney
(2012) used this similarity to evaluate the three actions associ-
ated with any orbit, actions which he then uses as the arguments
of his distribution functions. Here, we follow the approach of
Statler (1989) and build a Galactic model with a Stäckel poten-
tial for which the Hamilton-Jacobi equation is fully separable,
and a phase-space distribution function depending on the three
straightforward integrals of motion in such a separable potential.
By construction, the distribution function is stationary and solu-
tion of the collisionless Boltzman equation, and is used to model
the vertical number density and vertical velocity dispersion of
our stellar samples.

To model a realistic gravitational field within the solar neigh-
bourhood, we follow the mass modelling proposed by Batsleer
& Dejonghe (1994) and Famaey & Dejonghe (2003), using a
combination of two Kuzmin & Kutuzov (1962) components, a
disc and a halo (a detailed description of their properties can
be found in Dejonghe & de Zeeuw 1988). We introduce four
free parameters: the mass M and axis ratios ε of both compo-
nents. These four free parameters allow us to constrain locally
the scale-height of the disc, its local surface density, and the lo-
cal volume density of the extended component. Thus, the ob-
tained modelled vertical distribution of the total volume den-
sity in the solar neighbourhood can represent any combination
of a dark halo and a vertically extended stellar component. The
fourth free parameter (the flattening of the halo component) is
adjusted to impose a flat rotation curve over an extended range
of Galactic radius. The Kz fit is thus just made on three parame-
ters. We note that adjusting the flattening of the halo in this way
does not modify its local density gradient, the density remain-
ing nearly constant between z = 0 and 2 kpc, since the halo is
never highly flattened. The halo flatness nevertheless affects the
(poorly known) value of the corresponding circular velocity at
the Sun’s radius.

Finally, with Stäckel potentials, we can very simply model
the tilt of the velocity ellipsoid above the Galactic plane. The
tilt orientation is fully determined by the positions ±z0 of the
foci along the vertical axis, z0 defining a confocal ellipsoidal
coordinate system. We set z0 = 2 kpc, in order to have a ve-
locity ellipsoid at (R, z) = (8.5 kpc, 1 kpc) pointing close to the
Galactic centre in agreement with observations (Siebert et al.
2008; Büdenbender et al. 2014).

3.1. Kuzmin-Kutuzov potentials

A detailed description of all characteristics of 3D Stäckel po-
tentials can be found in de Zeeuw (1985). These potentials are
easily tractable in confocal spheroidal coordinates. The prolate
spheroidal coordinates (λ, θ, ν) are related to the cylindrical co-
ordinates (r, θ, z) by:

r2 =
(λ + α)(ν + α)

α − γ
and z2 =

(λ + γ)(ν + γ)
γ − α

· (3)

The shape of the coordinate surfaces is determined by α and γ
while λ, ν satisfy −γ ≤ ν ≤ −α ≤ λ. Surfaces of constant λ
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are spheroids and those of constant ν are hyperboloids. They all
share the same foci located on the z axis at ±zo = ±(γ − α)1/2.

A general Stäckel potential takes the form:

Φ(λ, ν) = −
h(λ) − h(ν)
λ − ν

(4)

where h is an arbitrary function.
Here, we define the class of Kuzmin-Kutuzov potentials

(Dejonghe & de Zeeuw 1988), writing h(τ) = GM
√
τ + q (with

the condition q ≥ γ):

ΦKK,q(λ, ν) = −
GM

√
λ + q +

√
ν + q

· (5)

The corresponding isodensity surfaces from Poisson equation
are flattened oblate spheroids. Increasing ε2 = (q − α)/(q − γ)
flattens the spheroids. The key is that adding multiple Stäckel
potentials of this type still gives a Stäckel potential as long as
the focal distance

√
γ − α remains the same.

Besides the energy and the angular momentum, a third inde-
pendent isolating integral of the motion exists and can be written
as:

I3 = Ψ(λ, ν) −
1
2

z2

γ − α

(
ṙ2 + (rθ̇)2)

−
1
2

(
r2

γ − α
+ 1

)
ż2 +

rzṙż
γ − α

(6)

with

Ψ(λ, ν) =
(ν + γ)h(λ) − (λ + γ)h(ν)

(γ − α)(λ − ν)
· (7)

3.2. The distribution function

To model the density and kinematics of our samples, we define
a stationary distribution function that depends on three integrals
of the motion. We use the 3D stellar disc distribution function of
Bienaymé (1999), which has nearly a Schwarzschild distribution
behaviour in the limit of small velocity dispersions. This distri-
bution is a generalization of the Shu distribution function (Shu
1969) and also has a density that is nearly radially exponential.

The distribution function is

f (E, Lz, I3) =
2Ω(Rc)
2πκ(Rc)

Σ(Lz)
σ2

r (Lz)
exp

[
−

E − Ecirc

σ2
r

]
×

1
√

2π

1
σz(Lz)

exp

−
(

Rc(Lz)2

z2
o

+ 1
)−1 (

1
σ2

z
−

1
σ2

r

)
I3

 (8)

with Rc(Lz) the radius of the circular orbit that has the angu-
lar momentum Lz, Ω is the angular velocity, κ is the epicyclic
frequency, and Ecirc is the energy of a circular orbiting star at
radius Rc.

For sufficiently small velocity dispersions, the number den-
sity distribution, Σ(Lz) = Σ0 exp(−Rc/Rν), is close to Σ(R) =
Σ0 exp(−R/Rν).

We set σr,z(Lz) = σ0,r,z exp(−Rc/Rσr,z ) and the velocity dis-
persions are close to σr,z(R) = σ0;r,z exp(−R/Rσ).

Local number density and dispersion, Σ0, σ0, are constants,
Rν is (close to) the scale length of the number density distri-
bution, and Rσ is (close to) the scale length of the velocity
dispersions.

This distribution function is very similar to that proposed by
Statler (1989), but here, generalized to the cases where R , R0.

We also reduced the number of free parameters to have a form
closer to the Shu (1969) distribution function. The correspond-
ing velocity distribution is not far from a 3D Gaussian. When
z = 0, the corresponding density varies nearly exponentially in
an extended domain of a few kpc around the Sun. We note that
if z , 0, the density above the plane also depends on the vertical
potential; thus the density may vary exponentially at any z with
a supplementary condition, as for instance Rσ = 2Rρ (see also
Eqs. (6), (7) of van der Kruit & Freeman 2011). The velocity dis-
persions also decrease exponentially. This distribution function
had been previously used for a dynamically consistent analysis
of the kinematics of H stars (Bienaymé 1999).

For the modelling of the distribution function of our RC star
samples, we fix the scale lengths for the radial density and for
the velocity dispersions: Rν = 2.5 kpc and Rσ = 9 kpc. This
is to be compared with Rν ∼ 2.2 and 2.8 kpc for the thin and
thick discs (Cabrera-Lavers et al. 2005; Jurić et al. 2008; Chang
et al. 2011; Polido et al. 2013; Robin et al., in prep.) and Rσ2 =
4.4 or 5.6 kpc, (Rσ = 8.8 or 11.1 kpc), respectively by Lewis &
Freeman (1989) and Ojha et al. (1996). We also set σr/σz = 2
for the thin disc stars (σz < 27 km s−1) and 1.5 otherwise, in
agreement with the observed properties of our RC sample.

3.3. The corrected bias

The introduction of a 3D model allows us to correct different
effects relative to a 1D vertical model. The first effect is the ve-
locity ellipsoid tilt at large z that increases the observed vertical
velocity dispersion. The second effect is related to the vertical
bending of the stellar orbits. For stars seen at z = 1 or 2 kpc,
their mean Galactic radius < R >, when they cross the Galactic
plane, is larger than R0, a position where the stellar density is
lower than at the radius R0. These two effects lead to an overes-
timate of Kz in a 1D model. A third effect is also related to the
bending of orbits and to the radial gradient of σz, lowering σz
towards the pole. This effect leads to an underestimate of the Kz
force in a 1D model.

Here, the modelling with a locally valid Stäckel potential al-
lows us to correct in a dynamically consistent way the bias re-
sulting from the coupling of vertical and horizontal stellar mo-
tions. However, this is obtained at the expense of supplementary
parameters: the tilt orientation of the velocity ellipsoid, the radial
gradients of the stellar density, and of the kinematics.

3.4. The adjustment procedure

We determine the parameters of the vertical potential by fitting
the observed moments, density ν(z) and vertical velocity disper-
sions σzz(z) for each of the three metallicity samples; moments
are computed from the distribution function Eq. (8). We mini-
mize the difference between observed and modelled quantities
using the χ2:

χ2 = χ2
ν + χ2

σ + q
(

Vc(9.5 kpc) − Vc(7.5 kpc)
)2

with

χ2
ν = Σi

(
νmod,i − νobs,i

)2

ε2
ν,i

χ2
σ = Σi

(
σmod,i − σobs,i

)2

ε2
σ,i

,

where the εi are the corresponding uncertainties.
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Fig. 7. Vertical number density (top) and velocity dispersions (bottom),
data (symbols with error bars) and model (lines) for the three RAVE
metallicity samples and the NGP-H sample: low metallicity
[M/H] ≤ −0.35 (black), intermediate −0.35 < [M/H] ≤ −0.15 (red),
high −0.15 < [M/H] (green), NGP (blue). Dotted lines are the extrapo-
lated model not fitted to data.

For the density, the bin size is 100 pc between 300 pc
and ∼2000 pc. We do not consider our density estimates be-
low 300 pc where the completeness is difficult to determine. For
the velocity dispersions, the bin size is 100 pc between 200 pc
and 1200 pc and 200 pc beyond.

The last r.h.s. term within the χ2 expression is introduced to
impose a potential with a nearly flat rotation curve. The q factor
does not need to be large and the contribution of the correspond-
ing term to the χ2 is small, because the slope of the rotation curve
is uncorrelated to the other parameters. The adjusted rotation
curve is flat and varies by 1 km s−1 between R = 7 and 15 kpc.

We use two quasi-isothermal components (Eq. (8)) to model
the stellar sample distribution function, the density ν(z) and dis-
persion σz(z) for each metallicity sample.

We determine the χ2 minimum for the parameters of the
potential using the MINUIT software (James 2004) that al-
lows us to look for possible multiple minima and to obtain
a first estimate of the variance-covariance matrix. To compute
the posterior probability distribution function (PDF), we con-
sider the likelihood L = exp(−χ2/2) and apply a Markov
chain Monte-Carlo using the Metropolis-Hastings Algorithm
(Foreman-Mackey et al. 2013). From this, we determine the
marginal PDFs.

Figure 7 shows the binned data and the best fit model to the
density and dispersion versus z for the three metallicity RAVE
samples and for the H-NGP sample. For information,
we also show this best-fit model and the binned data for density

Fig. 8. Vertical number density (top) and velocity dispersions (bottom)
for the full RAVE RC sample (symbols with error bars) and model (con-
tinuous line).

and vertical velocity dispersions without metallicity splitting
(Fig. 8).

4. Results

4.1. The Kz force

In the previous sections, we have described the stellar samples
used to probe the vertical force towards the Galactic pole. Our
method does not fundamentally differ from the century-old pio-
neering work of Oort (1932). The modelled quantity that is fitted
to the observations is the vertical potential within the interval of
distances probed by our stellar tracers. The vertical force and
the total mass density distributions are deduced from the first
and second z-derivatives of this potential. It is known that the Kz
is an ill-conditioned problem and that without a filtering of data
or smoothing assumptions about the shape of the potential, the
derivatives would be dominated by the noise and fluctuations of
data. Here, the actual smoothing assumption for the local poten-
tial is given by two Kuzmin-Kutuzov components (Batsleer &
Dejonghe 1994; Famaey & Dejonghe 2003) to mimic the poten-
tial of a disc and a spheroid (and also a flat rotation curve). This
is partly equivalent to the three-parameter modelling introduced
by Kuijken & Gilmore (1989) to describe the total Galactic disc
mass surface density. Our model goes beyond the plane-parallel
approximation and allows us to describe the distribution func-
tion f (z, w) beyond 1 kpc up to 2 kpc. The vertical potential is
modelled by a disc, its local density and thickness, and by the
local density of an extended component that represents the dark
matter halo.
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Fig. 9. Kz force and 1σ error intervals.

The resulting Kz at R0 from the fit of RAVE data (Fig. 7)
is shown in Fig. 9. We give the results in terms of Kz/2πG for
visibility and comparison with other studies, even though this
should not be confused with the true surface density.

The obtained Kz is less constrained at low z where
there are no RAVE data, but only the smaller sample of
H and Elodie stars. The Kz force at 350 pc is found
to be 44.2+2.3

−2.9 M� pc−2 in agreement with the Korchagin et al.
(2003) determination 42 ± 6 M� pc−2, based on a sample
of 1500 K giants from H observations, mainly first as-
cent giants rather than clump giants.

We also note that our Kz determination near z = 0 al-
lows us to deduce the Oort limit ρdyn(z = 0) = 0.0911 ±
0.0059 M� pc−3, intermediate value between the Crézé et al.
(1998; 0.076 ± 0.015 M� pc−3) and Holmberg & Flynn (2004;
0.102 ± 0.010 M� pc−3) determinations. These two studies are
based on the same H data, below z = 125 pc, but with
different assumptions regarding the shape of the potential. Most
likely, this explains the difference between both results, which
differ by just a 1σ error.

Our Kz force determination from 0 to 1 kpc, is similar to re-
cent studies, but in our case, with more free parameters and with-
out limiting assumptions on the baryonic local surface density or
on the dark matter local volume density.

Since the quasi-totality of the ordinary matter resides below
z = 1 kpc, the mass density beyond 1 kpc is dominated by the
dark matter. This results that our Kz measurement gives direct
access to the dark matter density between 1 and 2 kpc above the
Galactic plane.

The Kz force at intermediate and high z distances are:

Kz(1 kpc)/(2πG) = 68.5 ± 1.0 M� pc−2

= 1852 ± 27 km2 s−2 kpc−1,

and

Kz(2 kpc)/(2πG) = 96.9 ± 2.2 M� pc−2

= 2619 ± 59 km2 s−2 kpc
−1
.

4.2. Dependence on fixed model parameters

The vertical tilt of the velocity ellipsoid is fixed in our models to
point close to the Galactic centre through the choice of our foci
(tilt of ∼13 deg at z = 2 kpc, in accordance with Büdenbender
et al. 2014). Unbiased measurements indicate that the tilt indeed
points close to the Galactic centre, and our method is not af-
fected by the existence of a bias in the tilt that one would actu-
ally measure with RAVE data at large heights (Sect. 2.3) because

Fig. 10. Vertical mass density of the stellar thin discs from the
Besançon model (red line) fitted with an exponential of scale height
h = 229 pc (black line).

we directly fit individual velocities (Sect. 3.4) and not the global
shape of the velocity ellipsoid.

The two other fixed parameters, non-existent in traditional
analysis assuming separation of vertical and radial motions, are
the radial scale lengths of the number density of tracer stars and
of the velocity dispersions.

The radial scale length of the stellar sample, Rν, modifies by
less than 1% the Kz between z= 0 to 2 kpc, when Rν is varying
from 1.8 kpc to 3.5 kpc. Increasing the kinematics scale length
does not modify the Kz determination. Only decreasing the scale
length Rσ to 7 or 5 kpc (or Rσ2 to 3.5 or 2.5 kpc) increases the Kz
force at 2 kpc by 5% and 11%, respectively. This implies that our
determination of the surface mass density of disc would be be in-
creased by 5% or 10%, and the local DM density by 5% or 14%.
However, these small kinematic scale lengths are excluded by
existing observations.

4.3. The vertical mass density

To be able to estimate the vertical mass density distribution of
Galactic components, the Kz determination is not completely
sufficient, and we must also know the 3D shape of the baryonic
and dark matter components. Here, the four-parameter Stäckel
potential we fitted should be considered simply as a way to esti-
mate the Kz force itself, but the relative contribution of the bary-
onic disc and halo to this force can be more reliably dealt with
a posteriori by representing the baryonic mass component with
a double exponential law ρ(R, z) ∼ exp(−R/Hρ) exp(−|z|/hz),
whose mass is assumed to be proportional to the stellar discs,
the dominant baryonic mass component. Recent analyses of
Galactic star counts with accurate and detailed modelling of the
luminosity functions converge towards a short scale length, 2.1
to 2.3 kpc for the thin disc (see for instance Robin et al., in prep.)
and between 2.8 to 3.2 for the thick disc, while the vertical den-
sity of the stellar disc population is very close to an exponential
(Fig. 10).

For a given mass surface density of the disc at R0, both pa-
rameters Hρ and hz can modify the vertical force. Decreasing the
scale length Hρ increases the vertical force of the disc. In this
case, to fit the observed Kz, the surface mass density of the disc
must be decreased (and to fit the Kz at larger z, the dark matter
mass density ρDM must be increased).

Here, we will consider as reference values Hρ = 2200 pc,
hz = 300 pc and R0 = 8500 pc for the double exponential disc.
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Fig. 11. Total surface mass density (black continous line) Σ(<|z|) =∫ z

−z
ρtotdz at R0 split in a DM spherical component (red dashed line) and

in a baryonic double exponential disc (blue dash-dotted line). Dotted
lines are 1σ error intervals.

We assume that the dark halo component is spherical. Its ra-
dial mass density is defined to exactly complement the double-
exponential disc component in order that our model of the
Galactic rotation curve is strictly flat.

Two free quantities remain: the mass or the local density of
each component. We adjust the local density of the baryonic and
of the dark matter to fit in a least square sense the observed Kz.
The resulting total vertical mass density distribution is shown
in Fig. 11 with the DM halo and disc decomposition. The plot-
ted surface densities are the integrated mass volume density be-
tween −z and z. We obtain for the total surface density of the
disc component at the solar position:

Σdisc(R0) = 44.4 ± 4.1 M� pc−2.

The probability distribution function of total local volume mass
density of the dark matter component is plotted in Fig. 12. This
yields

ρDM(z = 0) = 0.0143±0.0011 M� pc−3 = 0.54±0.004 Gev cm−3.

In the case of the baryonic and the total (baryonic+DM) local
volume densities, the Oort limit, we obtain

ρbaryons(z = 0) = 0.077 ± 0.007 M� pc−3,

ρtotal(z = 0) = 0.091 ± 0.0056 M� pc−3,

and Fig. 13 plots their respective probability distribution
function.

Table 1 shows the results for ρDM and ΣD in the case of
some other disc parameter values (results are based on a χ2 min-
imization and are slightly different from these resulting from
MCMCs). The change of the best-fit solution with the chosen
method could result from the imperfect adequacy of the model.
This would indicate a bias; this dependency of the results on the
adopted methods has been also shown in a different context by
Polido et al. (2013) analysing Galactic star counts.

We can note that, remarkably, the dark matter density is
nearly insensitive to the model parameters Hρ, hz, R0. This re-
sults from the fact that the dark matter model has a nearly con-
stant density in the range z = 0 to 2 kpc and depends quite ex-
clusively on the difference on the Kz force between 1 and 2 kpc.

5. Discussion

The last RAVE data release (DR4, Kordopatis et al. 2013) al-
lows us to probe the vertical density distribution of RC stars to a

Fig. 12. Probability distribution function for the local dark matter den-
sity ρDM(z = 0).

Fig. 13. Probability distribution functions for the total local mass den-
sity, i.e. the Oort limit ρtot(z = 0) (continous line), and the baryonic
mass density ρbar(z = 0) (dotted line).

Table 1. Disk-halo parameters reproducing the observed Kz vertical
force.

R0 Hρ hz ΣD ρd.m. Vc

pc pc pc M� pc−2 M� pc−3 km s−1

8500 2200 300 45.6 0.0154 267
8500 2000 300 45.0 0.0157 263
8500 2400 300 46.5 0.0146 264
8500 2200 250 43.2 0.0158 268
7500 2200 300 66.4 0.0166 263

Notes. The resulting level of the flat rotation curve, Vc, is added for
information.

distance of 2 kpc from the Galactic plane, and also to determine
their vertical kinematics and metallicity. This provides a highly
accurate sample for the study of the vertical force perpendicular
to the Galactic plane. About 5000 RC stars are used, permitting
us to relax some of the traditional assumptions. Specifically, be-
cause of the large range of vertical distances probed up to 2 kpc,
we can separate the contribution to the vertical force due to the
halo and the disc.

The Kz problem is, in principle, ill-conditioned. The poten-
tial is the fitted quantity, and to determine the total mass verti-
cal density, we evaluate the second derivative of the potential.
To avoid arbitrary fluctuations resulting from the finite size of
our stellar tracers, it is necessary to smooth the potential to re-
cover a realistic vertical density. Here, this is done by assuming
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the local vertical potential shape as a Stäckel combination of a
disc and a spheroidal halo. This is accomplished with a three-
parameter model constraining the local densities of a disc and
of a spheroidal halo, and the thickness of the disc. A fourth pa-
rameter imposes a flat rotation curve. The flatness of the rota-
tion curve does not directly impact the Kz determination, but
allows us a more realistic dynamical self-consistent distribution
function modelling the density and velocity distribution of tracer
stars.

5.1. The Kz force measurement

At z = 1 kpc, our Kz measurement is similar and in agreement
with the two last decades determinations of the Kz force based
on data from stars up to z ∼ 1 kpc: Kz(1 kpc/2π G) ∼ 68 M� pc−2

(for recent determinations, see Garbari et al. 2012; Bovy & Rix
2013; Zhang et al. 2013). Between z = 1 and 2 kpc, we find that
the scale-height of the dark halo is significantly larger than the
domain probed with our sample, and that the density is nearly
constant below z = 2 kpc.

The local density of the halo is ρDM(z = 0) = 0.0143 ±
0.0011 M� pc−3 = 0.542 ± 0.042 Gev cm−3. We also determine
the total surface density of the disc components Σbar = 44.4 ±
4.1 M� pc−2 that is in agreement with the Flynn et al. (2006) de-
termination. The halo volume density and disc surface density
are determined nearly independently, with the consequence that
their resulting uncertainties are small. Nevertheless, systematic
uncertainties, e.g. due to the choice of smoothing of the poten-
tial, are, in fact, larger.

Most of the recent determinations claimed estimates of
the local halo density to be of the order of ρDM(z = 0) =
0.006−0.008 M� pc−3 (see the compilation in Table 4 by Read
2014) However, it must be noted that in these previous Kz mea-
surements, the z extension of the stellar tracers was limited to
distances of 0.8 to 1.1 kpc. For that reason, it was not possible to
accurately separate the respective contributions from the visible
discs (stellar and ISM discs) and those contributions from the
dark matter halo. Then independent estimates of the visible mat-
ter from star counts and kinematics were adopted. As mentioned
in the review by Read (2014), these determinations of the local
dark matter density were based on an assumed total surface disc
density for the visible matter. In one study, Kuijken & Gilmore
(1989) assumed the value of the density of the dark matter and
deduced the surface mass density of the disc.

5.2. The local volume mass density determination

To move from the vertical force to the vertical density distri-
bution and to the decomposition in contributions from disc and
from halo components implies we know non-local Galactic char-
acteristics as the scale length of the disc, the Galactic solar ra-
dius R0, or the thickness of the visible matter. Unfortunately,
many fundamental characteristics of our Galaxy’s structure re-
main inaccurately measured, such as the distance of the Sun to
the Galactic centre, or are even subject to contradictory deter-
minations, such as the amplitude and shape of the Galactic ro-
tation curve. For this reason, we list the consequences of our
findings of high local density of dark matter, according to differ-
ent hypotheses and to results recently published concerning the
Galactic gravitational potential.

First, the large scale and 3D properties of the dark mat-
ter distribution are mainly established from the knowledge of
the Galactic rotation velocity curve or from orbits of streams

through the Galactic halo. Other constraints exist locally, for in-
stance the Galactic escape velocity in the solar neighbourhood
(Smith et al. 2007; Piffl et al. 2014a) or the determination of
Oort’s constants (Olling & Merrifield 1998).

The flatness of the Galactic rotation velocity curve at R0 is
consistent with the observations of external disc galaxies of sim-
ilar type. The flatness is supported by the two recent determi-
nations of the Galactic circular velocity curve from parallaxes
(Reid et al. 2014) or from spectro-photometric distances (Bovy
et al. 2012) that favour a flat rotation curve in an extended inter-
val of radii around R0.

Now, considering such a flat rotation curve with Vc ∼

220 km s−1, similar to the recent determination from the
APOGEE project (Bovy et al. 2012), and a spherical dark
matter halo (frequently called the “standard dark Galactic
halo model” within the astroparticles literature), Salucci et al.
(2010) and others built Galactic models and estimated ρDM ∼

0.006−0.01 M� pc−3 in the solar neighbourhood (see Table 4
from Read 2014).

If we consider the Galactic rotation curve (Reid et al.
2014) deduced from data of the BeSSeL project (Brunthaler
et al. 2011), which leads to a higher circular velocity curve
of about Vc ∼ 240 km s−1 (McMillan 2011; Bobylev &
Bajkova 2013; Reid et al. 2014), and also assuming a spheri-
cal dark matter halo, McMillan (2011) obtained ρDM = 0.40 ±
0.04 Gev cm−3(=0.010 M�/pc−3) a relatively low value still.

Concerning the local slope of the rotation curve, some of the
strongest evidence comes from the determination of Oort’s con-
stants by Olling & Dehnen (2003), based on H data
(see also Mignard 2000). Their determination is based on the
oldest red giant stars, over a large domain of 2 kpc radius around
the Sun. Their careful analysis considers the necessary correc-
tions for the bias due to the extinction and also to the mode mix-
ing from the solar motion. They found out that the rotation curve
is flat over ±2 kpc from the Sun’s Galactic radius, varying by
less than (A + B)/2 = dVc/dR = +0.5 ± 0.8 km s−1 kpc−1 (and
dln Vc/dln R = +0.02). Their value of the slope of velocity curve
introduces a small additional non-zero contribution to the local
mass density from the Poisson equation:

(4πGR)−1 ∂V2
c

∂R
=

B2 − A2

2πG
= +0.0012 ± 0.0019 M� pc−3.

For high values of the local dark matter density such as those
we obtained here, we can mention the work by Burch & Cowsik
(2013) who built a global dynamical Galactic model to constrain
ρDM at the Galactic centre and at R0 from published observa-
tions of the circular velocity curve. They plot the Kz force that
can be directly compared with our measurement. One of their Kz
models (Fig. 6b) is in agreement with our determination within
z = 0 to 2 kpc and they obtained ρDM(z = 0) = 0.015 M� pc−3.
Unfortunately, in their model they adopt a rapidly rising rota-
tion curve at R0 that we judge very unlikely. This rising rotation
curve, with dln Vc/dln R ∼ 0.16 explains their high value ob-
tained for ρDM. In their model, if the rotation curve was flat, the
local density would probably be about 0.006 M� pc−3.

In a recent study, using tracer stars with z between 1 to 2 kpc,
Smith et al. (2012) estimated an order of magnitude for ρDM(z =
0) = 0.015 M� pc−3, similar to our finding. However, because
of their crude modelling of the potential and the lack of a clear
definition of the selection function, they decided not to give error
bars for their estimate. It remains remarkable that this unique
previous analysis of distant tracer stars agrees with our finding.
Finally, Piffl et al. (2014b) also recently determined a similar
value as ours with the RAVE data, for a halo flattening of 0.8.
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5.3. Global galactic properties

When we consider our model with ρDM = 0.014 M� pc−3, a flat
rotation curve and a spherical halo, this implies Vc = 267 km s−1,
which is a too large value compared to the recent determinations
of the Galactic rotation curve. The simplest way to reconcile our
local determination of the dark matter density with the admitted
flat rotation curves based on direct observations consists in flat-
tening the dark matter halo. An axis ratio of the order of 0.67
is necessary, in the case of Vc = 220 km s−1 as determined by
Bovy et al. (2012). This significant flattening is not in agreement
with the results of Galactic cosmological numerical simulations
(Macciò et al. 2007) for which a mean flattening of the order of
0.8 is expected. Moreover, Pillepich et al. (2014) analysed sim-
ulations including dissipational gas physics and obtained much
rounder halo with q = 0.99, instead of q = 0.53 in the case of
DM-only numerical simulations.

In fact, combining the circular velocity from the BeSSeL
project Vc ∼ 240 km s−1 (McMillan 2011; Bobylev & Bajkova
2013; Reid et al. 2014), with a nearly flat rotation curve at the
Sun position, and a flattening of 0.8, leads to our estimated value
of the local dark matter density, in accordance with Piffl et al.
(2014b). This value of the circular velocity makes the Milky Way
a clear outlier from the Tully-Fisher relation (Holmberg et al.
2006; Hammer et al. 2012).

Another plausible explanation of a high local DM density
comes from the cosmological numerical simulations by Read
et al. (2009, Fig. 9) and Pillepich et al. (2014; see also Ling 2010,
for DM detection implications). They showed that in the case of
a disc galaxy already in place at high redshift, the later accretion
of galaxy satellites create a slowly rotating very thick disc or
flattened spheroidal component of dark matter. This dark com-
ponent results from the accretion of the dark component of each
accreted satellite. Due to the history of accretion, this accreted
DM component has a high angular momentum, with kinemati-
cal properties intermediate between the stellar disc and a non-
rotating spherical dark halo. Its detailed structure depends on
the details of the accretion history, and the halo mass depends
on the unknown number and mass of accreted satellites. The
local contribution of this accreted DM component could be 25
to 150 percent the density of the primordial and nearly spherical
DM component. In the case of a small scale height of the order
of 2–3 kpc, its vertical density is quickly decreasing. In such a
case, our modelling of the Kz force probably does not include
a sufficient number of free parameters to accurately model the
shape of the Kz force between 1 and 2 kpc. We might suspect
that our modelling forces a nearly linear rise of the Kz between 1
and 2 kpc. A supplementary (thick disc) Kuzmin-Kutuzov com-
ponent could be added (Famaey & Dejonghe 2003) to model
more precisely the vertical dark matter density and potential, but
it is not clear that the size of our sample will allow us to discrim-
inate between models with so many parameters.

A similar disc of “phantom” dark matter (from the point of
view of a Newtonian observer) is predicted (Bienaymé et al.
2009) by the MOND effective theory. This can be a very similar
effect to that observed in numerical simulations of accretion of
satellite galaxies. For a baryonic model like that assumed here,
a vertical force Kz/(2πG)∼ 90 M� pc−2 is predicted at z = 2 kpc.
Nevertheless, a somewhat high value ∼75 M� pc−2 is rather pre-
dicted at z = 1 kpc. For the same reason mentioned previously,
our two Kuzmin-Kotozov components modelling of the vertical
force is not adequate to correctly reproduce the Kz force in the
case of Mondian model that shows a significant bending of the
vertical force law between z = 1 and 2 kpc.

5.4. A Galactic DM halo with core?

Now, if we consider the consistency of our local Kz determina-
tion with ΛCDM, we first note that our result is nearly indepen-
dent from any assumptions on the form of the Galactic potential,
for instance in the central regions of the Galaxy. The decompo-
sition of the Kz force in dark and visible contributions requires
additional information, for instance, the disc scale length of the
visible matter. Previous determinations indicated that there was
less dark matter mass than predicted by cosmological simula-
tions within R0 (Navarro & Steinmetz 2000; Binney et al. 2000;
Famaey & Binney 2005; Abadi et al. 2010), whilst our deter-
mination would imply that there is more dark matter mass in-
side R0. This has implications for the mass concentration and
can be tested relative to the mass-concentration relation reported
by Macciò et al. (2008). This point is dicussed in detail in Piffl
et al. (2014b) and they concluded that modifying the Galactic
halo profile by taking NFW adiabatic contraction into account,
they can obtain an agreement with simulations in a ΛCDM uni-
verse. We also remark that the recent Galactic DM halo mod-
elling by Nesti & Salucci (2013) constrained with inner terminal
velocities, MASER observations, and stellar halo velocity dis-
persions gives a high local DM mass density consistent with our
finding. Their modelling favoured a cored profile (RH ∼ 10 kpc)
of the DM halo (see also Bissantz et al. 2003).

6. Conclusion

We have established that a significant amount of dark matter re-
sides close the Galactic disc: the local dark matter mass den-
sity is ρDM(z = 0) = 0.0143 ± 0.0011 M� pc−3. We have in-
dependently determined the local DM density and the baryonic
disc surface density at the solar Galactic radius R0. The large
size of our sample leads to small statistical errors, but it is clear
that systematic errors could also arise from neglected elements
in our modelling. For instance, one aspect of dynamical mod-
elling can be questioned: resonant orbits (from vertical relative
to horizontal motions) are numerous at z beyond 1 kpc and are
not modelled by Stäckel potentials, or with a simple torus fitting.
Also, the non-axisymmetric effects due to spiral arms (Faure
et al. 2014; Debattista 2014) or non-equilibrium features gen-
erated by the potential interaction of satellites with the Galactic
disc (Gómez et al. 2013) could also bias the result. The ampli-
tude of non-axisymmetry and non-stationarity and its impact on
the Kz studies is in general accepted to be small (Read 2014), but
should be quantified precisely on an observational basis. Much
larger samples with extremely accurate data on a much wider
Galactic volume are expected from the Gaia mission, and will
help in examining and solving all such questions.
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Appendix A: Separable potential and Jeans
equation of the vertical motion

(Summary) Here we show that the Jeans equation of the ver-
tical motion of stars and the Collisionless Boltzmann equation
(CBE) for the vertical motions have the same general solutions.
The CBE is obtained under the assumption of separability of the
vertical and horizontal motions (i.e. σr,z = 0), while the Jeans
equation is obtained under a less restrictive assumption.

Garbari et al. (2012) used a general formulation for the solu-
tions of the Jeans equation of vertical motion. Then, they claim
that their solution is more general than that obtained under the
more restrictive hypothesis of separability.

Here, we show the opposite. Under these two different hy-
potheses (one more restrictive than the other), we obtain the
same general solutions. Thus, the useful formulation used by
Garbari et al. (2012) is not more general than that obtained under
the simple hypothesis of separability.

(Justification) The usual approximation, at low z, to model
the motion of stars perpendicular to the Galactic plane consists
of assuming that the Galactic potential is separable in R and z
coordinates, thus the correlation between vertical and horizon-
tal velocities is zero, σRz = 0 and the velocity ellipsoids remain
parallel to the Galactic plane. Reciprocally, the potential is sep-
arable in the domains where σRz = 0.

Under the assumption of separability, the stationary vertical
distribution function of stars may be described using the 2D col-
lisionless Boltzmann equation (CBE):

w
∂ f (z, w)
∂z

−
∂Φ(z)
∂z

∂ f (z, w)
∂w

= 0. (A.1)

Besides, the Jeans equation corresponding to stationary vertical
motions is
1
R

∂

∂R

(
Rνσ2

Rz

)
+
∂

∂z

(
νσ2

z

)
+ ν

∂Φ

∂z
= 0 (A.2)

and can also be simplified by canceling the first l.h.s. term when
the potential is separable since then σRz = 0.

Recently, Garbari et al. (2012) used a general solution of this
reduced Jeans equation:

∂

∂z

(
νσ2

z

)
+ ν

∂Φ

∂z
= 0. (A.3)

They notice that the cancellation of the first l.h.s. term of
Eq. (A.2) covers more general and less restricting hypothesis
than the assumption of separability (i.e. σRz = 0) and claim that
this “minimal assumption method ... breaks the assumption that
the distribution is separable”. Without a clear justification, they
assume that their general solution is more general than those usu-
ally used, for instance by Holmberg & Flynn (2004).

Here, we show the opposite and we establish that cancelling
the l.h.s. term of the Jeans Eq. (A.1) gives the same solution that
in the case of separability of the R and z motions.

Thus, let be f (z = 0,w) = g∗(p = w2/2), the velocity distri-
bution of a stationary solution at z = 0. This function is odd and
can be written as an integration over an infinite set of Gaussians:

f (z = 0, w) = g∗(p) =

∫ ∞

0
a(σ) e−w

2/(2σ2) dσ. (A.4)

This is equivalent to the Laplace transform, with β = 1/σ2 and
a(σ) dσ = g(β)dβ:

g∗(p) =

∫ ∞

0
g(β) e−βp dβ = L [g(β)]. (A.5)

If the integral exists, for instance when f (z = 0, w) is null for
large values of w, then g(β) exists, it is unique and is given by
the inverse Laplace transform

g(β) = L−1[g∗(p)] (A.6)

that gives us the unique decomposition in Gaussians (Eq. (A.4)).
For an isothermal component (i.e. Gaussian in velocities

with a dispersion σ) the solution of the Jeans Eq. (A.3) is
νσ(z) = e−βΦ(z), with Φ(0) = 0, and since, from Eq. (A.4), we
have

ν(0) =

∫ ∞

0
a(σ) dσ

then the general solution can be written:

ν(z) =

∫ ∞

0
a(σ) e−Φ(z)/σ2

dσ. (A.7)

This general solution of Eq. (A.3) has a different form, but is
identical to the general solution given by Eq. (8) of Garbari et al.
(2012). A key point is that for any given odd function f (z = 0,w)
representing the distribution function at z = 0, there is a unique
function f ′(z, w), solution of the Jeans Eq. (A.3), that satisfies
f ′(z = 0,w) = f (z = 0,w).

Now, on the other hand, the general solution of the CBE is
h(E) where E is the energy. The distribution function at z = 0,
is given by h(E(z = 0)) = h(w2/2). As has been done previously,
we can inverse the function h and rewrite the general solution.
Thus, we obtain an equivalent form of the general solution:

f (z, w) =

∫ ∞

0
a(σ) e−Φ(z)/σ2 1

√
2πσ

e−w
2/(2σ2)dσ, (A.8)

where a(σ) is related through an inverse Laplace transform to
h(E = 0).

By integrating f (z, w) over the w velocities, we exactly re-
cover the general solution (Eq. (A.7)) of the Jeans Eq. (A.3).

Thus, the general solution obtained for the Jeans Eq. (A.3)
has the same form as the general solution of the CBE for a sep-
arable potential.

In conclusion, the hypothesis that the l.h.s. term in Eq. (A.2)
is null, is indeed a more general hypothesis than the hypothesis
of separability. However, contrary to the Garbari et al. (2012)
claim, the general solution of Eq. (A.3) is neither more general
nor different than the solution (Eq. (A.8)) obtained from the hy-
pothesis of separability.
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