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ABSTRACT

Context. The use of artificial laser guide stars (LGS) is planned for the new generation of giant segmented mirror telescopes in order
to extend the sky coverage of their adaptive optics systems. The LGS, being a 3D object at a finite distance, will have a large elongation
that will affect its use with the Shack–Hartmann (SH) wavefront sensor.
Aims. In this paper, we compute the expected performance for a Pyramid WaveFront Sensor (PWFS) using an LGS for a 40 m telescope
affected by photon noise, and also extend the analysis to a flat 2D object as reference.
Methods. We developed a new way to discretize the LGS, and a new, faster method of propagating the light for any Fourier filtering
wavefront sensors (FFWFS) when using extended objects. We present the use of a sensitivity model to predict the performance of a
closed-loop adaptive optic system. We optimized a point-source-calibrated interaction matrix to accommodate the signal of an extended
object by computing optical gains using a convolutional model.
Results. We find that the sensitivity drop, given the size of the extended laser source, is large enough to make the system operate in
a low-performance regime given the expected return flux of the LGS. The width of the laser beam is identified as the limiting factor,
rather than the thickness of the sodium layer. Even an ideal, flat LGS will have a drop in performance due to the flux of the LGS, and
small variations in the return flux will result in large variations in performance.
Conclusions. We conclude that knife-edge-like wavefront sensors, such as the PWFS, are not recommended for use with LGS for a
40 m telescope, as they will operate in a low-performance regime, given the size of the extended object.

Key words. instrumentation: adaptive optics – methods: analytical – methods: numerical

1. Introduction

The next generation of Extremely Large Telescopes (ELTs) will
offer unprecedented opportunities for ground-based observa-
tions. These telescopes are three to four times larger than their
predecessors, providing greater resolving power that enables the
detection of finer structures than previously possible. This makes
ELTs a promising option for direct imaging of exoplanets and
for studying their atmospheric composition, potentially leading
to the detection of biomarkers (Snellen et al. 2013). The light-
gathering capability of these new telescopes will be an order of
magnitude greater than the previous generation, allowing obser-
vations of more distant and faint objects, which are needed in
order to study the early stages of the Universe (Gilmozzi &
Spyromilio 2007).

The resolving power of the ELTs will be limited by the atmo-
spheric coherence length r0, which is typically between 10 and
15 cm. Without atmospheric compensation, ELTs would perform
no better than a home telescope. Adaptive optics (AO) is used to
overcome this limitation (Hardy et al. 1977); it consists of three
main components: a wavefront sensor (WFS), which measures
phase aberrations introduced by the atmosphere; a deformable
mirror (DM), which corrects these disturbances by deforming its
surface; and a real-time computer (RTC), which processes the

measurement from the WFS and sends the corresponding signal
to the DM at high speed.

To measure atmosphere distortions, a guide star is neces-
sary. Laser guide stars (LGSs) have been used for over 30
years to compensate for the lack of natural guide stars (NGSs)
bright enough to provide good sky coverage for AO systems
(Primmerman et al. 1991). LGSs are generated by using a laser to
excite sodium atoms present in a layer of about 20 km in thick-
ness at approximately 90 km above sea level (Foy & Labeyrie
1985). Due to beam divergence, atmospheric conditions, and the
thickness of the sodium layer, the laser beacon in the sky is a
cylindrical volume with a width in the order of one arcsecond
and a height of 20 km, making it a 3D object.

The Shack–Hartmann (SH) wavefront sensor is a popular
choice for measuring wavefront aberrations. The SH WFS is a
focal plane sensor that measures the gradient of the incoming
phase of the wavefront. It uses a grid of micro-lenses, with each
lens sampling a portion of the wavefront and producing an image
of the source. The position of each image is proportional to the
average gradient of the portion of the incoming phase of the
wavefront. However, for a 40 m telescope with an 80 × 80 sub-
aperture SH WFS, considering a side-launch telescope, the LGS
spot is four times wider and up to sixty times larger than the
diffraction-limited spot of each subaperture. This means that to
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correctly sample the laser spot, the detector of the SH must have
a relatively large number of pixels (e.g. 1600 × 1600) (Fusco
et al. 2019). This wavefront sensor is currently being used in the
design of some of the ELT first light instruments, such as the
High Angular Resolution Monolithic Optical and Near-infrared
Integral field spectrograph (HARMONI; Thatte et al. 2016) and
the Multiconjugate adaptive Optics Relay For ELT Observations
(MORFEO; Ciliegi et al. 2022).

The pyramid wavefront sensor (PWFS; Ragazzoni 1996) is a
pupil plane WFS from the family of the Fourier filtering WFS
(FFWFS). Its working principle is similar to the Foucault knife-
edge test, but instead of blocking part of the light, the PWFS uses
a glass pyramid to split the light in the focal plane and generate
four images of the entrance pupil each of which has a specific
intensity pattern that encodes phase information. Given the dif-
ficulties of using the SH WFS with LGSs, the PWFS has been
proposed as an alternative (Le Roux 2010; Pinna et al. 2011;
Quiros-Pacheco et al. 2013; Blain et al. 2015; Esposito et al.
2016), given its higher sensitivity and lower demand on pixels.
An equivalent 80 × 80 subaperture PWFS would need a detec-
tor no bigger than 240 × 240 pixels, allowing the use of fast,
low-noise detectors.

Modulation of the PWFS is a commonly used technique
for NGSs, where a known oscillating aberration (typically tip-
tilt) is introduced, which allows the properties of the PWFS to
be adjusted: an increase in modulation radius gives a higher
dynamic range at the cost of lower sensitivity (Vérinaud 2004;
Fauvarque et al. 2016). The integration time of the detector has
to be an integer multiple of the period of the oscillation. This
produces a signal equivalent to having many incoherent point
sources arranged in a circle (assuming circular modulation, a
static atmosphere during integration, and no anisoplanatism).

The SH WFS with LGS for a 40 m telescope will need
a detector with too many pixels to correctly sample the elon-
gated spots of the LGS, affecting the associated sensitivity. We
are therefore interested in investigating the performance of the
PWFS when using an LGS, given its higher sensitivity when
using an NGS and its lower demand on pixels. The performance
is measured as the Strehl ratio obtained in an AO loop for differ-
ent return fluxes of the guide sources. To do this, we first have to
understand the properties of the LGS, and how this artificial star
shapes the signal that we measure with the PWFS. As the com-
puting requirements are high (in terms of memory and time),
we had to develop new techniques that allowed us to simplify
the simulations. These simulations were based on the end-to-end
(E2E) physical optics models from OOMAO (Conan & Correia
2014).

The main objective of this work is to study the performance
of the PWFS for different sources, namely NGS, LGS-2D, and
LGS-3D, and different telescope sizes from 8 to 40 m. Our main
aims are to test the influence of photon noise in closed-loop oper-
ation, to compare the E2E results with predictions using linear
models, and finally to compute the expected performance for a
40 m telescope.

A major difficulty in computing the performance is the
size of the simulations. Considering a side-launch LGS, by
using a geometrical approach it is possible to compute that the
extension of its image in a 40 m telescope is about 20 arc-
sec, taking into account both the angular size and the depth of
field. Using 2.4 pixels per λ/D (i.e., 1.2 × Shannon), and an
observing wavelength of 589 nm, those 20 arcsec correspond to
just under 16 000 pixels. Leaving space for diffraction or atmo-
spheric effects, the matrices that would be needed to propagate
have approximately 20 000× 20 000 complex, double-precision

entries for each sample of the LGS. The interaction matrix for
an 80 × 80 deformable mirror would need around 11 000 frames
to be computed. With our current hardware (Intel(R) Xeon(R)
Gold 6142 CPU @ 2.60 GHz), this calibration process would
take months or even years.

To achieve the goal of computing the performance of the
40 m telescope, in Sect. 2, we present the mathematical for-
malism we use to process the raw data from the PWFS, and
introduce the analytical model that we use to predict the per-
formance for the 40 m telescope, instead of having to do the full
E2E simulations. This model requires the interaction matrix of
the system, and therefore in Sect. 3 we describe how we simu-
late the LGS such that we are able to build an E2E interaction
matrix. Section 4 presents some of the issues and alternatives
for the computation of the interaction matrix both in simula-
tion and for a real telescope. In Sect. 5, we describe how we
use a convolutional model to optimize an interaction matrix
– originally calibrated using a point source – for use with an
LGS. Finally, in Sect. 6 we show E2E closed-loop simulations
of smaller telescopes (8 and 16 meters) to validate the predic-
tions of the analytical noise model. With the validated model, we
are then able to extrapolate the results and compute the expected
performance of the AO loop for the 40 m telescope.

2. Data processing and noise propagation

2.1. Signal and reconstruction

The framework we used for the signal processing of the PWFS
in this work is the one presented in Chambouleyron et al. (2023).
Given an input phase ϕ, we processed the raw signal from
the PWFS I(ϕ) to obtain the reduced intensities ∆I(ϕ). As a
reference intensity I0, we used the signal of the PWFS corre-
sponding to a flat wavefront. We built the interaction matrix
D = [δI(ϕ1), . . . , δI(ϕN))] using the push-pull method, inputting
an orthogonal basis [ϕ1, . . . , ϕN] in the phase space correspond-
ing to Karhunen–Loève modes. The full notation can be found
in Appendix A.

The reconstructor can then be obtained as the pseudo-inverse
of D as D† = (DtD)−1Dt. Assuming a small phase regime
and the linearity of the PWFS, the modal reconstruction of
the phase ϕ′ can be obtained with the following matrix-vector
multiplication:

ϕ′ = D† ∆I(ϕ). (1)

2.2. Noise propagation

Noise in the AO loop is given by two distinct terms: read-out
noise (RON) and photon noise. The residual variance due to
noise for each corrected mode is given by the sum of these two
noise contributions. In this work, we use the analytical model
developed in Chambouleyron et al. (2023), and the specific nota-
tion is provided in Appendix B. As the detectors needed for the
PWFS are small, it is possible to use ultralow noise detectors
with subelectron RON (Gach et al. 2011), meaning that we can
neglect read-out-noise. It is therefore possible to assume that the
only contribution to noise is photon noise. Even if detector noise
were to have a significant impact, photon noise is a fundamen-
tal limit that is independent of the technology being used. With
the analytical model, it is possible to compute a sensitivity to
photon noise sγ(ϕi) (see Chambouleyron et al. 2023, Eq. (23)
or Appendix B, Eq. (B.3)), which encodes the robustness of
the system to photon noise when measuring the amplitude of
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Fig. 1. Evolution with respect to the magnitude of the guide star of
the residual phase variance due to photon noise in open and closed
loop for an 8 m telescope with a 4λ/D modulated NGS. The solid line
corresponds to the residual phase variance σ2

noise using sensitivity anal-
ysis from Eqs. (2) and (3), and the markers correspond to the mean of
200 E2E iterations, with the error bar being the standard deviation of the
residual variance. For reference, at magnitude 10, Nph = 4.5 × 104 pho-
tons.

mode ϕi with the PWFS. If we have a frame with Nph photons,
the total residual variance introduced by photon noise at that
measurement is

σ2
γ =

n∑
i=1

1
Nph s2

γ(ϕi)
. (2)

To compare this approximated model with E2E simulations,
we simulated 200 realizations – with no atmosphere (i.e., a flat
wavefront) – of an open loop AO system with no controller.
These simulations were performed for a 4 λ/D modulated NGS
with magnitudes ranging from 5 to 20. We find good agreement
between the E2E simulation and the sensitivity model, as can be
seen in Fig. 1, with the predicted residual variance shown by the
red line and the E2E simulations by the orange markers.

We needed to see if our noise model works in a closed loop,
taking into account its temporal properties. The controller used
was a discrete integrator in the feedback path with gain α. The
dynamics of the DM were modeled as a zero-order hold (ZOH)
and the WFS as a ZOH with a time delay of one period T . An
additional time delay of one period was assumed for the com-
putation of the signal. Taking α = 0.3 and a sampling frequency
F = 1 kHz, we can integrate the magnitude squared of the noise
transfer function (NTF) over the bandwidth to obtain the total
noise σ2

noise that is propagated through the AO loop. Solving the
integral we get

σ2
noise = δσ

2
γ, (3)

with δ = 0.33 (see the details in Appendix C). To compare the
model with the E2E simulations, we simulated 200 realizations
of a closed loop for a flat wavefront. We find good agreement
with the sensitivity analysis combined with the control theory,
as can be observed in Fig. 1. The light-green line represents the
residual variance predictions and the E2E results are indicated
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Fig. 2. Schematic of the LGS and the image formation. The drawing is
not to scale and proportions were altered for ease of understanding.

with bluish green markers, showing good agreement between
simulation and theory. The uppermost point of the closed loop
E2E simulation deviates from the expected behavior. There are
three possible reasons for this deviation: the nonlinearities of
the pyramid decrease the sensitivity, which increases the over-
all noise propagated; photon noise sensitivity assumes that the
illumination pattern in the detector is similar to the reference
intensity, and therefore for large residual phase variances, the
sensitivity might not accurately predict the propagation of noise;
and the nonlinearities of the pyramid have an effect on the con-
trol loop, and these were not taken into account when computing
the NFT. The first two affect both the open and closed loop cases,
and therefore the latter is the most plausible explanation for the
deviation of the uppermost point of the closed loop.

To be able to compute the sensitivity of the system, we
have to compute the interaction matrix. The following section
describes how we simulated the LGS, such that we were then
able to build an E2E interaction matrix.

3. Laser guide star simulation

3.1. Laser guide star geometry

A simple schematic of the LGS is provided in Fig. 2 and shows
how its image interacts with the PWFS. The focal plane image
of the LGS is not a perfect point source but rather has a width
of around 1 arcsecond and can be elongated by on the order of
tens of arcseconds in one axis for a 40 m telescope due to the
thickness of the sodium layer and the laser being launched from
the side of the primary mirror. To understand the effects of this
elongation, Fig. 3 shows how tip, tilt, and positive and negative
focus impact the distribution of light in the detector of the PWFS.
For each portion of the elongated LGS, the light distribution on
the sensor will be a combination of these effects.

Focal plane images of the test sources can be observed in
the top and middle rows of Fig. 4. The first column from left
to right is a 4 λ/D modulated NGS, and the subsequent column
corresponds to a reference object composed of a nonelongated
1 arcsec spot. The subsequent columns show the LGS focal plane
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Fig. 3. Illustration of the effects of positive, zero, and negative focus (top row) and tip and tilt (bottom row) on the light distribution in the detector
of the PWFS. The light cone is shown in blue and the glass pyramid in cyan.

image and detector intensity for progressively larger telescopes,
from 8 up to 40 m in diameter.

To understand the light distribution on the detector of the
PWFS shown in the bottom row of Fig. 4, it is easier to divide
the LGS into two halves. The top half is focused before the tip
of the pyramid, skewing the light in the detector inwards, but due
to the elongation, this portion mainly interacts with the upper
faces of the pyramid, and therefore the light gets refracted to the
bottom pupils. Similarly, for the bottom half, the light is focused
after the tip of the pyramid and shifted toward the lower faces,
making the light distribution on the detector skew outwards and
to the top pupils. This effect is dependent on the telescope size,
being more important for bigger telescopes; for example, for
the 40 m telescope, almost half of the pixels have little to no
illumination.

An interesting case is to reduce the thickness of the sodium
layer to zero, essentially obtaining an artificial guide star with no
thickness, whose size would be determined by the width of the
sodium laser and the atmospheric conditions, as can be observed
in the left row of Fig. 4. This case is interesting as it allows us
to observe which elongation (x/y or along z) has the greatest
impact on the PWFS sensitivity. Also, it allows us to obtain an
upper bound on the performance of the system regarding noise
propagation. An instrument can be built considering the Z elon-
gation of the LGS, interacting with the age of the LGS as if it
were only a 2D object. We refer to this case as LGS-2D; alter-
natively, the case where we use the full 3D structure of the laser
beacon is referred to as LGS-3D hereafter.

One interesting aspect to consider is the dependence of the
elongation of the LGS on the zenith angle. Both the angular size
∆α and the extension normal to the focal plane ∆z are propor-
tional to the cosine of the zenith angle (see Appendix D), which
means that the worst-case scenario for the LGS-3D is encoun-
tered when observing directly upwards. The more the zenith
angle increases, the more similar LGS-3D is to LGS-2D.

It is important to consider that the size of the LGS has
a similar effect to modulation with an NGS, as each sodium
atom that emits light acts as a point source, and their contribu-
tion to the pyramid signal is incoherent with every other atom.
One difference with the NGS, which is usually operated with

modulation of a few λ/D (Schwartz et al. 2020), is the magni-
tude of this equivalent modulation, as 1 arcsec is equivalent to
65 λ/D for an 8 m telescope, and around 330 λ/D for a 40 m,
considering λ = 589 nm in both cases. This equivalent modula-
tion is responsible for lowering the sensitivity of the instrument
(Quiros-Pacheco et al. 2013).

3.2. LGS sampling

To simulate an LGS it is necessary to discretize the sodium
layer into samples. These samples correspond to individual point
sources propagated through the PWFS, meaning that the PWFS
signal is the incoherent sum of the signal produced by each
sample. Previously, a common approach was to uniformly sam-
ple the LGS (Le Roux 2010; Quiros-Pacheco et al. 2013; Blain
et al. 2015; Esposito et al. 2016; Viotto et al. 2018), dividing
the sodium layer into regularly spaced slices, with each of these
containing regularly spaced point sources. Then, using a sodium
density profile, the contribution of each layer was scaled to take
into account the relative distribution of sodium atoms. There are
several issues with this method of simulating an LGS: (i) Many
points provide little contribution to the signal but are equally
expensive computationally; (ii) large portions of the LGS are
not sampled, and therefore it is difficult to test realistic sodium
profiles; and (iii) the periodicity of the samples can introduce
unwanted structures given by the symmetry and periodicity of
the grid used for sampling.

Instead, in this work, a Monte Carlo approach was used to
simulate the LGS. To do this, the three coordinates of each
sample were randomly drawn from sets that followed a specific
probability density function. The X coordinate was drawn from a
set that followed a Gaussian distribution centered at zero, with a
full width at half maximum (FWHM) of the equivalent of 1 arc-
sec at 90 km, as can be observed in the left plot of Fig. 5. The
Y coordinate had the same FWHM but was centered at the side
of the telescope to simulate a laser being launched from the side
of the primary mirror, as can be observed on the middle plot
in Fig. 5. For the Z coordinate, the relative distribution of the
sodium atoms can be used as a probability density function, and
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Fig. 4. Focal plane images of the tested sources, and their illumination pattern on the detector. From left to right, the simulations correspond to
a 4λ/D modulated NGS for a 40 m telescope, LGS-2D, and LGS-3D for 8, 16, and 40 m telescopes. Top row: Focal plane images. The scale
is normalized such that the maximum pixel value in each image is one. Middle row: Focal plane images with a logarithmic stretch for better
visualization. Bottom row: Intensities in the detector of the wavefront sensor for a flat wavefront. The intensities are normalized such that the
maximum pixel value is one. We note that the field of view for the NGS corresponds to 0.4 arcsec, meanwhile, for the extended sources, the field
of view is 30 arcsec. The last column includes a color bar that is valid for the whole row.

Fig. 5. Probability density functions and sample histograms for the coordinates of each sample. The X and Y coordinates are randomly drawn from
Gaussian distributions whose width depends on the width of the laser beam, and the center of the Y distribution is on the edge of an 8 m telescope.
The Z coordinate is randomly drawn from a probability density function that follows the sodium profile.

a random set of samples can be generated that follows that dis-
tribution, as can be observed in the right plot in Fig. 5. Figure 6
shows an example of the complete sampling of an LGS, where
the color of each sample represents the relative density of sam-
ples, normalized such that the greatest probability is 1. The top
image shows the physical location of each sample in the sodium
layer, with a corner cut out such that it is possible to observe the
structure on the inside of the LGS. The bottom image shows the
relative angular position of each sample as observed by the tele-
scope (translated such that the center of mass is at the center),
where it is possible to observe the elongation of the LGS.

Throughout this work, seven different sodium profiles are
tested when possible, given the extensive simulation times
needed to test each one. These sodium profiles correspond to
typical conditions, each of which presents a distinctive charac-
teristic, as presented in Fig. 2 of Pfrommer & Hickson (2014).

3.3. A new, faster technique to simulate an LGS: ROI
propagation

Building an interaction matrix can be a lengthy process, as two
complete E2E propagations must be simulated for each mode,
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Fig. 6. Distribution of the samples of the LGS. Top image: position
of each sample of the LGS in the sky for a 40 m telescope with the
laser pointing parallel to the pointing of the telescope. Bottom image:
relative angular position of each sample with respect to the center of
mass of the set of samples. The color of each sample corresponds to its
probability density with respect to the most probable sample. A corner
from both images was cut to show the inside of the LGS. The shadow
on the bottom is there to show how the corner was cut from the LGS to
show the inside and also to show the dimensions of the source.

taking into account the signal of each and every sample. If we
consider the resolution of the telescope, its field of view (FoV),
and the number of corrected modes, it is possible to compute that
the time to build an interaction matrix grows as the sixth power
of the diameter.

With this in mind, we developed a new technique we call
region of interest (ROI) propagation. ROI propagation tackles
the problem of the large FoV needed to simulate the LGS. It is
based on the fact that each individual sample of the LGS inter-
acts with a small portion of the pyramid (Oyarzún et al. 2022).

The general idea of the method is to take only the portion of
the pyramid the sample would interact with, instead of using the
FoV needed to accommodate the LGS. To do this, we translate
and crop the pyramid phase mask to compensate for the tip and
tilt of the sample. To simulate the LGS-3D, we add the focus
coefficient of each sample, which is given by its distance from
the telescope. For the 2D version, this step is skipped. Finally,
we propagate each sample individually and incoherently sum the
PWFS signals of all the LGS samples to obtain the final signal.

To explain the mathematical basis of this method, let us con-
sider the incoming wavefront of a single sample. This wavefront
will have contributions to its phase coming from the atmosphere
ϕatm, the height of the sample ϕfocus, and its position in the sky
ϕtil−tilt with respect to the pointing of the telescope. At first, let us
only consider the contributions of the atmosphere and the height
of the sample. The wavefront can be expressed as

ψ(x, y) = Ip(x, y)ei(ϕatm(x,y)+ϕfocus(x,y)), (4)

where x and y are the coordinates of the entrance pupil and Ip
is the pupil indicative function. A simplified form of the wave-
front at the focal plane Ψ can be obtained by taking the Fourier
transform of the wavefront at the pupil plane

Ψ(u, v) = F (ψ(x, y))|u= x
λ ,v=

y
λ
. (5)

Now, considering that the sample is located at an angle dis-
placement of (α, β) with respect to the pointing of the telescope,
the wavefront at the focal plane is displaced by that amount,

Ψ(u − α, v − β) = F (ψ(x, y) eiϕtip−tilt(x,y))
∣∣∣
u= x

λ ,v=
y
λ

. (6)

This wavefront is then affected by the phase mask m, which
is characterized by

m(u, v) = eiϕmask(u,v). (7)

Subsequently, considering the coordinates of the detector
plane, x′ and y′, the light distribution of the pupil images I(x′, y′)
is obtained by taking the Fourier transform of the combination
of the wavefront at the focal plane and the phase of the mask:

I(x′, y′) =
∣∣∣F (Ψ(u − α, v − β) m(u, v))|x=λu,y=λv

∣∣∣2 . (8)

Using the properties of the Fourier transform, the previous
expression can be expressed as

I(x′, y′) =
∣∣∣F (Ψ(u, v) m(u + α, v + β))|x=λu,y=λv

∣∣∣2 . (9)

As we get back Ψ(u, v), this means that instead of having
to simulate the complete FoV for each sample, the phase mask
can be shifted to take into account the position of each sample
with respect to the pointing of the telescope, and the FoV can be
adapted for each sample such that it is big enough to contain the
complete image of the star.

To illustrate how this works, Fig. 7 shows an example for a
40 m telescope of three samples at 400 (top), 3000 (middle), and
6000 (bottom) meters from the plane of focus, located at 90 km
from the telescope, where the left column shows the image of the
sample in the focal plane, the middle column shows the region of
interest of the pyramidal mask the sample is interacting with, and
the right column shows the image of the pupils in the detector
plane.

Special care has to be taken when including atmospheric tur-
bulence in order to contain the complete image of the sample
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Fig. 7. Example for a flat wavefront of three samples propagated using
the ROI propagation technique for a 40 m telescope. From top to bottom,
the samples are at 400, 3000, and 6000 meters from the plane of focus.

Fig. 8. Three examples of seeing-limited samples propagated using the
ROI propagation technique for a 30 m telescope. From top to bottom,
the samples are 400, 3000, and 6000 m from the plane of focus.

within the selected FoV. Figure 8 shows how this method handles
seeing-limited samples.

To check if this new method produces the same signal as the
complete E2E considering the full FoV for each propagation, we
simulated both a propagation for a flat wavefront and another
with atmospheric conditions for an 8 m telescope. We then nor-
malized the images and computed the difference, finding that
for each case both methods produce practically the same signal.
Figure 9 shows the images obtained in each simulation, where
the right column corresponds to the difference between the two
methods. To give a metric of how similar these methods are, we
took the RMS of the difference of the atmosphere-affected pupils
I(ϕ) and found an RMS value of less than 0.1% of the average
pixel value. For this simulation, the new method was computed
over 30 times faster. As the telescope size increases, this new
method provides even greater speedup with respect to the full
FoV method.

It is important to mention that even with this new method,
a full E2E interaction matrix for the 40 m telescope is too
demanding both in terms of time and computational resources:
computing such a matrix with our current hardware would take
months. Nevertheless, in the following section, we show how we

Fig. 9. Comparison between the full FoV propagation and the ROI
propagation. Left column: full simulation considering the complete
FoV for each sample. Middle column: ROI propagation. Right column:
100 times the difference between the two. Top row: Intensity for a flat
wavefront. Bottom row: intensity considering atmosphere

used ROI propagation to speed up the E2E simulations of smaller
telescopes up to 24 m in diameter in order to explore an alter-
native calibration procedure that would allow us to obtain an
approximation of the interaction matrix for the 40 m telescope
using a matrix calibrated with a point source.

4. Interaction matrix for a laser guide star

When calibrating the interaction matrix for a real instrument, it
can be challenging to use an LGS-like source. Therefore, it is
necessary to test an ideal case where we can calibrate on an LGS
and a more realistic case where we use a point source for cal-
ibration. To be able to compare the signal obtained from these
two calibration procedures, we can use the interaction matrix of
each to observe differences in signal intensity and composition.
To compare two signals, namely a reference signal a and a test
signal b, the interaction matrix calibrated using source a is used
as the reconstructor and the interaction matrix calibrated using
source b is used as the signal (as in Eq. (1), but instead of a vector
of measurements ∆I(ϕ) we use the complete interaction matrix
calibrated using source b). Using this, we obtain what we call a
modal transform matrix (MTM). Mathematically,

MTMa→b = D
†
aDb

OGa→b = diag(MTMa→b),
(10)

where the diagonal of the MTM, known as optical gains (OG;
Korkiakoski et al. 2008; Deo et al. 2018; Chambouleyron et al.
2021), corresponds to the intensity of the signal obtained using b
as a guide star when compared to a, and the non-diagonal terms
correspond to mode confusion (i.e. the difference in the structure
of the signal). As an example, if MTMa→b(i, i) = 0.7, then 30%
of the signal intensity is lost for mode ϕi if changing from source
a to b.

Using the ROI propagation technique, we computed the E2E
interaction matrixDLGS for the first 350 KL modes for 8, 16, and
24 m telescopes. We used only 350 modes for this test, given that
for the 24 m telescope this process takes days to compute. Using
an NGS with 4 λ/D modulation as a reference, we computed
the MTMNGS→LGS and for each telescope diameter we obtained
a matrix that was mainly diagonal, as can be seen in Fig. 10,
where we show the example of the 8 m telescope. This diagonal
structure means that the signal coming from an LGS has almost
the same structure as the NGS, but is attenuated by the value in
the diagonal.
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Fig. 10. Simulation of the modal transfer function MTMNGS→LGS for
an LGS with an 8 m telescope using an NGS with 4 λ/D modulation
as reference. The values of the diagonal encode the optical gains. The
matrix is mainly diagonal with a few non-diagonal terms.

This attenuation of the signal comes from the spreading of
the light of the LGS over a larger area of the pyramid than the
NGS. The pyramid mainly produces a signal from the light that
interacts with its edges and for the LGS, a large portion of the
light falls in the faces of the pyramid, which from the point of
view of the rays of light is just an inclined plane of glass. As this
produces no filtering, there is no signal.

The fact that the signal from the LGS is closely related to
the signal from the NGS means that it is possible to build the
interaction matrix using a point source as a reference, and to then
optimize it for the LGS by multiplying it by a diagonal matrix
whose elements are the optical gains OGNGS→LGS.

DLGS ≈ DNGS OGNGS→LGS. (11)

This not only gives an interesting alternative to computing
the interaction matrix for the LGS in simulation, but also has
implications in a real telescope, as the calibration source would
most likely be a point source. The interaction matrix for the point
source DNGS is relatively easy to obtain in a real scenario, but
the optical gains needed to optimize the reconstructor for the
LGS might not be, as they depend on the ever-evolving structure
of the sodium layer, making the precomputation of these values
ineffective.

One way to gain access to an approximate interaction matrix
for the LGS with a real telescope, and therefore to the optical
gains, would be to introduce a gain scheduling camera and to
use a convolutional model, as proposed in Chambouleyron et al.
(2021), where the focal plane image of the guide star is used to
estimate it. In the following section, we show that it is possible
to use this technique with an extended object such as an LGS
to obtain the optical gains. Using this method, it is also possi-
ble to keep track of the evolving structure of the sodium layer,
optimizing the reconstructor to accommodate the changes in
the LGS.

5. Accessing the optical gains by means
of a convolutional model

The convolutional model introduced by Fauvarque et al. (2019)
can predict the signal of a Fourier filtering wavefront sensor by

Fig. 11. MTMLGS→Conv matrix obtained using Eq. (10) when simulating
an LGS for a 16 m telescope.

means of computing its impulse response (signal when intro-
ducing Dirac’s delta in phase). This model makes assumptions
on linearity, which are a simplification of complete E2E prop-
agation, and make its predictions less accurate but much more
efficient. If we have an FFWFS characterized by a mask m and
the focal plane image of the source ω interacting with the mask
(Fig. 4 top), the impulse response can be computed as

IR = 2 Im
[

m̂ ˆ(mω)
]
, (12)

where IR is the impulse response, − is the conjugate operator, and
ˆ the Fourier transform. Using this tool, the reduced intensity of
a FFWFS can be obtained as

∆I(ϕ) = (Ipϕ) ⋆ IR, (13)

where ⋆ denotes the convolution operation and Ip the pupil
indicative function. To be able to use this tool, a single focal
plane image of the LGS has to be computed to get the impulse
response, and with that, each column of the interaction matrix
can be obtained by a single convolution, reducing the time
needed to compute it almost 2N times, where N is the number of
samples used.

As the convolutional model has mainly been tested with 2D
modulated NGS, we first had to test the validity of using this
model with an extended 3D object, such as an LGS. To do this,
we used the convolutional model to recompute the interaction
matrices DConv for the 8, 16, and 24 m telescopes we had pre-
viously computed using E2E methods. We then compared them
by computing the MTM. The MTMLGS→Conv for each telescope
diameter was similar to the identity, meaning that the convolu-
tional model accurately predicts the structure and intensity of the
signal produced by the LGS. Figure 11 shows the MTMLGS→Conv
for the 16 m telescope.

Now, we can use the convolutional model to predict the val-
ues for the optical gains needed to optimize the reconstructor,
and compare them to the optical gains computed using the full
E2E methods, as seen in Fig. 12. The optical gains predicted by
the convolutional model closely match those obtained using the
E2E simulation, meaning that the model can be used to compute
the values needed to optimize the reconstructor such that it can
properly use the signal of the LGS.
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Fig. 12. Optical gains using E2E (solid line) and a convolutional model
(dashed line) for 8, 16, and 24 m telescopes.

From Fig. 12, it is possible to observe that the convolutional
model struggles to correctly estimate the optical gains at the first
few modes, corresponding to low spatial frequency. This could
have a large impact on tip, tilt, and focus, but as we are dealing
with an LGS, we are not measuring those modes. The model also
has a problem recovering the value of the optical gains for spe-
cific modes across all telescope sizes (e.g., mode 211 is predicted
with a lower value). These modes have more of their intensity
localized on the edges of the pupil. This causes problems with
the convolutional model, as the discontinuity of the pupil indica-
tive function is considered as signal, which is exaggerated for
modes that have more energy at the edges.

We recommend only using the convolutional model to com-
pute the values of the optical gains, and using them to optimize
the interaction matrix to the LGS, instead of using the interac-
tion matrix obtained with the model directly. This is because the
model has issues with the discontinuities in the pupil indicative
function, predicting an excess of signal in the edges of the pupil
images. This is especially noticeable for low spatial frequencies.
If the interaction matrix obtained with the convolutional model
is used, then it is probable that the corrections at the center of the
pupil might behave properly, but a large accumulation of phase
might occur at the edges.

The optical gains change for each telescope size. This is
because, with increasing telescope size, the relative size of the
LGS increases with respect to a diffraction-limited spot, as 1 arc-
second is equivalent to 65 λ/D for an 8 m telescope and almost
200 λ/D for a 24 m one. This is responsible for decreasing the
amount of light of the LGS that is split by the edges of the PWFS,
and the signal of the PWFS is coming mainly from these edges,
lowering the strength of the signal. This results in a decrease in
optical gain as the diameter of the telescope increases.

On a real telescope, introducing a gain-scheduling camera
would allow focal plane images of the LGS to be obtained; using
the convolutional model it would then be possible to compute the
interaction matrix for the LGS. This can then be used to compute
the optical gains needed to update the point-source-calibrated
interaction matrix using Eq. (11).

With this tool, it is now possible to compute the optical gains
needed to optimize the reconstructor calibrated with a point

Fig. 13. Optical gains for a 40 m telescope needed to optimize the recon-
structor. The optical gains for the LGS-2D are shown in green, and those
for the LGS-3D are in blue. The solid line corresponds to the average
optical gain across all sodium profiles and the shaded region is limited
by the maximum and minimum optical gain at each mode.

source to accommodate the signal of an LGS for a 40 m tele-
scope. We computed the optical gains for 5100 modes for every
sodium profile for the LGS-3D, and for the LGS-2D, and plot
them in Fig. 13. It is possible to observe that the optical gains for
the LGS-3D are smaller than for the LGS-2D, which is expected
given its larger size. On average, the optical gains for the LGS-
3D are 2.5 times smaller, meaning that the equivalent size of the
LGS-3D is about 2.5 times larger than the LGS-2D.

The values of the optical gains vary by up to 40% when
changing the sodium profile, which implies that it would be best
if an online system were continuously updating these values. The
frequency with which the gain-scheduling camera should take
images to update the optical gains should be faster than the rate at
which the sodium layer changes, which is typically on the order
of a few minutes (Pfrommer & Hickson 2014).

Optical gains encode the strength of the signal when com-
pared to the signal obtained with an NGS, which also implies a
loss in sensitivity. These quantities, optical gain, and sensitivity
are proportional to each other, meaning that, for example, for a
given mode ϕi, an optical gain of 0.3 implies that the WFS has
30% of the sensitivity achieved when using a NGS. Considering
Eq. (2), this means that around 11 times more residual variance
is introduced.

When going from an NGS to an LGS-2D, there is a reduction
in the intensity of the signal of around 10–30 times for low-order
modes (<1000) and around 5–10 times for higher-order modes. If
we take into consideration the thickness of the sodium layer, that
is, going from the LGS-2D to the LGS-3D, then there is a drop in
the intensity of the signal by a factor of about 2.5. This suggests
that the most limiting factor affecting the PWFS sensitivity with
extended objects is the width of the laser source, rather than the
thickness of the sodium layer.

Having shown that the convolutional model can be used
to compute the optical gains, it only takes a fraction of the
time to build the interaction matrices for extended objects. In
the following section, we show how we used these to perform
E2E closed-loop simulations of smaller telescopes, and then, in
combination with the sensitivity model, how we predicted the
expected performance for the 40 m telescope.
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6. Performance of the AO loop

6.1. End-to-end simulations

We performed E2E simulations of a closed-loop control system
for a 4 λ/D modulated NGS, the LGS-2D, and LGS-3D for 8
and 16 m telescopes. These simulations had two main purposes:
first, we wanted to test if the point source calibration, optimized
using the convolutional model, would work in a closed loop for
the extended objects, and second to test if the analytical model
would predict the performance of the AO loop.

The simulation parameters are shown in Table 1. For the
throughput of the telescope, we chose to use 100%, as it is then
easier to adapt these results when estimations of the actual effi-
ciency of the system are computed. For the zenith angle, we
chose 0 degrees because this will show the biggest difference
between the LGS-2D and LGS-3D. Choosing a higher zenith
angle would make the difference smaller, as discussed in Sect. 3.
To select the number of samples of the LGS, we simulated
the sensitivity to photon noise for a 16 m telescope. We tested
samples ranging from 100 to 100 000 and found that beyond
10 000 samples, the values of the sensitivities did not change;
we therefore chose that amount for the remaining simulations.

The cone effect will have a large impact on the residual phase
when using a single LGS, and for that reason, the ELT will use
multiple lasers for tomographic reconstruction of the wavefront
(Thatte et al. 2016; Ciliegi et al. 2022). However, as the cone
effect is not correlated with photon noise, we chose to use a sin-
gle ground layer to discard its effects. For the same reason, we
chose to use a static atmosphere, because the moving atmosphere
would interfere with the measurements of the impact of photon
noise. The detectors for the PWFS we used had a sufficient num-
ber of pixels such that aliasing would have a minimum impact.
For this reason, the 8 m telescope had 60 × 60 subapertures and
the 16 m telescope had 80 × 80 subapertures. As we tested the
performance for different telescope sizes, we used a DM pitch of
50 cm as a constant across all simulations. This meant that for
the 8 m telescope, we used 17 actuators across the pupil and for
the 16 m, we used 33. We chose the science wavelength to be the
same as the sensing wavelength. The residual phase due to noise
depends on the science wavelength, but the differences between
the NGS and the extended objects remain the same.

The interaction matrices for the extended objects were built
using the convolutional approach to compute the optical gains
and then optimize an interaction matrix calibrated using a point
source to accommodate the signal coming from the LGS, as
described in Sects. 4 and 5. By iteration, we found that it is
best to use a high modulation (>20 λ/D) for the point-source-
calibrated interaction matrix so that the PWFS is in a similar
sensing regime to the extended objects.

As a real LGS gives no information about the global tip or
tilt and has problems with the focus term given the evolving
structure of the sodium layer, we ran a noiseless AO loop in par-
allel that controlled tip, tilt, and focus. This also implied that
we did not consider the sensitivities for these three modes in the
predictions of the total noise transmitted through the loop.

Due to computational limitations, we were able to perform
E2E simulations of the closed loop for a maximum telescope
diameter of 16 m. For this reason, we tested the predictive capa-
bilities of the sensitivity method by simulating the E2E closed
loop for 8 and 16 m telescopes. These results are shown in
Fig. 14. The top plot corresponds to the simulation using the
8 m telescope and the bottom plot to the 16 m. A vertical yel-
low stripe was added from magnitudes 7 to 9, to represent the
expected return fluxes for the laser guide stars for the ELT.

Table 1. Simulation parameters.

Telescopes
Diameter 8.0, 16.0
Throughput 100 %
Central obstruction None

Natural guide star
Zenith angle 0◦
Magnitudes 5–19
Zero point 8.96 × 109 photons s−1 m−2

Modulation 4 λ/D

Laser guide star
Zenith angle 0◦
Magnitudes 5–14
Zero point 8.96 × 109 photons s−1 m−2

Number of samples 10 000
Sodium profile TopHatPeak

Atmosphere
r0 15 cm
L0 25 m
Layers 1
Altitudes 0 m
Wind speed 0 m s−1

WFS
Order for 8 m telescope 60 × 60 subapertures
Order for 16 m telescope 80 × 80 subapertures
Frequency 1 kHz
λsens 589 nm

DM
Order for 8 m telescope 17 × 17 actuators (200 KL modes)
Order for 16 m telescope 33 × 33 actuators (800 KL modes)

AO loop
Delay 2 frames
Gain 0.3

Science
λsci 589 nm

The first result from these simulations is that it is possible
to close the loop for the extended objects using the calibration
procedure utilizing the convolutional model and applying optical
gains to optimize the point-source-calibrated interaction matrix
and to obtain almost the same performance at high flux as when
using the NGS. This indicates that by introducing a gain schedul-
ing camera it, would be possible to compute these optical gains
and to have an online method of optimizing the reconstructor that
follows the changing density profile of the sodium layer.

Given its higher sensitivity, an NGS can be used for up to
three magnitudes more than for the extended objects for the 8 m
telescope and for four to five magnitudes more in the 16 m tele-
scope for the LGS-2D and LGS-3D, respectively. The limiting
magnitude for the NGS will only have a small dependence on
the diameter of the telescope used, if any at all. This is because,
even though bigger telescopes collect more light, they also need
more actuators to maintain the same actuator pitch, and these
two effects cancel each other. For the LGS-2D, the increase in
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8 m telescope

16 m telescope

Fig. 14. Strehl ratio for E2E simulations (markers) and sensitivity pre-
dictions (solid lines) of closed-loop performance for 8 (top plot) and
16 m (bottom plot) telescopes. σ2

noise corresponds to the residual vari-
ance predicted by fitting error and photon noise for NGS, LGS-2D, and
LGS-3D. The yellow stripe corresponds to the expected return flux of
the LGSs for the ELT.

light collected gets almost exactly canceled by the increase in the
relative size of the laser width, which decreases the sensitivity;
however, as bigger telescopes need more actuators, increasing
the diameter of the telescope decreases the limiting magnitude.
For the LGS-3D, the effect of the increase in relative size of the
laser width and the increasing extension of the source makes the
limiting magnitude decrease faster than for the LGS-2D. This
effect can be seen in Fig. 14, as the two curves for the extended
object separate and move to the left.

When comparing the E2E results with the sensitivity anal-
ysis, it is possible to observe that the noise models accurately
predict the performance of the closed loop system. It is inter-
esting to note that the computation time needed to obtain these
solid curves is thousands of times less than the full E2E method
to obtain the markers, as we can use the convolutional model to
compute the sensitivity of the PWFS using extended objects.

6.2. Extrapolating to 40 m

Now that we have shown that the sensitivity analysis can be used
to predict the performance of the E2E closed-loop simulations,
which would otherwise take hundreds or even thousands of hours

40 m telescope

Fig. 15. Sensitivity predictions of closed-loop performance for a 40 m
telescope. For the LGS-3D, the solid line corresponds to the average
performance across all sodium profiles and the shaded region is limited
by the maximum and minimum performance given all sodium profiles.

to compute, we can now predict the expected performance for the
40 m telescope. To do this, we first built the interaction matrix for
the 40 m telescope for an NGS for 5000 KL modes. This process,
although slow, could be computed in a matter of hours. We then
computed the reference intensity and a single focal plane image
of the LGS as seen through the 40 m telescope. With the focal
plane image, we were able to compute the optical gains using the
convolutional model and then obtain the interaction matrix opti-
mized for the LGS. With the calibration ready, we were able to
obtain the sensitivities and compute how noise would propagate
through the system. Figure 15 shows the expected performance
of the PWFS for the three tested sources for a 40 m telescope.
In this plot, it is possible to observe that the limiting magnitude
of the NGS remains approximately constant with respect to the 8
and 16 m telescope cases, with a limiting magnitude of 4.5 to 6.1
higher than for the extended objects. The difference in limiting
magnitude for the LGS-2D and LGS-3D is 1.6 magnitudes and
both extended objects have a drop in performance at a magnitude
of around 8 or 9. As stated before, the simulated throughput of
the system is 100%, but if taking 25 or 50% then both extended
objects will be operating in a condition where slight changes in
the return flux of the LGS will mean large drops in performance,
with LGS-3D being the most affected.

It is interesting to note that even for the 8 m telescope (e.g.,
the VLT), the performance of the AO loop starts to drop at the
expected return fluxes. This result implies that it might not be
advisable for the VLT or ELT to use these kinds of wavefront
sensors (knife-edge-like WFS) with extended guide objects such
as an LGS, given that the size of these objects reduces the sensi-
tivity up to a point where the flux of the LGS is a limiting factor
in the performance, as small variations in return flux might result
in large drops in performance for both LGS-2D and LGS-3D, the
latter being the most affected. As we only tested for photon noise,
this is a fundamental limit for the performance. If adding read-
out noise, even if it has a small contribution, it will lower the
performance even further.

7. Conclusion

In this work, we computed the expected performance of the AO
loop for a PWFS using an LGS for a 40 m telescope. To do this,

A1, page 11 of 13



Oyarzún, F., et al.: A&A, 686, A1 (2024)

we used a sensitivity model to predict the residual phase due to
photon noise, which, when combined with control theory, is able
to predict the residual variance in closed-loop operation. For this
model, we needed access to the interaction matrix calibrated for
each source.

To compute E2E interaction matrices, we introduced a new
way to discretize an LGS and developed a new method to sim-
ulate extended objects for any FFWFS, which we call ROI
propagation. With this method, we were able to simulate the light
propagation and obtain the signal of the wavefront sensor in a
fraction of the time required by traditional methods, yielding the
same results and maintaining the E2E nature of the full field-
of-view propagation. As even with this new method we were not
able to simulate the 40 m telescope, we used it to show that it was
possible to compute the interaction matrix for a point source, and
then use optical gains to optimize it for the extended object. This
procedure is not only useful for simulation purposes but also for
a real telescope, where the calibration source will most likely be
a point source.

To obtain these optical gains, we proposed the use of a gain-
scheduling camera, which, employing a convolutional model,
could use focal plane images of the source to compute the optical
gains needed to optimize the interaction matrix for the extended
object. We show that the convolutional model accurately pre-
dicts the value of these optical gains by comparing the values
obtained using E2E simulations and the ones obtained using
the model.

Finally, we performed simulations of a closed loop for 8 and
16 m telescopes and determine that it is possible to close the loop
using the optimized point-source-calibrated interaction matrix.
Also, we find good agreement between the results obtained using
the E2E methods and the sensitivity model. With this, we are
able to predict the performance of the PWFS when using an
extended guide star for a 40 m telescope. We find that, for both
LGS-2D and LGS-3D, the loss in sensitivity will make the AO
system operate in a region where the flux of the LGS will gener-
ate a drop in performance. Small variations in the return flux of
the LGS will result in large variations of performance, an effect
that would also happen for smaller telescopes.

An interesting alternative would be to design a translation-
invariant WFS, such that the size of the source has a minor
impact on the performance. With a higher sensitivity, it would
be possible to run the loop at higher frequencies or observe
at smaller wavelengths. A translation-invariant WFS could be,
for example, a repeating phase mask, in which a specific pat-
tern is repeated in space. As the pattern repeats, the position
of each sample (and therefore the size of the source) will have
a minimum impact. An issue with this approach would be the
diffraction effects and therefore the possible loss of light.

With this, we conclude that the use of knife-edge-like wave-
front sensors might not be a good alternative for LGS wavefront
sensing for 8–40 m telescopes, as even if the instrument is capa-
ble of dealing with the Z-extension of the source, the width of
the laser beam is enough to lower the sensitivity such that photon

noise decreases the performance of the AO loop considerably at
the expected return flux of the LGS.
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Appendix A: Signal from the PWFS

Let I(ϕ) be the intensity recorded in the detector of the pyra-
mid when a phase ϕ is introduced to the system. The reduced
intensity is defined as

∆I(ϕ) =
I(ϕ)
Nph
− I0, (A.1)

where Nph corresponds to the number of photons in the
frame, and

I0 =
I(ϕ = 0)

Nph
, (A.2)

known as the reference intensity, which here is chosen to be
the PWFS signal for a flat wavefront. Then, having a modal basis
[ϕ1, . . . , ϕn] (KL modes in this work), it is possible to build an
interaction matrixD = [δI(ϕ1), . . . , δI(ϕn)], where

δI(ϕi) =
I(ϵϕi) − I(−ϵϕi)

2ϵ
(A.3)

corresponds to the push-pull operation with ϵ small enough
to remain in the linear regime of the sensor.

Appendix B: Noise propagation

The residual variance due to read-out noise and photon noise
introduced each time the PWFS makes a measurement of the
wavefront can be computed as

σ2
ϕi
=

Nsap σ
2
RON

N2
ph s2(ϕi)

+
1

Nph s2
γ(ϕi)

, (B.1)

with Nsap the number of subapertures, σRON the standard
deviation of the electronic noise in each pixel, s the RON sen-
sitivity, and sγ the sensitivity to photon noise. These sensitivities
are obtained using the columns of the interaction matrix from
equation A.3 as

s(ϕi) =
√

Nsap ||δI(ϕi)||2 , (B.2)

and

sγ(ϕi) =

∣∣∣∣∣∣
∣∣∣∣∣∣δI(ϕi)
√

I0

∣∣∣∣∣∣
∣∣∣∣∣∣
2
, (B.3)

with ||.||2 being the two norm. We must bear in mind the fact
that photon noise sensitivity is dependent on the illumination
pattern of the pupils in the detector. Therefore, an approximation
is made in the computation of the sensitivities, which assumes
that we are working in the linear regime of the sensor, such
that the illumination pattern is the one corresponding to a flat
wavefront reaching the PWFS

I(ϕ) = I0 + ∆I(ϕ) ≈ I0, for ϕ ≪ 1. (B.4)

Appendix C: Noise in closed loop

Considering a controller to be a discrete integrator in the feed-
back path with gain α, a DM is modeled as a zero-order hold
(ZOH) and a WFS as a ZOH with a time delay of one period T
with an additional time delay of one period for the computation
of the signal. The negative of the loop transmission is

−LT (s) =
(

1 − e−sT

sT

)2

e−2sT α

1 − e−sT , (C.1)

where s is the Laplace’s transform variable that can be
expressed as s = jω with j the imaginary unit and ω the angular
frequency, for the purposes of computing the gain of the system.

As the forward path for the noise is equal to the loop trans-
mission, the noise transfer function NT F(s) can be expressed
as

NT F(s) =
LT (s)

1 − LT (s)
. (C.2)

As photon noise is white noise, it has uniform power spec-
tral density (PSD), and therefore we can integrate the magnitude
squared of the NTF over the bandwidth to obtain the total noise
that is propagated through the AO loop:

σ2
noise =

σ2
γ

F

∫ F/2

−F/2
|NT F(s)|2s= j2π f d f . (C.3)

Appendix D: Geometry of the LGS

Approximating the sodium layer to be plane-parallel, starting at
a height hl and ending at hh (hl < hh), pointing the telescope at a
zenith angle θ, it is possible to compute the approximate angular
size ∆α of a side-launch LGS as

∆α =
D
2

cos θ
(

1
hl
−

1
hh

)
. (D.1)

Then, considering an effective focal length f , the extension
normal to the focal plane ∆z can be computed as

∆z =
hl sec θ f

hl sec θ − f
−

hh sec θ f
hh sec θ − f

. (D.2)

Assuming that the effective focal length of the telescope
is much smaller than the distance to the sodium layer, we can
perform a Taylor approximation of the denominator

∆z ≈
(

f +
f 2

hl
cosθ

)
−

(
f +

f 2

hh
cosθ

)
, (D.3)

and therefore the approximate expression for the normal
extension of the LGS is

∆z = f 2 cos θ
(

1
hl
−

1
hh

)
. (D.4)
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