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Abstract: Underwater acoustic propagation is influenced not only by the property of the water column, but also by the seabed
property. Modeling this propagation using normal mode simulation can be computationally intensive, especially for wideband
signals. To address this challenge, a Deep Neural Network is used to predict modal horizontal wavenumbers and group veloci-
ties. Predicted wavenumbers are then used to compute modal depth functions and transmission losses, reducing computa-
tional cost without significant loss in accuracy. This is illustrated on a simulated Shallow Water 2006 inversion scenario. VC
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1. Introduction

Acoustic waves play a crucial role in underwater communication and sensing applications, as they can be used to detect
objects, measure distances, and transmit information. However, the propagation of these waves in underwater environ-
ments is complex, as it is affected by the physical characteristics of the water column and the seabed. To describe the
behavior of acoustic waves in shallow underwater environment, normal mode propagation models have been developed
(Porter, 1992; Westwood et al., 1996). Although normal mode codes are computationally tractable, running the simulation
many times for inversion or broadband problems can be computationally expensive. This article explores the use of
machine learning algorithms to accelerate the resolution of the normal mode forward propagation problem.

In the past decades, neural networks methods have gained significant attention thanks to their capacity to
approximate non-linear functions (Hornik et al., 1989). Their ability to simulate various physical phenomena (Adler et al.,
2021; Brunton et al., 2020) while decreasing the computational costs of these simulations (Abdolrazzaghi et al., 2018;
Moseley et al., 2020) has been well established.

The idea of using machine learning algorithms for underwater acoustic study is not new (St�ephan et al., 1996).
It has been used recently for various inverse problems including source localization (Durofchalk et al., 2021; Goldwater
et al., 2021; Van Komen et al., 2019) and seabed classification (Frederick et al., 2020; Howarth et al., 2022). However, it
has barely been considered for forward physical simulations. One possible reason for this, may be the large variety of
methods available to simulate the acoustic fields, as well as a lack of true labeled data to evaluate the trained models.
Nevertheless, there have been some promising studies, such as those conducted by Mallik et al. (2022). In their work, they
have trained a model to extend the prediction of transmission loss (TL) in range from several source/receiver locations.
The model was trained on data generated using ray theory in a fixed environment (single Munk profile) for different
source positions. The proposed model is able to extend the prediction of a given TL for untrained source position but
requires large TL input sequences to be able to accurately generate the acoustic far field. Another noteworthy research is
the work done by Li and Chitre (2022b), where they embedded the normal mode theory into a neural network to predict
modal parameters from a measured acoustic field, and use it to predict the acoustic field outside of the measured region.
They also proposed a higher frequency approach for the same type of application using ray theory (Li and Chitre, 2022a).
In the present article, the approach is different. Our main objective is to replace normal mode physical codes by a faster
(but approximated) neural network. We consider here a simple deep neural network (DNN), which is trained to predict
modal horizontal wavenumbers and group speeds for various environmental inputs. The predicted wavenumbers can later
be used to predict modal depth function, and thus TL, while the predicted group speed can be used to solve inverse
problems.
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2. Underwater modal propagation

The underwater environment acts as a waveguide in which the acoustic field can be described using normal mode theory.
In this framework, the pressure field in the frequency domain Y is described as a superposition of propagating modes m
multiplied with the amplitude of a source signal S at the considered frequency f. The amplitude of a received mode is
dependent on the modal depth function Wm at the receiver and source depth, respectively noted zr and zs, as well as the
range r between the source and the receiver and the horizontal modal wavenumber krm. Formally, the pressure field is
given by

Yð f Þ ¼ jSðf Þj
XN
m¼1

Wmðzs; f ÞWmðzr; f Þ
ejrkrmðf Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rkrmðf Þ

p ; (1)

with N the number of propagating modes.
Further, the group velocity vgm is given by

vgmðf Þ ¼ 2p
@f

@krmðf Þ
: (2)

The dependence on frequency for the group velocities means that the underwater environment acts as a dispersive wave-
guide, where the dispersion depends on the properties of the waveguide. This makes using the dispersion suited for geoa-
coustic inversion, e.g., Bonnel et al. (2013) and Chapman and Shang (2021).

3. Method

The objective here is to replace the use of an underwater modal propagation simulation by a neural network to signifi-
cantly reduce simulation time while still maintaining a high level of accuracy.

Let us assume here that an environment is described by a set of parameters h (it may include geoacoustic and/or
geometric parameters). Traditional normal mode codes take h as an input and computes the associated wavenumbers krm
and modal depth functions Wm, which can be combined to evaluate TL. Group velocities vgm, which are useful for inver-
sion, can also be obtained from normal mode codes. Here, we train a neural network to predict krm and vgm from h.
Modal depth functions Wm are later obtained from h and the predicted krm using the usual inverse iteration method
(Jensen et al., 2011), and TL can then be obtained by combining the predicted krm and associated Wm following Eq. (1).
This method is summarized in Fig. 1.

To train the neural network, a labeled dataset with various h (neural network input) and associated krm and vgm
(neural network output) is required. It can be created with any traditional normal mode code. In this paper, KRAKEN will
be used (Porter, 1992).

3.1 Data

The present letter focuses on a specific environment parameterization. The water column is modeled with a fixed sound
speed profile (SSP). The seabed is modeled as a fluid with a single iso-speed iso-density sediment layer over an iso-speed
iso-density basement, with geoacoustic parameters: sediment thickness h1, sound speed c1, density q1, basement sound
speed c2, and density q2. The frequency band of interest is kept fixed.

Once the environment parameterization is set, it is required to define parameter values (for fixed parameters,
e.g., water SSP) or parameter boundaries (for varying parameters h1, c1, q1, c2, and q2) to create datasets to train, validate
and test the neural network. To mimic a realistic scenario, the water SSP is arbitrarily based on conditions encountered
during SW06 shallow water experiment (Turgut, 2007). The water SSP is described using four nodes at depths 0, 10, 25,
and 80m with respective sound speed of 1525, 1525, 1485, and 1490m/s. The density is constant through the water col-
umn and is equal to 1.03 kg/m3. On the other hand, the five seafloor parameters h1, c1, q1, c2, and q2 are variable. They
can take value within wide bounds, as defined in Table 1.

To generate the training dataset, environments were randomly generated. To do so, the five seabed parameters
were varied following a uniform distribution, using the bounds defined in Table 1. On the other hand, to generate the val-
idation and test datasets, environments were deterministically generated using a 5D uniform grid. Such a grid is defined
using 20 linearly spaced values for each of the seabed parameters, with bounds given by Table 1. This grid is then
separated into two distinct intertwined sub-grids (with ten linearly spaced values for each seabed parameter): one of the
sub-grid is used for the validation dataset and the other is used for the test dataset. This process ensures that training, val-
idation and test datasets are distinct.

The simulation model (KRAKEN) is used on all these environments to obtain the wavenumbers and group veloci-
ties for frequencies from 150 to 300Hz with 5Hz increment for the first five propagating modes. Because the normal
mode program used is unable to converge if the basement speed is not the maximum speed of the considered environment
this results in a total of 50 000 distinct environment in both the validation and test dataset.
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In order to improve the training of the model, the inputs (h1, c1, q1, c2, and q2) are scaled between 0 and 1. The
output group velocity vgm is scaled using the same transformation as the input sound speeds (c1 and c2). Moreover, the lin-
ear tendency 2pf =cwater is subtracted from the wavenumber krmðf Þ to focus the learning of the model on the dispersive
behavior of the wavenumber. Here, cwater denote the weighted average of the sound speed in the water column. This pre-
processing is comparable to a velocity correction often used in geosciences (Yilmaz, 2001).

3.2 Model description and training

The neural network used here is a simple DNN inspired by the work of Hansen and Cordua (2017) composed of four
densely connected layers of 80 units each with rectified linear units plus a last densely connected layer outputting the pre-
dicted wavenumber and group velocity for every considered modes and frequencies. The details of the network is pre-
sented in Fig. 1(b).

The Adam optimizer (Kingma and Ba, 2014) is used for training with a learning rate of a ¼ 10�2. The root
mean squared error is used as a loss function to compare the predicted wavenumber kpredrm and group velocity vpredgm to the
simulated ones ktruthrm ; vtruthgm . To avoid overfitting issues, the learning rate was divided by two if the model did not improve
on the validation data after two consecutive epochs, and the training was stopped if it did not improve after four consecu-
tive epochs. After testing multiple sizes for the training dataset, it was found that a size of 400 000 was optimal. Table 2
provides network performance as a function of the size of the training dataset. Note that better performances are obtained

Fig. 1. (a) Data flow graph of the method. (b) Architecture of the neural network. For each operation, the indicated shape corresponds to the
size of the output.

Table 1. Bounds for the environment parameters used to generate the training, validation, and test datasets.

Parameters Units Bound

Sediment thickness: h1 m [1,25]
Sediment sound speed: c1 m/s [1500, 2500]
Sediment density: q1 kg/m3 [1.2,2.5]
Basement sound speed: c2 m/s [1500, 2500]
Basement density: q2 kg/m3 [1.2,2.5]
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with 500 000 training data values than 400 000 but the gain has been deemed insignificant. In the following, a training
size of 400 000 is used.

3.3 Results

Once trained, the model can efficiently predict the wavenumbers and group velocities for the considered modes and fre-
quencies. This is illustrated for a single environment in Figs. 2(a) and 2(d).

The overall performance is presented in Figs. 2(c) and 2(f), showing that the model is able to generalize in the
test dataset, as the mean relative error between the truth and prediction per environment is less than 2.5% with the major-
ity of environments below 0.5% of mean relative error. However, as can be shown in Fig. 2(b), the error on the predicted
group velocity of the last considered propagating mode has the maximum amount of error and this is especially marked
for lower frequency. This can be explained by the considered dataset, for which, the lower bound of the considered fre-
quency is slightly below the cutoff frequency of the fifth mode. For these environments, there is high non-linearity as well
as an inflection point which impacts the learning of the network. The same pattern can be observed in Fig. 2(e) for the
error on the predicted wavenumber and this is also what explains the outlier in the distribution of mean relative error in
Figs. 2(c) and 2(f).

4. Applications

Once the model is trained, it can be efficiently used for various normal mode-based applications. Two applications, TL
computation and geoacoustic inversion, are presented in the following. Results of the proposed model will be compared to
results obtained with a traditional normal mode propagation code (KRAKEN).

Table 2. Prediction performance (RMSE) for various sizes of training datasets.

Size of the training dataset krm (rad/m) vgm (m/s)

100 000 4:70� 10�4 2.27
200 000 2:30� 10�4 1.42
300 000 2:13� 10�4 1.06
400 000 1:51� 10�4 0.97
500 000 1:46� 10�4 0.93

Fig. 2. Comparison of the dispersion in (a) the group velocity and (d) the wavenumber between the first five modes predicted by the DNN
(prediction) and the output of the simulation using KRAKEN (truth). Error between the prediction and the simulation for (b) the group velocity
and (e) the wavenumber. Overall performance in the test dataset for (c) the group velocity, (f) for the wavenumber. Panels (a), (b), (d), (e) are
obtained for a single environment (h1 ¼ 20:9m; c1 ¼ 2111m=s; q1 ¼ 2:29 kg=m3; c2 ¼ 2180m=s; q2 ¼ 2:30 kg=m3) while panel (c) and (f)
are obtained on the whole test dataset.
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4.1 Transmission loss

One proposed application of the trained model is TL computation. This is done by computing the modulus of the acoustic
field, as given by Eq. (1). Since the trained model only provides the wavenumbers, it is first required to estimate the modal
depth functions. As in most traditional normal mode codes, this is done using the inverse iteration method, as defined in
Jensen et al. (2011). Examples of modal depth functions, obtained from wavenumbers predicted by our network, are
shown in Fig. 3(a), and the associated errors between predictions (i.e., from our neural network) and truth (i.e., from
KRAKEN) is shown in Fig. 3(b). This example illustrates the good capacity of the network to predict modal depth functions,
with maximum errors two orders of magnitude below the maximum value. This result is representative of the performance
obtained on other environments, which is not shown here for the sake of brevity.

The calculated modal depth functions are then combined with predicted wavenumbers to obtain the TL for set
ranges and depths. An example of TL obtained using our method is shown in Fig. 3(d), while the truth (as obtained with
KRAKEN) is shown in Fig. 3(c). Qualitatively, the two figures look fully similar. To quantify this, the absolute difference
between prediction [Fig. 3(d)] and truth [Fig. 3(c)] is shown in Fig. 3(e). All the significant errors (>3 dB) are concen-
trated at locations where the TL are really high. This illustrates that the shape of the interference pattern is correctly pre-
dicted, but the TL values at the location of those inferences may be over/underestimated. The TL prediction performance
is quantified on the test dataset through the root mean squared error between predicted and true TL for all the considered
frequency and modes. A histogram of this error is shown in Fig. 3(f). It demonstrates a high level of accuracy with 99.5%
of errors falling below 3 dB, and 80.4% of the root mean squared errors being lower than 1 dB.

4.2 Geoacoustic inversion

Another proposed application is the acceleration of computation speed for geoacoustic inversion. In these applications, a
normal mode forward model is repeatedly called for many different environments to create a set of replicas. Geoacoustic
parameters are then inferred from the simulated environment by matching replicas and measurements (Chapman and
Shang, 2021). Many inversion methods exist, we focus here on those based on time-frequency modal dispersion (Ballard
et al., 2014; Bonnel et al., 2020; Potty et al., 2000), a quantity which is intrinsically related to the modal group speed vgm.

Fig. 3. (a) Comparison between the first five modal depths functions calculated at 150Hz using the wavenumber predicted by the DNN (pre-
diction) and the output of the simulation using KRAKEN (truth). (b) Error between the prediction (DNN) and the truth (KRAKEN) for each
mode. Transmission loss calculation using the first five modes and frequency from 150Hz to 300Hz (c) using KRAKEN and (d) from DNN. (e)
Absolute difference between the predicted TL from panel (d) and the truth TL from panel (c). (f) Histogram of the root mean squared error
of the TL per environment for the whole test dataset. Panels (a)–(e) are obtained for a single environment (h1 ¼ 20:9m; c1 ¼ 2111m=s;
q1 ¼ 2:29 kg=m3; c2 ¼ 2180m=s; q2 ¼ 2:30 kg=m3).
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First, a set of reference modal group speed vtruthg was calculated for the first four modes and 31 linearly spaced
frequencies going from 150 to 300Hz, using an environment based on the SW06 experiment (Turgut, 2007). This was
done using the model described above with h1 ¼ 10m; c1 ¼ 1600m=s; q1 ¼ 1:8 kg=m3; c2 ¼ 2100m=s; q2 ¼ 2:0 kg=m3.
Then, replicas were computed using both our model and KRAKEN. They are, respectively, noted vDNNgm and vKrakgm . To mimic
inversion, the resulting group speeds are compared to the reference vtruthgm using a simple root mean squared error

RMSEiðhÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

X
m;f

ðvtruth2gm � vigmðhÞ
2Þ

s
; (3)

where i can express DNN or KRAKEN. The vector h ¼ ½h1; c1;q1; c2; q2� is swept over a five-dimensional grid within the
boundaries defined in Table 1 and fine steps (0.5m for h1, 10m/s for c1, 0.05 kg/m

3 for q1, 25m/s for c2, and 0.05 kg/m3

for q2), leading to about 7.5 million environments. Inversion results, both for the neural network (DNN) and for KRAKEN

are presented in Fig. 4. On this figure, each panel is a slice of the 5D RMSE along one parameter, with all the other
parameters taken at their optimal values (i.e., where the RMSE is minimal). As expected, since no noise was added on the
data, inversion with KRAKEN is perfect: all the parameters are properly estimated with RMSE¼ 0. The results are slightly
different for our DNN. All the sediment parameters (h1, c1, c2) are perfectly estimated with the DNN, with a significantly
small (but non-zero) RMSE. On the other hand, the basement parameters are estimated with a small error. This error
(50m/s for c2 and 0.1 kg/m3 for q2) stays limited, particularly when compared to the poor sensitivity of the group speed to
those parameters (as seen, for example, by the relative flatness of the associated RMSE curves). This further demonstrates
the results of Fig. 4, and the good capacity of the network to predict modal dispersion.

Interestingly, using a similar implementation, simulating the 7.5� 106 replicas took about 25 h using KRAKEN, and
about 40min with our trained DNN, which represents a 35-fold gain in computation speed. Note that such a gain is
obtained after the DNN is trained, and that generating the 400 000 replica to train the DNN (see Sec. 3.1) required about
7.5 h.

5. Conclusion

The use of physics simulation in modal acoustics propagation can be excessively expensive, especially when repeated evalu-
ations are required, such as in wideband signal propagation or for inversions method. As an alternative, using a machine
learning model that reduces the computational time during inference was suggested. Although straightforward, the pro-
posed model demonstrates remarkable accuracy, and obtained results are promising. After training, the neural network is
able to predict modes (and TL) with a small error, while significantly reducing the computation time when compared to a
traditional normal mode propagation code.

Here, the main limitation is that the question of generalization has not been tackled: the method has been devel-
oped with the assumption that the training conditions are representative of the application of interest. In practice, it is
assumed that the water sound speed profile is perfectly known. Further, the considered frequency band has to be limited
enough for the number of modes to be constant. When those conditions are met, the proposed method allows the predic-
tion of modal propagation with limited computation complexity. A direct application for the method is to perform geoa-
coustic inversion in an area of interest using several experimental datasets collected during a short time period, provided
that the water column sound speed profile can be assumed to be constant at the considered time and spatial scales.

Fig. 4. Comparison of the root mean squared error on vgm predicted by DNN and KRAKEN for the five variable environment parameters (h1:
thickness; c1: sediment sound speed, q1: sediment density, c2: basement sound speed, q2: basement density. The other variable parameters are
fixed to get the minimum of error.
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In such a case, the neural network can be trained once and used several times to perform inversion on all the experimental
datasets. This would drastically reduce the computational time required to obtain all the inversion results.
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