Approximation of modal wavenumbers and group speeds in an oceanic waveguide using a neural network - Archive ouverte HAL
Article Dans Une Revue JASA Express Letters Année : 2023

Approximation of modal wavenumbers and group speeds in an oceanic waveguide using a neural network

Jerome I. Mars
Julien Bonnel

Résumé

Underwater acoustic propagation is influenced not only by the property of the water column, but also by the seabed property. Modeling this propagation using normal mode simulation can be computationally intensive, especially for wideband signals. To address this challenge, a Deep Neural Network is used to predict modal horizontal wavenumbers and group velocities. Predicted wavenumbers are then used to compute modal depth functions and transmission losses, reducing computational cost without significant loss in accuracy. This is illustrated on a simulated Shallow Water 2006 inversion scenario.
Fichier principal
Vignette du fichier
066003_1_10.0019704.pdf (4.13 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-04587822 , version 1 (28-06-2024)

Licence

Identifiants

Citer

Arthur Varon, Jerome I. Mars, Julien Bonnel. Approximation of modal wavenumbers and group speeds in an oceanic waveguide using a neural network. JASA Express Letters, 2023, 3 (6), pp.066003 (2023). ⟨10.1121/10.0019704⟩. ⟨hal-04587822⟩
80 Consultations
17 Téléchargements

Altmetric

Partager

More