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Abstract

Predictive uncertainty quantification is crucial in decision-making problems. We investigate
how to adequately quantify predictive uncertainty with missing covariates. A bottleneck is that
missing values induce heteroskedasticity on the response’s predictive distribution given the
observed covariates. Thus, we focus on building predictive sets for the response that are valid
conditionally to the missing values pattern. We show that this goal is impossible to achieve
informatively in a distribution-free fashion, and we propose useful restrictions on the distribution
class. Motivated by these hardness results, we characterize how missing values and predictive
uncertainty intertwine. Particularly, we rigorously formalize the idea that the more missing
values, the higher the predictive uncertainty. Then, we introduce a generalized framework,
coined CP-MDA-Nested?, outputting predictive sets in both regression and classification.
Under independence between the missing value pattern and both the features and the response
(an assumption justified by our hardness results), these predictive sets are valid conditionally to
any pattern of missing values. Moreover, it provides great flexibility in the trade-off between
statistical variability and efficiency. Finally, we experimentally assess the performances of
CP-MDA-Nested? beyond its scope of theoretical validity, demonstrating promising outcomes
in more challenging configurations than independence.

Keywords: predictive uncertainty quantification, missing values, conformal prediction, distribution-
free inference

1 Introduction

Predictive uncertainty quantification. Over the last decades, major research efforts on statistical
and machine learning algorithms have enabled them to leverage large data sets. They are now used
to support high-stakes decision-making problems such as medical, energy, or civic applications, to
name just a few. To ensure the safe deployment of these models and their adoption by society, it is
crucial to acknowledge that these point predictions remain uncertain, and to quantify this uncertainty,
communicating the limits of predictive performance. Therefore, uncertainty quantification has
received much attention in recent years, particularly in the form of building prediction sets.

Formally, the aim is to build a predictive set for the response Y ∈ Y , after observing the random
vector X ∈ X ⊆ Rd which contains d ∈ N∗ explanatory variables. Given a miscoverage level
α ∈ [0, 1], a marginally valid predictive set Cα(·) is a function satisfying
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P(Y ∈ Cα(X)) ≥ 1− α. (1)

The goal is that Cα(·) is as small as possible while being marginally valid. Distribution-free
uncertainty quantification tools are powerful as they require minimal assumptions on the data
generation process—typically only access to a sequence of n exchangeable data points—making
them usable on a wide range of applications, unlike traditional probabilistic approaches.

Importantly, it has to be noted that Equation (1) averages among all probable (X,Y ), and thus
might over-cover easy data points (say, e.g., young patients) at the cost of under-covering harder data
points (say, e.g., older patients). Therefore, one branch of the literature studied how Equation (1)
could be turned into a stronger goal. Specifically, Vovk (2012); Lei and Wasserman (2014); Barber
et al. (2021a) emphasize trade-offs between theory and practice. They investigate the implications of
designing a practical distribution-free method, that is one which outputs sets Cα(·) such that

P(Y ∈ Cα(x)|X = x) ≥ 1− α, for any x ∈ X . (2)

Unfortunately, they showed that Equation (2) is impossible to achieve in an informative way
(i.e., typically Cα(·) ≡ Y with high probability) if no assumptions on the data distributions are
made. Moreover, finding natural relaxations that are compatible with informative distribution-free
predictive sets seems also hard: restrictions to conditioning on x ∈X, for an arbitrary mass positive
X ⊆ X , is still hard to achieve informatively (Barber et al., 2021a).

Missing values. Somewhat paradoxically, as the quantity of data rises, the number of missing data
also increases. This phenomenon is modeled through the introduction of a third random variable
called the mask or missing pattern, denoted by M ∈M ⊆ {0, 1}d, encoding which variables have
not been observed. That is, the mask M is the indicator vector such that for any j ∈ J1, dK, Mj = 1
whenever Xj is missing (not observed), and Mj = 0 otherwise. As a consequence, we are working
on P :={distributions on (X ,M,Y)}. For a given pattern m ∈ M, Xobs(m) is the random vector
of observed features, and Xmis(m) is the random vector of unobserved ones. For example, if we
observe (NA, 6, 2) then m = (1, 0, 0) and xobs(m) = (6, 2). Notice that the number of different
missing patterns, i.e., the size or cardinality ofM := #M, typically grows exponentially in the
dimension (forM = {0, 1}d there are 2d different patterns).

The way we deal with those missing values will typically depend on the downstream task at hand.
While there is a vast range of studies in the inferential setting (Little, 2019; Josse and Reiter, 2018)
with numerous implementations (Mayer et al., 2022), the research effort is scarcer on the prediction
framework (Josse et al., 2024; Le Morvan et al., 2020b,a, 2021; Ayme et al., 2022; Van Ness et al.,
2022; Ayme et al., 2023; Zaffran et al., 2023; Ayme et al., 2024). It is mostly limited to point
prediction, except for Zaffran et al. (2023). The literature on both inference and prediction highlights
the necessity of taking into account the missingness distribution. Following Rubin (1976), we
consider three well-known missingness mechanisms.

Definition 1.1 (Missing Completely At Random (MCAR)). The missing pattern distribution is said to
be Missing Completely At Random (MCAR) ifM ⊥⊥ X . We denotePMCAR the corresponding set of
distributions, i.e.PMCAR := {P ∈ P, such that for anym ∈M,PP (M = m|X) = PP (M = m),
that is M ⊥⊥ X}.

Definition 1.2 (Missing At Random (MAR)). The missing pattern distribution is said to be Missing
At Random (MAR) if M only depends on the observed components of X . We denote PMAR

the corresponding set of distributions, i.e. PMAR := {P ∈ P, such that for any m ∈ M,
PP (M = m|X) = PP

(
M = m|Xobs(m)

)}
.
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Definition 1.3 (Missing Non At Random (MNAR)). The missing pattern distribution is said to be
Missing Non At Random (MNAR) if M can depend on the observed values of X but also on its
missing components. We denote PMNAR the corresponding set of distributions, i.e. PMNAR := P .

Remark 1.4. We thus have PMCAR ⊂ PMAR ⊂ PMNAR = P .

Predictive framework with missing covariates. In a predictive framework, the dependence
between Y and M plays a key role, maybe even bigger than the relationship between (X,M).
Indeed, in some situations, Y can be a direct function of M : the missingness conveys in itself
information about the label. Therefore, these cases are particularly challenging in a predictive
framework, as some patterns on the one hand can induce an important label distributional shift, and
on the other hand be rarely observed due to the high cardinality ofM. Thus, we focus on settings
where there is not such a direct dependency, that is Assumption A1. Yet, as we will show in the paper,
it remains that the lack of observation of some features influences the uncertainty of the prediction
of Y from Xobs(M).

Assumption A1 (M does not explain Y ). We say that Y is independent of M given X if Y⊥⊥M |X .
The associated distribution belongs to PY⊥⊥M |X.

Definitions 1.1 to 1.3 and Assumption A1 will be our main assumptions on the joint distribu-
tion of (X,M, Y ) throughout the manuscript. Our interest is in building predictive sets from n
observations

(
X(k),M (k), Y (k)

)n
k=1

on a new test point
(
X(n+1),M (n+1), Y (n+1)

)
. We thus also

make assumptions on the links between those samples: the usual backbone assumption is that we
have access to n+ 1 independent and identically distributed (i.i.d.) draws from a distribution Q in a
set Q, with Q being typically one of PMCAR , PMAR , P , etc. The data distribution thus belongs to{
Q⊗(n+1), Q ∈ Q

}
, which we denote Q⊗(n+1). Furthermore, we also consider here a relaxation

of i.i.d., namely exchangeability, which is often sufficient to obtain guarantees in distribution-free
predictive inference.

Assumption A2 (exchangeability). The random variables
(
X(k),M (k), Y (k)

)n+1

k=1
are exchange-

able, i.e., their distribution does not change when we permute them. We denote Qexch(n+1) ={
Qexch(n+1), Q ∈ Q

}
the set of distributions of exchangeable random variables, with marginal

distribution in Q.

An i.i.d. sequence is a fortiori exchangeable, while the reverse is not true (for example, sampling
without replacement leads to a sequence that is exchangeable but not i.i.d.).

Remark 1.5. We thus have that for any Q, Q⊗(n+1) ⊂ Qexch(n+1).

Predictive uncertainty quantification under missing covariates. When features are missing,
Equation (1) extends with Cα a function of two arguments: X andM . Specifically, Cα is a marginally
valid predictive set for the test response Y given its corresponding covariates X and the mask M if:

P(Y ∈ Cα(X,M)) ≥ 1− α. (MV)

However, marginal validity (MV) is not enough from an equity stand point and might result
in discriminating between observations depending on their missing pattern (Zaffran et al., 2023).
Indeed, missing values create heteroskedasticity in the resulting distribution of Y given Xobs(M).
Therefore, they argue that when facing missing values one should aim at mask-conditional-validity
(MCV) even in the MCAR setting, i.e.:
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P(Y ∈ Cα(X,M)|M) ≥ 1− α. (MCV)

Equation (MCV) is similar in spirit and motivation than Equation (2) but on a discrete space.
Hence the impossibility results on X-conditional coverage do not hold anymore. However, (MCV)
is a challenging goal as it requires the coverage to be controlled on any mask m ∈M, even those
rarely observed at train time.

In the sequel, to highlight the underlying dependencies and randomness, any estimator of Cα(·, ·)
fitted on a data set

(
X(k),M (k), Y (k)

)n
k=1

is denoted as Ĉn,α(·, ·). We call a method a function that,
for any α ∈ [0, 1], takes as input

(
X(k),M (k), Y (k)

)n
k=1

and outputs an estimator Ĉn,α(·, ·). Table 1
reminds the notations.

1.1 Literature’s background

Very recent papers have investigated uncertainty quantification with missing values. Both Gui
et al. (2023) and Shao and Zhang (2023) consider the question of distribution-free uncertainty
quantification for matrix completion tasks. While the former considers building predictive sets for all
of the missing entries, the latter focuses on what they call matrix prediction where predictive sets are
required only for the last “individual” of the data set. Seedat et al. (2023) addresses the related but

Name Definition Comment

#A Cardinal of the set A
P(A) Power set of A

d Number of features
X Features space X ⊆ Rd
Y Label space

M Missing values pattern space M⊆ {0, 1}d
NA Not Available (or missing value)
obs(m) Indices of the observed components for mask m ∈M obs(m) ∈ N|obs(m)|

(there are |obs(m)|:= ∑d
i=1mi of them)

mis(m) Indices of the missing components for mask m ∈M mis(m) ∈ N|mis(m)|

(there are |mis(m)|:= d−∑d
i=1mi of them)

P Set of distributions on (X ,M,Y)
PMAR Set of distributions on (X ,M,Y) such that X is Missing At Random
PMCAR Set of distributions on (X ,M,Y) such that X is Missing Completely At Random
PY⊥⊥M |X Set of distributions on (X ,M,Y) such that Y⊥⊥M |X

n Number of training observations n+ 1 is the test index
P⊗(n+1) Product distribution of P with itself n+ 1 times P ∈ P

(i.e., distribution of
(
X(k),M (k), Y (k)

)n+1

k=1
drawn i.i.d. with marginal P )

Q⊗(n+1)
{
Q⊗(n+1), Q ∈ Q

}
Q ⊆ P

P exch(n+1) Exchangeable distribution of n+ 1 random variables of distribution P P ∈ P
Qexch(n+1)

{
Qexch(n+1), Q ∈ Q

}
Q ⊆ P

α Miscoverage rate α ∈ [0, 1]
Cα (·, ·) Predictive set function aiming at 1− α coverage Cα : X ×M −→ P (Y)

Ĉn,α (·, ·) Estimator for Cα (·, ·) based on
(
X(k),M (k), Y (k)

)n
k=1

, through a method
MV Marginal validity
MCV Mask-conditional-validity

Table 1: Summary of notations.
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distinct problem of missing values in the responses, which is generally known as the semi-supervised
setting. They introduce a self-supervised learning approach for incorporating unlabeled training data
into the conformalization process. In the same framework, Lee et al. (2024) leverages tools from the
causal inference literature to achieve stronger guarantees such as feature and outcome’s missingness
conditional coverage, which are, in spirit, close to our focus (yet in a different framework).

Closer to our work of predictive uncertainty quantification under missing covariates is Zaf-
fran et al. (2023), as they focus on the same setting (i.e., to predict Y given X , where X might
suffer from missing values both at train time and test time). After showing that impute-then-
predict+conformalization is marginally valid (MV) for any missing mechanism and imputation,
they introduce the harder goal of mask-conditional-validity (MCV), motivated by an illustration on
the heteroskedasticity generated by the missing values on a Gaussian Linear Model. They present
a novel methodology, Missing Data Augmentation (MDA), which combines with conformal pre-
diction (CP, Vovk et al., 2005) in order to produce MCV sets. CP-MDA includes two algorithms,
CP-MDA-Exact and CP-MDA-Nested, the former requiring a strict subsampling step on the
training set, while the latter allows to keep the whole training data, which in turns induce large predic-
tive sets. Zaffran et al. (2023) provide theoretical guarantees on the MCV of CP-MDA-Exact and
on a technical minor modification of CP-MDA-Nested, under MCAR and Y⊥⊥M |X assumptions.

1.2 Overview of our contributions (and outline)

In short, our objective is to tackle the following question: when and how is it possible to achieve
MCV? Notably, we are interested in understanding i) what assumptions are necessary to ensure
MCV, ii) how to design a tailored methodology, and iii) what happens when these assumptions are
not satisfied.

We start by proving hardness results on distribution-free MCV in Section 2. Notably, for a
MCV method outputting Ĉn,α(·, ·) with no assumption except from having access to n i.i.d. draws,
we prove that the predictive interval is most often uninformative: for any m ∈ M the probability
that, say, Ĉn,α(·,m) ≡ Y is higher than 1 − α − ∆m,n, where ∆m,n gets negligible when the
mask m is nearly not observed in a sample of size n. In other words, a method that is distribution-
free MCV will output uninformative intervals on any mask that does not represent a high enough
proportion of the training data. We go further and show that the exact same trade-off still holds for a
method that is MCV only on distributions that are MAR, or MCAR, or similarly on distributions
such that Y ⊥⊥M |X , i.e., restricting an algorithm to be MCV only when Y ⊥⊥M |X would still
output uninformative sets on rarely observed masks: it is necessary to add another assumption on
the dependence between X and M (such as MCAR) to allow for informative MCV on any mask.
Importantly, this theoretical analysis brings new insights on the achievability of X-group-conditional
validity, beyond MCV1.

This motivates the investigation of the quantile regression and missing values interplay in
Section 3, so as to provide guidelines for practical design of probabilistic prediction with missing
covariates. This interplay is hard to characterize in general but becomes explicit under missingness as-
sumptions’, or a multivariate Gaussian setting or linear model. Our key findings are (i—Section 3.1)
that the uncertainty often increases with more missing values: we analyze different mathematical
statements of this main idea (in terms of conditional variance, inter-quantile distance, or predictive
interval length) and evaluate theoretically under which distributional assumptions they are satisfied,

1Precisely, we provide a rigorous quantification of Vladmir Vovk’s comment on X-conditional validity: “of course, the
condition that x be a non-atom is essential: if PX(x) > 0, an inductive conformal predictor that ignores all examples
with objects different from x will have 1− α object conditional validity and can give narrow predictions if the training
set is big enough to contain many examples with x as their object” rephrased from Vovk (2012) to match our notations.
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in particular under MCAR and Y ⊥⊥M |X , motivating our methodological design of Section 4;
(ii—Section 3.2) if the goal is to estimate quantiles, it is essential to be able to retrieve the mask to
construct intervals, in contrast to classic mean regression where the mask is not as crucial.

In Section 4, we propose a unified framework, CP-MDA-Nested?, building predictive sets with
missing covariates for both regression and classification tasks. Precisely, it bridges the gap between
CP-MDA-Exact and CP-MDA-Nested introduced in Zaffran et al. (2023), by encapsulating these
two algorithms as well as any in between with more flexible subsampling schemes, allowing to fix
the trade-off between coverage variance (CP-MDA-Exact) and overly conservative predictive sets
(CP-MDA-Nested). Leveraging the similarity between CP-MDA-Nested? and leave-one-out
conformal approaches (Vovk, 2013; Barber et al., 2021b; Gupta et al., 2022) we provide theory on
the marginal validity of CP-MDA-Nested? without subsampling, which holds regardless of the
missingness distribution (without any assumption on the dependence between M and X , but also
without any assumption on the relationship between M and Y conditionally on X). Moreover, we
also establish that CP-MDA-Nested? is MCV for a wide range of subsampling schemes under
MCAR and Y⊥⊥M |X .

Finally, in Section 5 we conduct synthetic experiments beyond the MCAR and Y ⊥⊥M |X
assumptions. Precisely, we generate missingness that is either MAR (5 different settings), MNAR
(11 different settings) or such that Y 6⊥⊥M |X . CP-MDA-Nested? empirically maintains MCV
under MAR and MNAR missingness. When Y⊥⊥M |X is not satisfied, CP-MDA-Nested? does
not ensure MCV experimentally, unless the imputation is accurate enough. Overall, these numerical
experiments showcase the robustness of CP-MDA-Nested? beyond its theoretical scope of validity.

In the following Table 2, we summarize and organize our main contributions. We report the
theoretical results on the possibility to achieve informative MCV, either positive results (3) or
negative hardness results (7), along with our more general result on marginal validity. Moreover, we
locate experimental results by indicating the figures that align with particular setups. In particular, we
distinguish two kinds of experiments: Numerical extension of results beyond the conditions where
the theory is applicable, which demonstrates promising outcomes in more challenging configurations,
and Numerical confirmation of results anticipated by theoretical analysis, that is the outcomes of the
experiment either i) were already expected based on the theory or ii) confirm that the theoretical
assumptions can not be relaxed to the corresponding distributional setting.

PMCAR PMAR PMNAR = P

PY⊥⊥M |X

CP-MDA-Nested?: 3
?

Hardness: 7
Theory

Theorem 4.3 Proposition 2.8

Figures 5a and 5b Figures 6a, 6b, 7a and 7b Num. extension

Figure 4 Remark 5.1 Num. confirmation

P

Hardness: 7 Hardness: 7 Hardness: 7

Theory
Proposition 2.6 Proposition 2.6 Theorem 2.3

CP-MDA-Nested?: MV
Theorem 4.2

Figure 8a Num. extension

Figure 8b Remark 5.1 Remark 5.1 Num. confirmation

Table 2: Summary of the main theoretical results.
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2 When is Mask-Conditional-Validity (MCV) a too lofty goal?

We will show in this section that purely distribution-free MCV guarantees are often uninformative.
As a consequence, we will have to impose some non-parametric assumption on the underlying data
distribution. We thus have to define the concept of MCV with respect to a class of distributions D
(MCV-D), and to study the sets D that allow for informative MCV-D.

Definition 2.1 (MCV-D). LetD be a set of distributions on (X ×M×Y)n+1. A method outputting
Ĉn,α(·, ·) based on

(
X(k),M (k), Y (k)

)n
k=1

for any α ∈ [0, 1] is MCV-D if for any distribution
D ∈ D and any α ∈ [0, 1], we have:

PD

(
Y (n+1) ∈ Ĉn,α

(
X(n+1),M (n+1)

)
|M (n+1)

) a.s.
≥ 1− α,

i.e., for any m ∈M such that P
(
M (n+1) = m

)
> 0, it holds:

PD

(
Y (n+1) ∈ Ĉn,α

(
X(n+1),m

)
|M (n+1) = m

)
≥ 1− α.

If D = Pexch(n+1) we recover the holy grail of being MCV for any exchangeable distribution,
i.e., the most distribution-free result we could target. If D is not specified thereon, it will refer to
MCV-Pexch(n+1). An easier goal is to aim at MCV-P⊗(n+1), that is MCV on i.i.d. distributions.

Remark 2.2. For any sets D ⊆ D′, a method that is MCV-D′ is also MCV-D, i.e., MCV-D′ ⇒
MCV-D.

A naive idea to ensure MCV is to split the data set into #M sub data sets, one for each mask,
and run any marginally valid method on each of the data sets independently. However, as #M grows
exponentially in the dimension, this is not practical as it will generate small (or even empty) data sets
for some masks. In particular, as long as P(M = m) is low with respect to n for a given m ∈M,
estimation on the sub data set is hard, and even finite sample method such as conformal prediction
(Vovk et al., 2005) will suffer from important statistical variability or uninformativeness. Therefore,
in practice, we usually need to go beyond this solution if we aim to achieve MCV for any mask, even
those rarely observed at train times. Nevertheless, the task appears challenging without restricting
the link between M and (X,Y ), precisely due to the lack of information available in the data set.
The question we tackle in this section is the following: is it possible to achieve distribution-free
MCV in an informative way for any mask inM, even those occurring with low probability?

Link with group conditional coverage. More generally, the question is that of finding on which
subspace of the features it is possible to obtain meaningful conditional guarantees. Thus, the results
demonstrated in this section give some answers to the broader question of when is group-feature-
conditional validity achievable (a relaxation of Equation (2)), which has attracted considerable
interest lately (see e.g., Romano et al., 2020; Barber et al., 2021a; Guan, 2022; Jung et al., 2023;
Gibbs et al., 2023, to name just a few).
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Our hardness results shed light on X-group-conditional coverage.

In the rest of this section,M can be interpreted as any additional random variable, that may (or
may not) depend on X , on which we aim at achieving distribution-free conditional validity.
For example, M could represent subgroups of X , eventually overlapping. Specifically,
assumeM = {0, 1}|G| for G a collection of groups on X , then M is an indicator vector on
whether X belongs to each group of G or not.
A particular case of this generalization is G =

{
{X ∈ X : Xj is missing}dj=1

}
, recovering

our missing covariates setting with M the missing pattern. While our discussion in this
section is written towards the missing covariates setting, the interested reader might replace
“missing pattern” or “mask” by “groups” whenever it makes sense2, and the corresponding
result will hold without further restriction or assumptions on the way the groups are designed.

2.1 Fully distribution-free result

Our first result, Theorem 2.3, confirms the previous intuition: any MCV-P⊗(n+1) method typically
does output the whole set Y with high probability for any distribution, on low probability masks.

Theorem 2.3 (Trade-off set size and mask probability). Suppose that a method outputting Ĉn,α is
MCV-P⊗(n+1). Then for any P ∈ P and any m ∈M such that PM (m) > 0, it holds:if Y ⊆ R (regression) : PP⊗(n+1)

(
Λ
(
Ĉn,α(X,m)

)
=∞

)
≥ 1− α−∆m,n,

if Y ⊆ N (classification) : ∀y ∈ Y,PP⊗(n+1)

(
y ∈ Ĉn,α(X,m)

)
≥ 1− α−∆m,n,

with ∆m,n :=

√
2

(
1−

(
1− PM (m)2

2

)n+1
)

.

Since for any x > 0 and n ∈ N∗, it holds 1− (1− x)n < nx, Theorem 2.3 implies that:if Y ⊆ R (regression) : PP⊗(n+1)

(
Λ
(
Ĉn,α(X,m)

)
=∞

)
≥ 1− α− PM (m)

√
(n+ 1),

if Y ⊆ N (classification) : ∀y ∈ Y,PP⊗(n+1)

(
y ∈ Ĉn,α(X,m)

)
≥ 1− α− PM (m)

√
(n+ 1).

Theorem 2.3 provides a lower bound on the probability that the predictive set is uninformative
for any m ∈M (i.e., typically Λ(Ĉn,α(·,m)) =∞ or #Ĉn,α(·,m) ≥ #Y(1− α)).

Remark 2.4 (MCV-P⊗(n+1) implies uninformative sets even on simple distributions). Crucially,
this lower bound holds for any distribution in P . This implies that the hardness result applies
also to smooth, nonpathological, distributions. Particularly, it means that any method that is fully
distribution-free MCV (i.e., MCV-P⊗(n+1)) will be subject to the lower bound even when applied to
data whose actual distribution is as simple as possible (e.g., MCAR and Y⊥⊥M |X).

Remark 2.5 (Informative sets implies the method is not MCV-P⊗(n+1)). Conversely, for a given
method constructing predictive sets Ĉn,α, assume that there exists a distribution P ∈ P and a mask
m such that PM (m) > 0 and ∆m,n <

1−α
2 and under which Ĉn,α is consistently of finite measure

2The only result that does not extend is Proposition 2.6 for PMAR, as by construction it relies on the missingness structure.
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for different random draws from P⊗(n+1). Then, this method is not MCV-P⊗(n+1), as otherwise
under P⊗(n+1) the predictive set would be of infinite measure with probability at least 0.25 for
α ≤ 0.5 according to Theorem 2.3 (since 1− α−∆m,n ≥ 1−α

2 ≥ 0.25).

Interpretation of the lower bound. Let us now decompose the lower bound. The first term, 1−α,
is an “irreducible term”. Indeed, the estimator outputting Y with probability 1− α and the empty set
∅ with probability α (where the probability corresponds to an exogenous Bernoulli random variable)
is valid conditionally on everything, thus a fortiori on M . Hence, the lower bound has to be smaller
than 1− α as the set of MCV estimators includes this naive one.

For a given distribution P , the second term, ∆m,n, becomes negligible on any m ∈ M such
that PM (m) is small with respect to n, making the lower bound be nearly 1− α. This reflects the
intuition that it is impossible to achieve informative conditional coverage when conditioning on
events whose effective sample size is limited. In other words, the smaller the probability of the
event occurring, the larger the training size must be to compensate and make “sure” that enough
observations are drawn from that event.

Note that as P⊗(n+1) ⊂ Pexch(n+1), any MCV-Pexch(n+1) estimator is MCV-P⊗(n+1) by
Remark 2.2. Thus, the conclusion of Theorem 2.3 extends to any MCV-Pexch(n+1) estimator, on any
P⊗(n+1) with P ∈ P .3

Proof sketch. For any given distribution P ∈ P , and a given mask m ∈M such that PM (m) > 0,
the idea of the proof is the following. Build another distribution Q ∈ P , which equals P whenever
M 6= m, and that “admits” an arbitrary spread on Y when M = m (in short, Q is meant to be
pathological yet close to P ). By doing so, two statements can be made. First, Q⊗(n+1) belongs
to P⊗(n+1), therefore, as Ĉn,α is MCV-P⊗(n+1), under Q⊗(n+1) the probability of Ĉn,α being
uninformative is 1 − α since Y can typically be anywhere. Second, as P and Q are the same
everywhere except on {M = m}, the total variation distance between them is smaller than PM (m).
This leads to the total variation distance between P⊗(n+1) and Q⊗(n+1) being smaller than ∆m,n.
Combining these two observations, it finally leads to the probability of Ĉn,α being uninformative
under P⊗(n+1) which is greater than 1− α−∆m,n. The complete proof is given in Appendix A.2.

A familiar reader will note the similarity with the proofs given by Lei and Wasserman (2014);
Vovk (2012). The difference is that, on the one hand, Vovk (2012) proof leverages an “reductio ad
absurdum” that does not allow to explicitly build the set on which P 6= Q. On the other hand, Lei
and Wasserman (2014) is constructive. Nonetheless, it relies on a crucial step that implicitly assumes
that conditional-validity holds conditionally on the n data points, leading to an inexact statement: the
lower bound obtained becomes 1. As we discussed, as well as Vovk (2012), the lower bound can not
be bigger than 1− α. We provide an alternate proof to this well-known X-conditional impossibility
result that is constructive. Another improvement is that our expression of ∆m,n comes from a tighter
inequality than the ones used in Lei and Wasserman (2014) and Vovk (2012). Indeed, for the original
impossibility result, the lower bound does not really matter as we then take its limit when the ball
around x0 shrinks, which is 0. But in our case, this ball is fixed to the event {M = m}.

2.2 Restricting the class of admissible missingness distributions

Interestingly, the proof of Theorem 2.3 adapts to MCV-P⊗(n+1)
MAR or MCV- P⊗(n+1)

MCAR .

3The same is true for the subsequent Proposition 2.6 and Proposition 2.8.
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Proposition 2.6 (Trade-off set size and mask probability on PMAR or PMCAR). Let Q be either
PMAR or PMCAR. Suppose than an estimator Ĉn,α is MCV-Q⊗(n+1) at the level α. Then for any
Q ∈ Q and any m ∈M such that QM (m) > 0, it holds:

if Y ⊆ R (regression) : PQ⊗(n+1)

(
Λ
(
Ĉn,α(X,m)

)
=∞

)
≥ 1− α−∆m,n,

if Y ⊆ N (classification) : ∀y ∈ Y,PQ⊗(n+1)

(
y ∈ Ĉn,α(X,m)

)
≥ 1− α−∆m,n,

with ∆m,n given in Theorem 2.3.

Remark 2.7 (no direct implication between results). Proposition 2.6 for Q = PMAR does not imply
Proposition 2.6 forQ = PMCAR, nor the contrary. Indeed, on the one hand, as P⊗(n+1)

MCAR ⊆ P
⊗(n+1)
MAR ,

any method that is MCV-P⊗(n+1)
MAR is MCV-P⊗(n+1)

MCAR (Remark 2.2). However, on the other hand,
Proposition 2.6 (or Theorem 2.3) provides a uniform statement over Q ∈ Q (Remark 2.4): as
P⊗(n+1)
MCAR ⊆ P⊗(n+1)

MAR , the final statement holds on more distributions for Q = PMAR than for
Q = PMCAR. Thereofore, Proposition 2.6 for Q = PMAR provides a stronger statement over fewer
methods than Proposition 2.6 for Q = PMCAR.

For the same reason, Proposition 2.6 is not deduced directly from Theorem 2.3, but from a
careful consideration of the construction in its proof: the adversarial distribution built therein does
not make any assumption on the relationship between X and M , which can be as simple as desired.

In fact, the key point for the proof of Theorem 2.3 is that the algorithm achieves MCV also on
distributions under which Y and M can be dependent even conditionally on X: thus, it allows us to
construct an adversarial distribution under which Y is equally likely to be anywhere on the label
space for a given m ∈M.

In view of this, one could think that in order to break Theorem 2.3, and therefore to ensure
that MCV is achievable in an informative way even on low probability masks, we have to at least
assume Y⊥⊥M |X (A1). However, in Proposition 2.8, we show that even estimators that are only
MCV-P⊗(n+1)

Y⊥⊥M |X suffer from the same trade-off on efficiency.

Proposition 2.8 (Trade-off set size and mask probability on PY⊥⊥M |X). Suppose that an estimator

Ĉn,α is MCV-P⊗(n+1)
Y⊥⊥M |X at the level α. Then for any P ∈ PY⊥⊥M |X and for any m ∈ M such that

1√
2
≥ PM (m) > 0, it holds:

if Y ⊆ R (regression) : PP⊗(n+1)

(
Λ
(
Ĉn,α(X,m)

)
=∞

)
≥ 1− α−∆m,n,

if Y ⊆ N (classification) : ∀y ∈ Y,PP⊗(n+1)

(
y ∈ Ĉn,α(X,m)

)
≥ 1− α−∆m,n,

with ∆m,n :=

√
2
(

1− (1− 2PM (m)2)n+1
)

.

All in all, Proposition 2.8 demonstrates that even the simplest relationship between Y and M
does not allow informative predictive sets. This reveals that to ensure that it is possible to obtain
informative sets even on low probability masks (or events), one has to design a method that will be
conditionally valid only on distributions with a constrained structure of dependence between Y and
M given X , but also between M and X . In particular, trying to ensure MCV-P⊗(n+1)

MCAR,Y⊥⊥M |X (where

P⊗(n+1)
MCAR,Y⊥⊥M |X := P⊗(n+1)

MCAR ∩ P
⊗(n+1)
Y⊥⊥M |X ) as done in Zaffran et al. (2023) appears as a natural way to

approach the minimal set of assumptions.
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Remark 2.9. In Figure 4, we illustrate that, on a distribution P ∈ P⊗(n+1)
MCAR,Y⊥⊥M |X, a provably MCV-

P⊗(n+1)
MCAR,Y⊥⊥M |X method (introduced in Section 4) consistently outputs finite length predictive intervals

(regression case). Therefore, we can conclude that obtaining a hardness result on P⊗(n+1)
MCAR,Y⊥⊥M |X

appears impossible, as such it would induce Remark 2.5 (with P⊗(n+1)
MCAR,Y⊥⊥M |X instead of P⊗(n+1)).

3 Link between missing covariates and predictive uncertainty

In light of the previous section, MCV appears hard to achieve. Thus, the problem that we aim to
address now is to find ways to model properly the missing covariates’ influence on predictive
uncertainty. To understand the relationship between missing values and predictive uncertainty, this
section explores simplified distributions on (X,M, Y )—such as MCAR and Y⊥⊥M |X—and/or
on (X,Y )—such as linearity, Gaussianity. We consider the regression case with Y = R. This
exploration aims to facilitate the development of suitable frameworks for probabilistic inference
when covariates are missing—i.e., models that are as close as possible to achieving MCV.

3.1 Increasing uncertainty with nested masks

The hardness results of Section 2 induce that MCV cannot be (efficiently) achieved without structural
assumptions on the links between the predictive distributions conditional on each missing pattern. In
this subsection, we gain insights into the underlying reasons for this phenomenon: the predictive
uncertainty depends on the missing pattern, a form of heteroskedasticity. In summary, we explore
the following idea, which is a natural modelization attempt in that direction:

Idea: The predictive uncertainty increases when less covariates are observed.

In technical words, the aforementioned heteroskedasticity takes the form of an isotonicity (monotony)
with respect to the mask, with the inclusion order given by Definition 3.1 below. In short: the more
missing values, the more uncertainty there is.

Definition 3.1 (Included masks). Let (m,m′) ∈ M2, m ⊂ m′ if for any j ∈ J1, dK such that
mj = 1 then m′j = 1, i.e., m′ includes at least the same missing values than m.

Hereafter, we formally quantify such a statement, in particular in terms of conditional variance,
inter-quantile distance, and predictive interval length. We demonstrate that some of those statements
are valid, to different extent, under distributional assumptions, either generic or on specific model or
examples. To that end, we introduce several properties, that can be considered as non-parametric
assumptions on the underlying distributions. We put together some results of this section in the
following Table 3, that can be used as a reading guide throughout the section.

Property
Setup

Model 3.4 Model 3.3 PMCAR,Y⊥⊥M |X

Variance Var-1 ����Var-1 Var-2 Var-2
Inter-quantile IQ-1 IQ-2
Length of Oracle PI Len-1 Len-2 Len-2

Table 3: Summary of the results from Section 3.1.
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3.1.1 Conditional Variance Isotony w.r.t. the missing data patterns

We start by focusing on the link between M and the conditional variance of Y |Xobs(M), that consti-
tutes a natural proxy on the predictive uncertainty. Denote V (Xobs(M),M) := Var

(
Y |Xobs(M),M

)
the conditional variance of Y given

(
Xobs(M),M

)
. We introduce two properties regarding its

ordering with respect to M : (Var-1) and (Var-2).

V (Xobs(m),m)
a.s.
≤ V (Xobs(m′),m

′) for any m ⊂ m′, (Var-1)

E
[
V (Xobs(M),M)|M = m

]
≤ E

[
V (Xobs(M),M)|M = m′

]
for any m ⊂ m′. (Var-2)

Property Var-1 is stronger than Property Var-2 as it is an almost sure result w.r.t. the covariates X .
The following proposition ensures that (Var-2) is satisfied under PMCAR,Y⊥⊥M |X (that is, assumptions
for which no hardness result can exist).

Proposition 3.2. Under PMCAR,Y⊥⊥M |X, (Var-2) is valid.

The proof of this result is given in Appendix B.1. This is a first significant result: under general
assumptions—i.e., strong assumption on the relation between the mask and both the response and
the features, but no assumptions on their distribution—, the averaged variance is always smaller
on smaller masks. This establishes the existence of a link between the uncertainties on patterns
that can be compared, that is patterns that are nested in one another. Note that the order given by
Definition 3.1 is only a partial order: the average variance ordering is only enforced w.r.t. that partial
order.

It is possible that the predictive uncertainty increases on average with the mask (Equation (Var-2))
but not almost surely on X (Equation (Var-1)), as illustrated by Model 3.3 below:

Model 3.3 (Unidimensional heteroskedasticity). Consider the following one-dimensional model:
• X ∼ N (0, σ2), σ ∈ R+;
• ξ ∼ N (0, τ2), τ ∈ R+, such that ξ ⊥⊥ X;
• Y = βX +Xξ, with β ∈ R;
• M ∼ B(ρ), with ρ ∈ [0, 1], and M ⊥⊥ (X,Y ).

Under this model, we obtain that M ⊥⊥ X (MCAR) and Y⊥⊥M |X , and{
Var(Y |X,M = 0) = τ2X2

Var(Y |M = 1) = (β2 + τ2)σ2
⇒

{
E [Var(Y |X,M = 0)] = τ2σ2

E [Var(Y |M = 1)] = (β2 + τ2)σ2
.

Thus Equation (Var-2) is verified but Equation (Var-1) is only satisfied for X such that X2 ≤(
1 + β2

τ2

)
σ2. This is illustrated in Figure 1. The first subplot represents Y depending on X , while

the third subplot displays Y − βX depending on X , that is an illustration of the uncertainty of the
distribution of Y |X . For anyX outside the vertical dashed lines (corresponding to±(1+β2/τ2)σ2),
the conditional variance of Y given X is larger than the overall variance when X is missing. Yet,
the average variance of Y when X is missing is indeed higher than the average variance of Y when
X is observed: this can be seen on the two histograms on subplots 2 and 4.

Finally, while Model 3.3 shows that (Var-1) is not always true, even under the assumptions of
Proposition 3.2, we now show that it can be achieved in the following Gaussian linear model, a
particular case of Gaussian pattern mixture model.

12



Figure 1: Visualisation of a random draw from the data distribution of Model 3.3, with 100000 i.i.d.
samples, ρ = 0.2, σ2 = 1.5, τ2 = 1 and β = 2. The colors indicate whether X is observed or
missing. The first subplot represents Y depending on X , while the third subplot displays Y − βX
depending on X only for observed X , that is an illustration of the uncertainty of Y |X . The second
subplot is an histogram of Y when X is missing, while the forth subplot is an histogram of Y − βX
when X is observed, i.e., they represent the predictive distribution of Y depending on whether X is
observed or missing.

Model 3.4 (Gaussian linear model (GLM)). The data is generated according to a linear model and
the covariates are Gaussian conditionally to the pattern:
• Y = βTX + ε, ε ∼ N (0, σ2ε) ⊥⊥ (X,M), β ∈ Rd.
• for all m ∈M, there exist µm ∈ Rd and Σm ∈ Rd×d such that X|(M = m) ∼ N (µm,Σm).

Such a model results in a MCAR distribution when Σm ≡ Σ. Indeed under Model 3.4 the
resulting predictive distribution is given by Y |(Xobs(m),M = m) ∼ N (µ̃m, σ̃m) for any m ∈M,
with:

µ̃m = βTobs(m)Xobs(m) + βTmis(m)µ
m
mis|obs,

σ̃m = βTmis(m)Σ
m
mis|obsβmis(m) + σ2ε ,

with µmmis|obs and Σm
mis|obs defined in Appendix B.1.2 (Le Morvan et al., 2020b; Ayme et al., 2022;

Zaffran et al., 2023). Crucially, σ̃m depends on m in a non-linear fashion, even in MCAR. That is,
even in MCAR and a homoskedastic model for Y |X , the predictive distribution of Y |Xobs(M) is
heteroskedastic: basically, the distribution of Y is a mixture of various distributions with the mask
being the latent variable. This simple example already illustrates that missing values generate strong
heteroskedasticity: in Proposition 3.5, we show that under this Model 3.4 and PMCAR, the variance
of the conditional distribution of Y increases when the missing pattern increases (in the sense of
Definition 3.1).

Proposition 3.5 (Conditional variance increases with the mask under MCAR GLM). Under
Model 3.4 and PMCAR, if the covariance matrix Σ is positive definite, Equation (Var-1) is satisfied.

To prove that the variance increases with the pattern, we prove that for any m ⊂ m′, Σm′

mis|obs <(
Σm
mis|obs 0

0 0

)
. This is proved in Appendix B.1.2.

Next, in order to go beyond variances, we focus on inter-quantile distances as a measure of
uncertainty, and establish a general result on the expected length of oracle predictive intervals.
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3.1.2 Conditional Inter-quantile Isotony w.r.t. the missing data patterns

Ideally, we would like to access the oracle predictive interval (the interval satisfying Equation (MCV)
with minimal expected length). Thus, in this section we are interested in characterizing its behavior
with respect to M , in order to be able to mimic it. We denote this interval C∗,Pα , that is formally
defined for any m ∈M as:

C∗,Pα (·,m) := arg min
Cα:X×M→P(R)

s.t.PP (Y ∈Cα(X,m)|M=m)≥1−α,

EP [Λ(Cα(Xobs(m),m))|M = m].

In fact, under Model 3.4, the oracle predictive interval is uniquely defined by the quantiles α/2
and 1− α/2 of theN (µ̃m, σ̃m). More importantly, this oracle interval even achieves X-conditional
coverage. Proposition 3.5 shows that under PMCAR and Model 3.4, increasing the number of missing
values (in a nested way) induces an increase in the predictive uncertainty of Y : the oracle intervals,
that are given by inter-quantiles intervals, are nested. Notably, this is true almost surely on Xobs and
not only marginally.

To generalize this property beyond the Gaussian case, we introduce the inter-quantile distance,
that encodes the uncertainty for conditional predictive distribution. For all β ≤ 1

2 ≤ γ, we define the
inter-quantile space for quantile distributions:

IQβ,γ(Xobs(M),M) = qγ(PY |Xobs(M),M )− qβ(PY |Xobs(M),M ).

And the following two assumptions, that are similar in spirit to (Var-1) and (Var-2)

IQβ,γ(Xobs(m),m)
a.s.
≤ IQβ,γ(Xobs(m′),m

′) for any m ⊂ m′,
(IQ-1)

E
[
IQβ,γ(Xobs(M),M)|M = m

]
≤ E

[
IQβ,γ(Xobs(M),M)|M = m′

]
for any m ⊂ m′.

(IQ-2)

The assumptions on the quantiles and the variance are equivalent for Gaussian (conditional) distribu-
tions. As a consequence, (IQ-2) is satisfied under Model 3.4 and PMCAR as well as under Model 3.3,
while (IQ-1) is satisfied only under Model 3.4 and PMCAR. Inter-quantile assumptions are related
to predictive intervals: for any distribution P such that PY |Xobs(M),M is a.s. unimodal, the oracle

predictive interval C∗,Pα writes as an inter-quantile interval almost surely, that is there exist functions
β, γ : X ×M→ [0, 1] such that

C∗,Pα (Xobs(M),M)
a.s.
=
[
qβ(Xobs(M),M)(PY |Xobs(M),M ); qγ(Xobs(M),M)(PY |Xobs(M),M )

]
EP [γ(Xobs(M),M)− β(Xobs(M),M)|M ]

a.s.
= 1− α.

Indeed, to minimize the average length, the best oracle solution consists in minimizing the length
conditionally to (Xobs(M),M), which is achieved by an inter-quantile interval, under the unimodality
assumption. The quantity γ(Xobs(M),M) − β(Xobs(M),M) corresponds to the (Xobs(M),M)–
conditional coverage, that is on average, conditionally to M = m, the targeted 1− α.

Yet, in practice, the constructed intervals are not the oracle ones. Therefore, a natural question
is whether (IQ-2) extends to a non-oracle Cα. As generally Cα is not based on the underlying true
conditional quantiles, we focus on Cα length instead, a quantity similar in spirit to the inter-quantile.
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We consider the two following assumptions:

Λ(Cα(Xobs(m),m))
a.s.
≤ Λ(Cα(Xobs(m′),m

′)) for any m ⊂ m′,
(Len-1)

E
[
Λ(Cα(Xobs(M),M))|M = m

]
≤ E

[
Λ(Cα(Xobs(M),M))|M = m′

]
for any m ⊂ m′.

(Len-2)

We have the following Theorem 3.6 on isotonicity (Len-2) under PMCAR,Y⊥⊥M |X.

Theorem 3.6. Let Cα be an MCV-PMCAR,Y⊥⊥M |X predictive interval. There exists a predictive
interval C̃α which

i) is MCV-PMCAR,Y⊥⊥M |X,

ii) has conditional length smaller or equal to that of Cα on each pattern,

iii) is averaged-length-isotonic w.r.t. the patterns, i.e., satisfies (Len-2).

The proof of Theorem 3.6 exploits the fact that under PMCAR,Y⊥⊥M |X, a strategy to ensure
conditional coverage w.r.t. a pattern m, is to transform (Xobs(m),m) into (Xobs(m

′),m′) by
additionally masking some entries, and using the predictive interval given on pattern m′. For
m ⊂ m′, we denote Xobs(max(m,m′)) the point in which we additionally mask elements of m′

in X . We have that under PMCAR,Y⊥⊥M |X, the distribution of the data post-masking is equal to
that of the data with more missing entries: PY |Xobs(max(M,m′)),max(M,m′) = PY |Xobs(m′),M=m′ . We
can leverage this observation to build intervals: if the averaged length of the predictive interval
conditionally to a pattern m ⊂ m′ is larger than that conditionally to a pattern m ⊂ m′, we can
replace Cα(Xobs(m),m) by Cα(Xobs(m′),m

′), ensuring both that new interval length is smaller
and that we satisfy (Len-2). Formally, we proceed by induction: starting from the pattern m′ =
(1, . . . , 1) (no data observed), we first consider all patterns m = (1, . . . , 1, 0, 1, . . . ) with a single
observed value, and define C̃α(Xobs(M),M), conditionally to M = m, as either Cα(Xobs(M),M)
or Cα(Xobs(max(M,m′)),max(M,m′)) (depending on which expected length is smaller). We then
repeat the same reasoning inductively. For a pattern m, we pick for C̃α either Cα(·,m) or the
minimal-length interval among all Cα(·,m′) for all patterns m′ that have one more missing data than
m, and artificially mask on of the components of Xobs(m) when predicting.

Interpretation: we leverage towards predictive interval construction the fact that we can
transform an observed point, by removing some covariates, and recover the same distribution as the
one with more missing entries. This idea will be one of the key techniques leveraged in Section 4.

As consequence of Theorem 3.6 is the following corollary, that is obtained by a minimality
argument for the oracle interval (i.e., knowing that applying the aforedmentioned transformation to
the oracle does not change it, as it already has minimal-expected length on each pattern):

Corollary 3.7. Let P ∈ PMCAR,Y⊥⊥M |X. Then the oracle interval C∗,Pα is averaged-length-isotonic
w.r.t. the patterns, i.e., satisfies (Len-2).

Overall, (Len-2) is thus satisfied by our target sets under PMCAR,Y⊥⊥M |X, and thus appears as a
reasonable constraint to impose on our predictive sets. Indeed, it seems to be close to the minimal set
of assumptions required in order to ensure that no hardness result exists (Section 2) while inducing a
leverageable structure between patterns that can be compared (Theorem 3.6).
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3.2 Guidelines for practitioners: which information through imputation for quantile
regression?

In this section, we highlight specifities of predictive uncertainty quantification under missing covari-
ates with respect to mean regression, and provide generic guidelines usable in practice.

Impute-then-predict. Most predictive algorithms can not cope directly with missing covariates.
To bypass this, the most common approach is to impute the incomplete data via an imputation
function Φ, that maps observed values to themselves and missing values to a function of the ob-
served values. Using notations from Le Morvan et al. (2021) we note φm : R|obs(m)| → R|mis(m)|

the imputation function which, given a mask m ∈ M, takes as input observed values and out-
puts imputed values, i.e., plausible values. Then, the overall imputation function Φ belongs to
FI :=

{
Φ : X ×M→ X : ∀j ∈ J1, dK, (Φ (X,M))j = Xj1Mj=0 +

(
φM

(
Xobs(M)

))
j
1Mj=1

}
.

The imputed data set becomes the n random variables (Φ (X,M) ,M, Y ). In practice, Φ is the result
of an algorithm I trained on

{(
X(k),M (k)

)}n+1

k=1
. The impact of imputation has been studied for

mean regression tasks (in particular in Le Morvan et al., 2021; Ayme et al., 2023, 2024).

How to account for the missingness when imputing? Given the impact of missing covariates on
the shape of prediction uncertainty discussed in Section 3.1, impute-then-predict raises a specific
concern: is there a way to impute which incorporates the necessary information on the missing
values?

Hereafter, we show that the answer is significantly different if we restrict ourselve to mean
regression. Specifically, we show that incorporating the mask (e.g., by concatenating the mask to the
features) is more critical for quantile regression. To that end, we provide in Proposition 3.8 simple
models showcasing that unbiased imputation choices are sufficient to obtain an optimal model for
regression but fail for quantile regression. For mean regression, the efficiency of such imputation
methods have been established in practice (see e.g., Josse et al., 2024; Le Morvan et al., 2021) and
Proposition 3.8 support those findings.

Proposition 3.8. Assume PMCAR,Y⊥⊥M |X and Y = β∗TX + ε with ε s.t. E
[
ε|Xobs(M),M

]
= 0.

i) Mean regression

• if the covariates (Xj)
d
j=1 are independent, then the optimal linear model taking Φmean(X,M)

as input is Bayes optimal, with Φmean the imputation by the mean;
• the optimal linear model taking Φconditional mean(X,M) as input is Bayes optimal, with

Φconditional mean the imputation by the conditional mean;

ii) Any quantile linear model taking unbiased imputed data as input (i.e., E [Φ(X,M)|M ]
a.s.
=

E [X]) leads to intervals of constant expected length across patterns, thus is not Bayes optimal
when Y 6⊥⊥ X .

Point i) of Proposition 3.8 illustrates that if the learner was able to retrieve the true underlying
regression coefficients and the data were imputed by their mean or conditional mean, then the
learned model would be the best possible at the task of predicting the conditional expectation, i.e.,
all necessary information is preserved by using only the imputed data set and not leveraging the
associated mask. Although the non-necessity of using the mask in the conditional expectation
estimation and MCAR framework does not systematically extend when the data is more complex
than linear, it is insightful as even in the linear setting, the same does not hold for quantile regression.
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Indeed, point ii) of the same Proposition 3.8 highlights that on the contrary a learner accessing
the true underlying regression coefficients with the very same unbiased imputed data would not lead
to an optimal model, as a method whose resulting predictive interval have constant lengths across
the missing patterns does not retrieve the underlying heteroskedasticity induced by the missing
values (Section 3.1), and thereby cannot be MCV. Precisely, the assumption on the imputation
for this result corresponds for example to imputing by the feature’s expectation (i.e., Φmean), the
feature’s conditional expectation (i.e., Φconditional mean), or a random draw from a distribution whose
expectation is the feature’s expectation, under PMCAR. This includes MICE (van Buuren and
Groothuis-Oudshoorn, 2011), which consists in imputing by random draws from the conditional
distribution hence the imputed data have the same expectation than the features themselves.

Overall, Proposition 3.8 tells that i) the state-of-the-art imputation method MICE is not the best
choice for predictive uncertainty quantification, ii) by contrast to mean regression, in the linear case
imputing by the expectation or the conditional expectation is detrimental. In fact, data-independent
constant imputation would result in more adaptive intervals. This is because quantile regression needs
to retrieve the information on the patterns to adapt its structure to it. Therefore, when using such
imputations, a natural idea is to give the information of the mask to the model by concatenating
the mask to the features.

4 Principled unified Missing Data Augmentation (MDA) framework:
CP-MDA-Nested?

In this section, we go beyond generic guidelines and we introduce a general framework, coined
CP-MDA-Nested?, to generate predictive sets that achieve MCV under PMCAR,Y⊥⊥M |X. Our
approach is applicable to both classification and regression tasks, by building upon any conformal
score function (Vovk et al., 2005). It combines over-masking ideas introduced in Section 3, with
subsampling techniques, and similar machinery than leave-one-out conformal prediction methods
(Barber et al., 2021b; Gupta et al., 2022).

4.1 Presentation of CP-MDA-Nested?

We start by reminding the necessary concepts of split Conformal Prediction (CP) in the complete case,
without missing values, before diving into the details of our unified framework CP-MDA-Nested?.

4.1.1 Background on split CP

Introduced in Papadopoulos et al. (2002); Vovk et al. (2005); Lei et al. (2018), split CP builds
predictive regions by first splitting the n points of the training set into two disjoint sets Tr,Cal ⊂
J1, nK, to create a proper training set, Tr, and a calibration set, Cal, of sizes #Tr = (1− ρ)n and
#Cal = ρn with ρ ∈]0, 1]. On the proper training set, a model f̂ (chosen by the user) is fitted, and
then used to predict on the calibration set. Conformity scores S =

{(
s
(
X(k), Y (k); f̂

))
k∈Cal

}
∪

{+∞} are computed to assess how well the fitted model f̂ predicts the response values of the
calibration points. In regression, usually the absolute value of the residuals is used, i.e. s(x, y; µ̂) =
|µ̂(x) − y|. In classification, the simplest score is s(x, y; p̂) = 1 − p̂(x)y (where p̂ : X 7→ [0, 1]Y

outputs a vector of estimated probabilities for each class). Finally, the (1 − α)-th quantile of
these scores q1−α (S) (i.e., their d(1− α) (#Cal + 1)e smallest value) is computed to define the
predictive region: Ĉn,α(x) := {y ∈ Y such that s(x, y; f̂) ≤ q1−α (S)}. In regression with the
absolute values of the residual score, this reduces to Ĉn,α(x) := [µ̂(x)± q1−α (S)].
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This procedure satisfies Equation (1) for any f̂ , any (finite) sample size n, as long as the data
points are exchangeable.4 For more details on split CP, we refer to Angelopoulos and Bates (2023);
Vovk et al. (2005), as well as to Manokhin (2022).

4.1.2 CP-MDA-Nested?

From an high level perspective, the idea is to apply split CP on top of an impute-then-predict pipeline
(of imputation function Φ), and to modify the calibration step in order to ensure MCV. This is called
CP-MDA, for conformal prediction with missing data augmentation. Generally, for a given test point(
X(n+1),M (n+1)

)
, CP-MDA works by artificially masking covariates in the calibration set so as to

match at least the mask of the test point, by creating a new mask M̃ (k) = max
(
M (k),M (n+1)

)
for

each k ∈ Cal. In other words, it corresponds to discarding from the calibration set the covariates that
are missing in the test point. This leads to M (n+1) ⊆ M̃ (k), i.e., all over-masked (or augmented)
points

(
X(k), M̃ (k), Y (k)

)
k∈Cal

have at least the missing entries of
(
X(n+1),M (n+1)

)
. The points

such that M̃ (k) = M (n+1) can be used directly as under distributional assumptions (P⊗(n+1)
MCAR,Y⊥⊥M |X),

they now have the same mask and distribution as the test point. Yet for many calibration points
it remains that M̃ (k) 6= M (n+1) (precisely, for all the k ∈ Cal such that M (k) 6⊆ M (n+1)). This
means that those over-masked points follow another conditional distribution than the one of the test
point, and MCV can not be directly ensured.

An idea is to subsample the calibration set so that the effective calibration set contains only
k ∈ Cal such that M (k) 6⊆ M (n+1) (i.e., M̃ (k) = M (n+1)) (this is the approach followed in
CP-MDA-Exact, Zaffran et al., 2023). However, this can lead to overly small calibration set size
in high dimension, resulting in a large variance (on the coverage level and thus set size). Therefore,
two questions naturally arise:

• How to build the calibration set?

• How to leverage the test point so as to account for the different distributions present in the
over-masked calibration set—and with many of them not matching the test mask conditional
distribution—when constructing the predictive set?

The answers we suggest define our generalized framework CP-MDA-Nested?, whose pseudo-code
is available in Algorithm 1, and are illustrated in Figure 2.

Construction of the calibration set. CP-MDA-Nested? includes a subsampling step: it cal-
ibrates on the set of indices C̃al ⊆ Cal provided by the user, where C̃al can be obtained with
any subsampling strategy, that might even be stochastic, as long as the randomness is independent
of the covariates and outputs,

(
X(k), Y (k)

)
k∈Cal∪{n+1} (it can still depend on the masks). The

following strategies work if the data distribution belongs to P⊗(n+1)
MCAR,Y⊥⊥M |X (which is an assumption

we make anyway when using CP-MDA-Nested? since, as we show precisely in Theorem 4.3,
CP-MDA-Nested? is typically MCV-P⊗(n+1)

MCAR,Y⊥⊥M |X):

i) subsampling only the indices
{
k ∈ Cal : M (k) ⊆M (n+1)

}
:= C̃al (this is the strategy of

CP-MDA-Exact, Zaffran et al., 2023);

ii) no subsampling, C̃al := Cal (this is the path taken by CP-MDA-Nested, Zaffran et al., 2023);

iii) subsampling only the indices
{
k ∈ Cal : M (k) ⊆ m′

}
:= C̃al, for some m′ ⊇M (n+1);

4Only the calibration and test data points need to be exchangeable.
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iv) obtain C̃al by subsampling from the indices
{
k ∈ Cal : M (k) ⊆ m′

}
, for some m′ ⊇M (n+1),

using a mixture distribution, whose weights only depend on
(
M (k)

)
k∈Cal∪{n+1}.

Then, for any k ∈ C̃al, the over-mask is constructed, defining M̃ (k) = max
(
M (k),M (n+1)

)
. This

is schematized in Figure 2.

Leveraging temporary test points. After the subsampling step aforedmentioned, the over-masked
calibration points and the test point do not necessarily have the same conditional distribution
conditionally to the mask, as M (n+1) ⊆ M̃ (k) without equality in general. In order to match those
distributions, an idea is to create temporary test points (one for each calibration point) and to apply
M̃ (k) to it. This is illustrated in green in Figure 2. CP-MDA-Nested? evaluates the number of
over-masked calibration points that have a conformity score smaller than that of the corresponding
over-masked test point for a given y ∈ Y . Then, the predictive set includes only the y ∈ Y such that
this number is small enough (a threshold that depends on α and the effective calibration size). This
careful treatment of the test point allows to compare scores obtained from identical distributions
conditionally on their associated mask.

4.1.3 Key comments on CP-MDA-Nested?

In summary, CP-MDA-Nested? bridges the gap between CP-MDA-Exact and CP-MDA-Nested
by proposing a tighter generalized framework. On the one hand, CP-MDA-Exact comes with a
potentially small calibration set, thus with increased variability. On the other hand, by leveraging all

Test point

Initial calibration set

-1 -10 6 1 0

4 -2 2 1

5 1 1 3

0 1 -2

-3 0

3 1 2

Overmasked calibration set

-1 1 0

4 2 1

5 3

0 1 -2

-1 1 0

4 2 1

5 3

0 1 -2

Temporary test points

-1 1 0

4 2 1

0 1 -2

3 1 2

3 1 2

3 2

3 1 2

3 1 2

3 1 2

3 2

3 1 2

3 1 2

3 1 2

3 1 2
keep same mask

keep arbitrary selection

keep all points

Figure 2: CP-MDA-Nested? illustration. Different subsampling strategies are shown, with their
associated over-masked calibration set and temporary test points according to one test point.
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Algorithm 1 CP-MDA-Nested?

Input: Training set
{(
X(k),M (k), Y (k)

)}n
k=1

, imputation algorithm I , learning algorithmA taking

its values in F := YX×M, calibration proportion ρ ∈]0, 1],
{

Tr,Cal,Φ, Â
}

the output of the

splitting Algorithm 2 ran on
{{(

X(k),M (k), Y (k)
)}n

k=1
, I,A, ρ

}
, conformity score function

s (·, ·; f) for f ∈ F , significance level α, test point
(
X(n+1),M (n+1)

)
, subsampled set of

calibration indices C̃al ⊆ Cal
Output: Prediction set ĈMDA-Nested?

n,α

(
X(n+1),M (n+1)

)
// Generate an over-masked calibration set:

1: for k ∈ C̃al do Additional nested masking
2: M̃ (k) = max(M (k),M (n+1))
3: end for Over-masked calibration set generated. //
4: ĈMDA-Nested?

n,α

(
X(n+1),M (n+1)

)
:=
{
y ∈ Y : (1− α)(1 + #C̃al) >∑

k∈Cal

1
{
s
((
X(k), M̃ (k)

)
, Y (k); Â (Φ (·, ·) , ·)

)
< s

((
X(n+1), M̃ (k)

)
, y; Â (Φ (·, ·) , ·)

)}}

Algorithm 2 Split and train

Input: Imputation algorithm I , learning algorithm A taking its values in F := YX×M, training set{(
X(k),M (k), Y (k)

)}n
k=1

, calibration proportion ρ ∈]0, 1]

Output: Splitted sets of indices Tr and Cal, imputation function Φ, fitted predictor Â
1: Randomly split {1, . . . , n} into 2 disjoint sets Tr & Cal of sizes #Tr = (1−ρ)n and #Cal = ρn
2: Fit the imputation function: Φ(·, ·)← I

({(
X(k),M (k)

)
, k ∈ Tr

})
3: Fit the learning algorithm A: Â (·, ·)← A

({(
Φ
(
X(k),M (k)

)
,M (k)

)
, k ∈ Tr

})
calibration points, including those with very few observed covariates, the average interval length
produced by CP-MDA-Nested is typically larger than that of CP-MDA-Exact (cf. (Len-2)). Fur-
thermore, CP-MDA-Nested is less generic than CP in the sense that it is specific to predictive
intervals (unlike CP-MDA-Exact which is as generic as CP and can be plugged with any score
function, including classification). Overall, CP-MDA-Nested? unifies this framework for any score
function and provides high flexibility in the trade-offs between efficiency and variability:

• At the extreme of no subsampling at all, we obtain a generalization of CP-MDA-Nested
which encapsulates the classification setting;

• This generalization provides tighter sets than that of CP-MDA-Nested in the particular case
of interval-based scores (see Remark 4.1);

• At the other extreme of the strictest subsampling procedure, we retrieve CP-MDA-Exact;

• Any other less restrictive subsampling (possibly with a random selection between various
augmented mask) belongs to this framework, providing more flexibility in the trade-offs
between exact validity and statistical variability.

This overview is summarized in Table 4.
In the case where the nested predictive sets are intervals and C̃al = Cal, then the final predictive

sets obtained through CP-MDA-Nested? are included in the ones of CP-MDA-Nested.

Remark 4.1. When C̃al = Cal, and using absolute value of the residuals scores or conformalized
quantile regression scores (Romano et al., 2019), or any score such that {y ∈ Y such that s(x, y; f̂) ≤
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b} for some b is an interval, then ĈMDA-Nested?
n,α (·) ⊆ ĈMDA-Nested

n,α (·) (see Appendix D).

This unification allows us to provide theoretical guarantees, stated in Section 4.2, leveraging
the deep connections between CP-MDA-Nested? and leave-one-out conformal methods (such as
Barber et al., 2021b; Gupta et al., 2022). Indeed, the rationale for predicting on masked test points,
using the augmented calibration masked, is that we want to treat the test and calibration points in a
symmetric way. We summarize them in the following Table 5.

4.2 Theoretical guarantees on CP-MDA-Nested and CP-MDA-Nested? leveraging
their connection to leave-one-out CP

Hereafter, we give our theoretical results on the coverage of our CP-MDA-Nested? algorithm.

Theorem 4.2 (Marginal validity of CP-MDA-Nested?). CP-MDA-Nested? with C̃al = Cal
(and thus CP-MDA-Nested) is MV-Pexch(n+1) at the level 1− 2α.

Theorem 4.2 provides a lower bound on CP-MDA-Nested? and CP-MDA-Nested cover-
age as 1 − 2α. This result is important as it equips CP-MDA-Nested? with C̃al = Cal and
CP-MDA-Nested with controlled coverage on any exchangeable distribution: they are marginally
valid even on MNAR distributions or when Y 6⊥⊥M |X . It means that despite modifying the data set
independently from X and Y and breaking the structure of (X,M, Y ), the obtained estimator makes
reliable predictions including when X,M , and Y are strongly dependent. This originates from the
fact that the whole data set has been treated equally, including the test point.

Theorem 4.3 (Conditional validity of CP-MDA-Nested?). CP-MDA-Nested? with C̃al indepen-
dent of the data set

(
X(k), Y (k)

)
k∈Cal∪{n+1} (and thus CP-MDA-Nested) is MCV-P⊗(n+1)

MCAR,Y⊥⊥M |X
at the level 1− 2α.

The proofs of Theorems 4.2 and 4.3 are deferred to Appendix D.1 and Appendix D.2 respectively.
They are heavily based on the deep connections between CP-MDA-Nested? with Jackknife+
and general leave-one-out or k-fold CP (Barber et al., 2021b; Vovk, 2013; Gupta et al., 2022).
Indeed, one can observe that, for each k ∈ Cal, we evaluate the conformity score of the test
point (X(n+1),M (n+1), Y (n+1)) using the k-th augmented mask, as the equivalent of evaluating the
conformity score of the test point with the fitted model that has left-out the k-th calibration point.
This connection between CP-MDA-Nested? and leave-one-out conformal approaches directly
stems from the same core motivations: i) both enforce a design that use all the observations of
the training or calibration sets to handle small sample sizes, ii) both need to avoid invalid designs
that arise naturally when keeping all these points, such as comparing scores obtained with different
predictors.

Method CP-MDA-Exact CP-MDA-Nested? (new) CP-MDA-Nested

Size of actual calibration set # points in Cal with M ⊆M (n+1) Any #Cal

Mask of the points used for calibration exactly M (n+1) all, leading to M̃ s.t. M (n+1) ⊆ M̃
Overall behavior Too few Cal points→ high coverage variance Flexible Too large intervals (cf. (Len-2))

Applies to classification 3 3(new) 7

Outputs non-interval sets 3 3(new) 7

Marginal guarantee (MV) 3 3(new) 3(new)
Conditional guarantee (MCV) 3 3(new) 3(new)

Table 4: Summary of the high-level characteristics of MDA algorithms, coming from the literature,
as well as our novel contributions indicated by “(new)”. Characteristics are given for a test point(
X(n+1), Y (n+1),M (n+1)

)
. Details regarding guarantees are given in Table 5.
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Guarantees MV MCV

CP-MDA-Exact P⊗(n+1)
MCAR,Y⊥⊥M |X, level α, P⊗(n+1)

MCAR,Y⊥⊥M |X, level α,
i.e., CP-MDA-Nested? with subsampling with upper bound, with upper bound,
only k ∈ Cal s.t. M (k) ⊆M (n+1) from Zaffran et al. (2023) from Zaffran et al. (2023)

CP-MDA-Nested? P⊗(n+1)
MCAR,Y⊥⊥M |X, level 2α P⊗(n+1)

MCAR,Y⊥⊥M |X, level 2α

CP-MDA-Nested? without subsampling Pexch(n+1), level 2α P⊗(n+1)
MCAR,Y⊥⊥M |X, level 2α

Table 5: Theoretical guarantees of CP-MDA-Nested? depending on the subsampling choice.

On the factor 2 and link with empirical quantile aggregation. Despite the coverage guarantee
being of 1 − 2α instead of the desired 1 − α, in practice, our experiments in Section 5 show that
CP-MDA-Nested? without subsampling (i.e., CP-MDA-Nested) tends to over-cover. This aligns
with Figure 2 of Barber et al. (2021b), that illustrates the fact that leave-one-out conformal methods
achieve empirically exactly 1− α coverage, while K-fold conformal approaches over-cover. The
reason behind this phenomenon is still unclear in the community, and is likely to be the same than
the reason for CP-MDA-Nested? over-coverage, as one can see CP-MDA-Nested? as having
access to many folds of calibration points, since each augmented calibration mask typically appears
many times in the calibration set. In particular, Zaffran et al. (2023) provide MCV-P⊗(n+1)

MCAR,Y⊥⊥M |X
guarantees at the level 1 − α on a modified version of CP-MDA-Nested which leverages this
folding point of view by calibrating only on one (arbitrarily) chosen such fold. Similarly than
for K-fold and leave-one-out conformal methods, we can look at CP-MDA-Nested? as a way to
aggregate many valid empirical quantiles or p-values, one for each fold, i.e., one for each augmented
mask. Due to the strong dependencies between these random variables, such an aggregation does not
lead to a valid aggregated quantile or p-value, and induces a loss of coverage.

Theorem 4.3 proof approach: coupling our algorithm with a leave-one-out conformal method
on a virtual complete data set. We work conditionally to the mask of the test point, M (n+1).
Then, we introduce a randomized predictor, for which “training” consists in randomly picking
one individual predictor among a bag of individual predictors, each of them corresponding to an
augmented calibration mask. This bag contains exactly 2|obs(M

(n+1))| possible individual predictors,
where |obs(M (n+1))| is the number of 1s in M (n+1), i.e., the number of observed features in the test
point. Each individual predictor in the bag is thus parametrized by a super/over-mask of M (n+1). We
call such a predictor a mixture-predictor, as it basically consists in picking randomly one individual
predictor in a mixture of individual predictors. That sampling has to be made independently of the
data the mixture predictor is applied to, but non necessarily uniformly. Furthermore, we ensure
that the individual predictor indexed by a mask M only relies on the covariates Xobs(M) for the
prediction, in order for this algorithm to be applicable in practice (e.g., an invalid design would be
individual predictors that require the knowledge of some of the Xmis(M), unobserved in practice, in
order to make predictions).

We then show that our algorithm CP-MDA-Nested?, applied to the data set with missing

entries
(
X

(k)

obs(M(k))
, Y (k),M (k)

)n+1

k=1

, has the same guarantees in expectation as the leave-one-out

conformal that uses the mixture predictor, applied onto a virtual complete data set
(
X(k), Y (k)

)n+1

k=1
,

if we make some assumptions on the missingness distribution. More specifically, we show that
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there exists a coupling between the two algorithms, that ensures that the output (and thus coverage)
have the same distribution. This ultimately enables us to reuse existing guarantees for leave-one-out
conformal estimators.

5 A practical glimpse on the impacts of breaking the distribution’s
assumptions

In this concluding section, we investigate the numerical performances of CP-MDA-Nested?

mainly outside its theoretical set of assumptions. Experiments under PMCAR,Y⊥⊥M |X are provided in
Section 5.1, then Section 5.2 presents numerical results when the data distribution either belongs to
PMAR or PMNAR, and finally Section 5.3 reports empirical performances when Y 6⊥⊥M |X .

In all experiments, the data are imputed using iterative regression (iterative ridge imple-
mented in Scikit-learn, Pedregosa et al. (2011)). The predictive models are fitted on the imputed data
concatenated with the mask. The prediction algorithm is a neural network, fitted to minimize the
pinball loss (Sesia and Romano, 2021). For the vanilla QR, we use both the training and calibration
sets for training. The training set contains 500 data points, and the calibration set 250 data points.
To evaluate the marginal coverage, a test set is generated with missing values following the same
distribution as on the training and calibration sets. Then, to estimate mask-conditional coverage
(i.e., P(Y ∈ Ĉn,α(X,m)|M = m) for each m ∈M), we generate another test set by imposing that
the number of observations per pattern is fixed to 100, in order to ensure that the variability is not
impacted by P (M = m). Each experiment is repeated 100 times (unless stated otherwise).

5.1 Experiments under PMCAR,Y⊥⊥M |X

Data generation. The data is generated with d = 10 according to Model 3.4 (regression), Y =
βTX + ε with X ∼ N (µ,Σ), µ = (1, · · · , 1)T and Σ = ϕ(1, · · · , 1)T (1, · · · , 1) + (1 − ϕ)Id,
ϕ ∈ {0, 0.8} depending on the experiment, Gaussian noise ε ∼ N (0, 1) ⊥⊥ (X,M) and the
following regression coefficients β = (1, 2,−1, 3,−0.5,−1, 0.3, 1.7, 0.4,−0.3)T . Each of these 10
features is missing with probability 0.2 independently from anything else.

5.1.1 CP-MDA-Nested? provides flexibility

In our first experiments, we compare CQR to CP-MDA-Exact and CP-MDA-Nested, as well as
CP-MDA-Nested? where we subsample all the calibration points that have at most two features
that are missing among the observed features of the test point. As d = 10, there are 1024 different
patterns, avoiding to display the performances of the algorithms on each of the patterns. Therefore,
instead, we represent the coverage and the length of the predictive intervals depending on the mask
size, a proxy for mask-conditional coverage. For each pattern size, 100 observations are drawn
according to the distribution of M |size(M) in the test set. In this subsection only, the number of
repetition is of 50.

Figure 3a displays the results of this experiment. As noticed in Zaffran et al. (2023), CQR
is not MCV-P⊗(n+1)

MCAR,Y⊥⊥M |X as its intervals undercover or overcover depending on the number of
missing values. The three versions of CP-MDA-Nested? ensure that the coverage is at least 1− α
for any pattern size, as supported by our theory (Section 4.2)5 Comparing CP-MDA-Exact and
CP-MDA-Nested, we observe that CP-MDA-Exact is more efficient as it produces smaller

5Note that MCV implies validity on any mask size, but not the contrary.
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intervals and its coverage is exactly of 1 − α on average, while suffering for more variabil-
ity than CP-MDA-Nested. The intermediate version of CP-MDA-Nested? allows to reduce
CP-MDA-Exact variability while improving the efficiency of the intervals by 5.5% marginally (the
comparison consists in computing the difference between CP-MDA-Nested? and CP-MDA-Nested
interals’ median length, and normalize it by CP-MDA-Nested intervals’ median length), reaching
nearly 10% of improvement on the test points that have no missing values. For 7 to 9 missing
values, this CP-MDA-Nested? is equivalent to CP-MDA-Nested as the subsampling scheme of
CP-MDA-Nested? boils down to keeping all the calibration points on these patterns.

CP-MDA-Nested reveals all its interest over CP-MDA-Exact in settings where the exact
subsampled calibration set contains really few points for some masks (e.g., in high dimension or
when the probability of missing values is high). In Figure 3b, the probability of each features being
missing is increased to 0.4. We observe that CP-MDA-Exact outputs infinite intervals more than
half of the time on the marginal test, as well as on the test sets containing between 0 and 4 missing
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1(a) Each features is missing with probability 0.2.
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Figure 3: Validity and efficiency with MCAR missing values on dependent Gaussian features, with
ϕ = 0.8, and such that Y⊥⊥M |X. Average coverage (top) and length (bottom) as a function of the
missing pattern sizes. The black horizontal line in each violin plot corresponds to the median. The
first violin plot shows the marginal coverage. The marginal test set includes 2000 observations. The
mask-conditional test set includes 100 individuals for each missing data pattern size.
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values. This is particularly unpractical. On the contrary, CP-MDA-Nested produces finite length
intervals on any test point, at the cost of being overly conservative. The improvements brought by
CP-MDA-Nested? with subsampling only the calibration points with at most 2 additional missing
values are more stringent. In particular, the efficiency is improved by nearly 9.5% marginally, and is
in between 8.5% and 10% on test points that have between 1 and 6 missing values.

Note that this is only one example of CP-MDA-Nested? for a given subsampling strategy, and
that in practice the choice of strategy is highly dependent on the settings and could lead to even better
performances. From now on, we restrict the subsequent experiments with CP-MDA-Nested? to the
two extremes—CP-MDA-Exact and CP-MDA-Nested—as their main goal is to investigate the
robustness beyond PMCAR,Y⊥⊥M |X. For the same reason, we do not want to restrict ourselves to the
mask-size conditional coverage, as it does not imply mask conditional coverage. Therefore, we use
another visualization approach that was introduced in Zaffran et al. (2023). As an appetizer, Figure 4
presents the results under P⊗(n+1)

MCAR,Y⊥⊥M |X for QR, CQR, CP-MDA-Exact and CP-MDA-Nested,
using this visualization. The x-axis represents the average coverage and the average length is in
the y-axis. The marker colors are associated to the different methods. A method is MCV if all the
markers of its color are at the right of the vertical dotted line (90%). The design of Figure 4, and
the following figures, requires a cautious interpretation. For each method we report, for the pattern
having the highest (or lowest) coverage, its length and coverage. However, as this pattern may
depend on the method, the length for the highest/lowest should not be directly compared between
methods.

This Figure 4 illustrates that CP-MDA-Nested? is MCV-P⊗(n+1)
MCAR,Y⊥⊥M |X. Our hardness results

of Section 2 provide a new perspective on these results:

Remark 5.1. If CP-MDA-Nested? was MCV on a broader class of distributions thanP⊗(n+1)
MCAR,Y⊥⊥M |X

for which a hardness result exists, then it would produce uninformative intervals on any distribution
within this class, including P⊗(n+1)

MCAR,Y⊥⊥M |X. Therefore, the fact that CP-MDA-Nested? obtain finite
length intervals in this experiment (Figure 4) tends to confirm (with high probability) that the theory
on the CP-MDA-Nested? MCV can not be extended to P⊗(n+1)

Y⊥⊥M |X or P⊗(n+1)
MAR nor P⊗(n+1)

MCAR . This
analysis is included in Table 2, as a numerical confirmation on CP-MDA-Nested? theory.
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Figure 4: Validity and efficiency with MCAR missing values on dependent Gaussian features,
with ϕ = 0.8, and such that Y⊥⊥M |X. Colors represent the methods. Diamonds (�) represent
marginal coverage while the patterns giving the lowest and highest coverage are represented with
triangles (H and N). Vertical dotted lines represent the target coverage of 90%. Experimental details:
#Tr = 500; #Cal = 250; the marginal test set includes 2000 observations; the mask-conditional
test set includes 100 individuals for each missing data pattern.
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5.2 Beyond MCAR

Beyond MCAR experiments. To generate missing values under MAR or MNAR distribution,
we select 6 variables (denote this set Xmissing) out of 10 that can be missing (the 4 others form
the set Xobserved). Especially, Xmissing = {X1, X2, X3, X5, X8, X9} in order to include different
range of associated regression coefficients. We used the GitHub repository associated to Muzellec
et al. (2020) in order to introduce missing values in Xmissing according to the following mechanisms,
fixing the proportion of missing entries to be 20%. For each of these following settings, we run
two sets of experiments: one in which the correlation between the features is high (ϕ = 0.8) and
therefore imputing through iterative regression allows to recover quite accurately the missing values,
and one in which the features are independent (ϕ = 0) leading to an imputation that can not be better
than the marginal expectation of the features.
IMAR experiments (Figure 5). Missing values in Xmissing are introduced under a MAR mech-

anism. To do so, a logistic model of arguments Xobserved determines the probability of the variables
in Xmissing to be missing. This setting is declined 5 times, with different weights for the logistic
model. Within each one, the experiments are repeated 100 times to assess for the variability.
I MNAR self-masked (Figure 6). Missing values in Xmissing are introduced under a MNAR

self masked mechanism. To do so, a logistic model determines the probability of each variable in
Xmissing to be missing by taking as input the exact same variable. This setting is declined 5 times,
with different weights for the logistic model. Within each one, the experiments are repeated 100
times to assess for the variability.
I MNAR quantile censorship (Figure 7). Missing values in Xmissing are introduced under a

quantile censorship MNAR mechanism. In particular, missing values are introduced at random in
each q-quantile of the variables in Xmissing. q varies between 0.5, 0.75, 0.8, 0.85, 0.9 and 0.95 and
this way we obtain 6 different settings. Within each one, the experiments are repeated 100 times to
assess for the variability.

These experiments show that impute-then-CQR is marginally valid even under PMAR and
PMNAR. This is expected due to Proposition 3.3 of Zaffran et al. (2023), that demonstrates that
vanilla impute-then-SplitCP is marginally valid for any missing mechanism as long as the initial
data set is exchangeable. However, it is not MCV, which is also expected for the same reason that
the fact that it is not MCV under PMCAR,Y⊥⊥M |X. Most importantly, CP-MDA-Nested?, through
CP-MDA-Exact and CP-MDA-Nested, is both marginally valid and MCV, despite the MCAR
assumption not being satisfied, even when the imputation can not retrieve more information than the
features expectation (i.e., when ϕ = 0). This is a positive empirical result that hints robustness of
CP-MDA-Nested? on more complex relationships between X and M than independence.

5.3 Breaking Y⊥⊥M |X Assumption

Our last set experiments aim at breaking the Y ⊥⊥M |X assumption. We focus on d = 3 to be
able to display all of the patterns and thus better illustrate the phenomenon. We generate data with
ε ∼ N (0, 1) ⊥⊥ (X,M), X ∼ N (µ,Σ), µ = (1, 1, 1)T , Σ = ϕ(1, 1, 1)T (1, 1, 1) + (1 − ϕ)Id,
ϕ ∈ {0, 0.8} depending on the experiment, and Mi ∼ B(0.2) for any i ∈ J1, 3K, independently from
X and ε. Finally: Y = X11 {M1 = 0}+ 2X11 {M1 = 1}+ 3X21 {M2 = 1,M3 = 1}+ ε. Note
that according to this data generation process, the masks for which at least X1 is missing, and the
mask where X2 and X3 are missing, have important predictive power. As there are only 3 features
that can be missing in this setting, Figures 8a and 8b represent the 7 different missing patterns.

These figures highlight that in the easiest setting where the conditional expectation imputation
is able to reconstruct the missing values quite accurately (ϕ = 0.8, Figure 8a) CP-MDA-Nested?
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Figure 5: Same caption than Figure 4, for MAR missing values, each panel representing a different
setting (set of parameters) for the missingness distribution.
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Figure 6: Same caption than Figure 5, for MNAR self masked missing values.
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Figure 7: Same caption than Figure 5, for MNAR quantile censorship missing values.
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1(a) Dependent Gaussian features, with ϕ = 0.8.
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Figure 8: Y and M are not independent given X , and the features are Gaussian dependent with
ϕ = 0.8. Average coverage (top) and length (bottom) as a function of the missing patterns. The
first violin plot shows the marginal coverage. The marginal test set includes 2000 observations. The
mask-conditional test set includes 100 individuals for each missing data pattern.

manages to maintain MCV. However, in the hardest case of uncorrelated features (ϕ = 0, Fig-
ure 8b), it does not achieve MCV as it undercovers on the masks that have predictive power.
Yet, CP-MDA-Nested? still improves upon vanilla impute-then-predict+CQR, and in particular
CP-MDA-Nested is slightly more robust than CP-MDA-Exact.
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Appendices
The appendices are organized as follows.

Appendix A provides a the proofs for the hardness results presented in Section 2.
Appendix B contains the proofs of the Section 3 results.
Appendix C reminds the proof of leave-one-out CP in the case of randomized algorithms.
Appendix D derives CP-MDA-Nested? theoretical validities proofs, marginal and conditional.

A Hardness results

A.1 Reminders on object conditional impossibility results

Let’s start with some reminders on the impossibility result on X-conditional coverage (also known
as object conditional coverage), originally stated in Lei and Wasserman (2014), Lemma 1, and
re-written more accurately and more generally in Vovk (2012), Proposition 4.

Definition A.1 (X-conditional coverage). An estimator Ĉn,α achieves X-conditional coverage at
the level α if for any distribution P and any x:

PP⊗(n+1)

(
Y (n+1) ∈ Ĉn,α (x) |X(n+1) = x

)
≥ 1− α.

Lemma A.2 (X-conditional coverage is not achievable in an informative way (Vovk, 2012)).
Suppose that an estimator Ĉn,α achieves X-conditional coverage at the level α. Then, for any
distribution P and any x0 such that x0 is a non-atomic point of P : PP⊗(n)

(
Λ
(
Ĉn,α (x0)

)
= +∞

)
≥ 1− α, if Y ⊆ R (regression),

∀y ∈ Y : PP⊗(n)

(
y ∈ Ĉn,α (x0)

)
≥ 1− α, if Y ⊆ N (classification).

where Λ is the Lebesgue measure.

Proof. Assume Ĉn,α be X-conditionally valid, as defined in Definition A.1.
Let P a distribution on X × Y , and let x0 ∈ non-atom (PX).

Let ε > 0. Let εn =

√
2

(
1−

(
1− ε2

8

)1/n)
.

Let E ⊆ X such that x0 ∈ E and 0 < PX(E) ≤ εn (this is possible as a non-atom of a
distribution PX belongs to its support).

Before diving in the details of the proof, let us define the total variation distance between two
distributions P and Q on Z , denoted TV (P,Q):

TV (P,Q) := sup
Z∈Z
|P (Z)−Q(Z)|.

↪→ Classification case.
Let y ∈ Y .
Define Q another distribution on X × Y such that for any A ⊆ X and for any B ⊆ Y:

Q (A×B) = P (A ∩ Ec ×B) + PX (A ∩ E)Sy(B),
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with Sy defined on Y , which is a dirac on y.
On the one hand, exactly as in the regression case, by construction, TV (P,Q) ≤ PX(E) ≤ εn.

Hence, using Lemma A.3, TV
(
P⊗(n), Q⊗(n)

)
≤ ε. Therefore, for any A ⊆ X and for any B ⊆ Y:

P⊗(n) (A×B) ≥ Q⊗(n) (A×B)− ε. (3)

On the other hand, let x ∈ E. As Ĉn,α is distribution-free X-conditionally valid, it satisfies:

1− α ≤ PQ⊗(n+1)

(
Y (n+1) ∈ Ĉn,α(x)|X(n+1) = x

)
= EQ⊗(n)

[
EQ

[
1
{
Y (n+1) ∈ Ĉn,α(x)

}
|X(n+1) = x

]]
= EQ⊗(n)

[
EQ

[
1
{
y ∈ Ĉn,α(x)

}
|X(n+1) = x

]]
= EQ⊗(n)

[
1
{
y ∈ Ĉn,α(x)

}]
= PQ⊗(n)

(
y ∈ Ĉn,α(x)

)
.

Combining with Equation (3), we finally get:

PP⊗(n)

(
y ∈ Ĉn,α(x)

)
≥ 1− α− ε,

which concludes the proof for the classification case by letting ε→ 0.
↪→ Regression case.
Let D > 0.
Define Q another distribution on X × Y such that for any A ⊆ X and for any B ⊆ Y:

Q (A×B) := P (A ∩ Ec ×B) + PX (A ∩ E)R (B) ,

with R defined on Y , uniform on [−D;D].
On the one hand, by construction, TV (P,Q) ≤ PX(E) ≤ εn. Hence, using Lemma A.3,

TV
(
P⊗(n), Q⊗(n)

)
≤ ε. Therefore, for any A ⊆ X and for any B ⊆ Y:

P⊗(n) (A×B) ≥ Q⊗(n) (A×B)− ε. (3)

On the other hand, let x ∈ E. As Ĉn,α is distribution-free X-conditionally valid, it satisfies:

1− α ≤ PQ⊗(n+1)

(
Y (n+1) ∈ Ĉn,α(x)|X(n+1) = x

)
= EQ⊗(n)

[∫
Ĉn,α(x)

q(y|x)dy

]

= EQ⊗(n)

[
Λ
(
Ĉn,α(x) ∩ [−D;D]

)
× 1

2D

]
.

Note that Λ
(
Ĉn,α(x) ∩ [−D;D]

)
× 1

2D ≤ 1. Therefore, using Lemma A.4, for any t > 0:

PQ⊗(n)

(
Λ
(
Ĉn,α(x) ∩ [−D;D]

)
× 1

2D
≥ 1− t

)
≥ 1− α

t

PQ⊗(n)

(
Λ
(
Ĉn,α(x) ∩ [−D;D]

)
≥ (1− t)2D

)
≥ 1− α

t

⇒ PQ⊗(n)

(
Λ
(
Ĉn,α(x)

)
≥ (1− t)2D

)
≥ 1− α

t
.
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Let t = 1− 1√
D

and obtain PQ⊗(n)

(
Λ
(
Ĉn,α(x)

)
≥ 2
√
D
)
≥ 1− α

1− 1√
D

.

Combining with Equation (3), we finally get:

PP⊗(n)

(
Λ
(
Ĉn,α(x)

)
≥ 2
√
D
)
≥ 1− α

1− 1√
D

− ε.

Letting ε→ 0 and D → +∞, the result is proven for the regression case.

A.2 Proofs of Section 2

A.2.1 Most general distribution-free result: Theorem 2.3

Proof. Let n ∈ N∗ the total training size (proper training and calibration).

Let α ∈]0, 1[.

Let Ĉn,α be MCV, as defined in Definition 2.1.

Let P a distribution on X ×M×Y .

Let m0 ∈M.

Denote by ρ := PM ({m0}).

↪→ Regression case.

Let D > 0.

Define Q another distribution on X ×M×Y such that for any A ⊆ X , for any L ⊆M and for
any B ⊆ Y:

Q (A× L×B) := P (A× L \ {m0} ×B) + P(X,M) (A× {m0})R (B) ,

with R defined on Y , uniform on [−D;D].

Recall that the total variation distance between two probability distributions on Z , say P and Q,
is defined as: TV (P,Q) := supZ∈Z |P (Z)−Q(Z)|.

On the one hand, by construction, TV (P,Q) ≤ PM ({m0}) = ρ. Hence, using Lemma A.3:

TV (P⊗(n+1), Q⊗(n+1)) ≤
√

2

(
1−

(
1− ρ2

2

)n+1
)

. Therefore, for any A ⊆ X , for any L ⊆M

and for any B ⊆ Y:

P⊗(n+1) (A× L×B) ≥ Q⊗(n+1) (A× L×B)−

√√√√2

(
1−

(
1− ρ2

2

)n+1
)
. (4)
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On the other hand, as Ĉn,α is MCV, it satisfies:

1− α ≤PQ⊗(n+1)

(
Y (n+1) ∈ Ĉn,α

(
X(n+1),m0

)
|M (n+1) = m0

)
= EQ⊗(n+1)

[
1
{
Y (n+1) ∈ Ĉn,α

(
X(n+1),m0

)}
|M (n+1) = m0

]
= EQ⊗(n) [EQ

[
1
{
Y (n+1) ∈ Ĉn,α

(
X(n+1),m0

)}
|M (n+1) = m0,

(
X(k),M (k), Y (k)

)n
k=1

]]
= EQ⊗(n) [EQ [EQ

[
1
{
Y (n+1) ∈ Ĉn,α

(
X(n+1),m0

)}
|X(n+1),M (n+1) = m0,

(
X(k),M (k), Y (k)

)n
k=1

]
|M (n+1) = m0,

(
X(k),M (k), Y (k)

)n
k=1

]]
= EQ⊗(n) [EQ

[∫
Ĉn,α(X(n+1),m0)

q
(
y|X(n+1),m0

)
dy

|M (n+1) = m0,
(
X(k),M (k), Y (k)

)n
k=1

]]
= EQ⊗(n) [EQ

[
Λ
(
Ĉn,α

(
X(n+1),m0

)
∩ [−D;D]

)
× 1

2D

|M (n+1) = m0,
(
X(k),M (k), Y (k)

)n
k=1

]]
= EQ⊗(n+1)

[
Λ
(
Ĉn,α

(
X(n+1),m0

)
∩ [−D;D]

)
× 1

2D
|M (n+1) = m0

]
Note that Λ

(
Ĉn,α

(
X(n+1),m0

)
∩ [−D;D]

)
× 1

2D ≤ 1 almost surely. Therefore, using
Lemma A.4, for any t > 0:

PQ⊗(n+1)

(
Λ
(
Ĉn,α

(
X(n+1),m0

)
∩ [−D;D]

)
× 1

2D
≥ 1− t

)
≥ 1− α

t

PQ⊗(n+1)

(
Λ
(
Ĉn,α

(
X(n+1),m0

)
∩ [−D;D]

)
≥ (1− t)2D

)
≥ 1− α

t

⇒ PQ⊗(n+1)

(
Λ
(
Ĉn,α

(
X(n+1),m0

))
≥ (1− t)2D

)
≥ 1− α

t
.

Let t = 1− 1√
D

and obtain PQ⊗(n+1)

(
Λ
(
Ĉn,α

(
X(n+1),m0

))
≥ 2
√
D
)
≥ 1− α

1− 1√
D

.

Combining with Equation (4), we finally get:

PP⊗(n+1)

(
Λ
(
Ĉn,α

(
X(n+1),m0

))
≥ 2
√
D
)
≥ 1− α

1− 1√
D

−

√√√√2

(
1−

(
1− ρ2

2

)n+1
)
.

Letting D → +∞, the result is proven.
↪→ Classification case.
Let y ∈ Y .
Define Q another distribution on X ×M×Y such that for any A ⊆ X , for any L ⊆M and for

any B ⊆ Y:

Q (A× L×B) := P (A× L \ {m0} ×B) + P(X,M) (A× {m0})S (B) ,
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with S defined on Y , being null everywhere except on y (a dirac in y).
On the one hand, exactly as in the regression case, by construction, TV (P,Q) ≤ PX(E) ≤

PM (m0) = ρ. TV (P⊗(n+1), Q⊗(n+1)) ≤
√

2

(
1−

(
1− ρ2

2

)n+1
)

. Therefore, for any A ⊆ X ,

for any L ⊆M and for any B ⊆ Y:

P⊗(n+1) (A× L×B) ≥ Q⊗(n+1) (A× L×B)−

√√√√2

(
1−

(
1− ρ2

2

)n+1
)
. (4)

On the other hand, as Ĉn,α is MCV, it satisfies:

1− α ≤ PQ⊗(n+1)

(
Y (n+1) ∈ Ĉn,α

(
X(n+1),m0

)
|M (n+1) = m0

)
=
EQ⊗(n)

[
EQ

[
1
{
Y (n+1) ∈ Ĉn,α

(
X(n+1),m0

)}
|M (n+1) = m0,

(
X(k),M (k), Y (k)

)n
k=1

]]
= EQ⊗(n)

[
EQ

[
1
{
y ∈ Ĉn,α

(
X(n+1),m0

)}
|M (n+1) = m0,

(
X(k),M (k), Y (k)

)n
k=1

]]
= EQ⊗(n+1)

[
1
{
y ∈ Ĉn,α

(
X(n+1),m0

)}]
= PQ⊗(n+1)

(
y ∈ Ĉn,α

(
X(n+1),m0

))
.

Combining with Equation (3), we finally get:

PP⊗(n+1)

(
y ∈ Ĉn,α(X(n+1),m0)

)
≥ 1− α−

√√√√2

(
1−

(
1− ρ2

2

)n+1
)

which concludes the proof for the classification case.

The proof of Theorem 2.3 relied on the following Lemmas A.3 and A.4.

Lemma A.3. For P and Q two probability distributions, and n ∈ N∗, it holds:

TV (Pn, Qn) ≤
√

2

(
1−

(
1− TV (P,Q)2

2

)n)
.

Proof. The proof of this lemma is based on the relationship between the total variation distance
and the Hellinger distance between two probability distributions denoted by H(·, ·) (see Tsybakov,
2009).

Let n ∈ N∗ and let P and Q be two probability distributions.
On the one hand, note that:

TV (P,Q) ≤ H(P,Q). (5)

On the other hand, observe that:

H2(Pn, Qn) = 2

(
1−

(
1− H2(P,Q)

2

)n)
. (6)

Therefore, by combining Equations (5) and (6) (that can be found in Tsybakov, 2009), we obtain
the desired result.
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Lemma A.4. Let W be a random variable such that 0 ≤W ≤ 1 and E [W ] ≥ β with β ∈ [0, 1].
Then, for any t > 0, it holds P (W ≥ 1− t) ≥ 1− 1−β

t .

Proof. Let t > 0.
As W ≤ 1, 1−W ≥ 0. Therefore, using Markov’s inequality:

P (1−W ≥ t) ≤ E [1−W ]

t
=

1− E [W ]

t
≤ 1− β

t

Noting that:
P (1−W ≥ t) = P (W ≤ 1− t) = 1− P (W ≥ 1− t) ,

we finally get P (W ≥ 1− t) ≥ 1− 1−β
t .

A.2.2 Restricting to PY⊥⊥M |X: Proposition 2.8

Proof. The skeleton of the proof is the exactly the same than the one of Theorem 2.3, with a careful
attention required in the construction of the adversarial distribution Q.

Let n ∈ N∗ the total training size (proper training and calibration).
Let α ∈]0, 1[.
Let Ĉn,α be MCV-P⊗(n+1)

Y⊥⊥M |X .
Let P ∈ PY⊥⊥M |X.
Let (X,M, Y ) ∼ P .
Let m0 ∈M such that ρ := PM ({m0}) > 0.
↪→ Regression case.

Let D > 0.
We will now define Q another distribution on X ×M×Y which is:

(i) close in total variation to P with respect to ρ;

(ii) such that Assumption A1 holds (to ensure that Ĉn,α is also MCV under Q);

(iii) such that there exists some subset of X , say F0, which determines the event of drawing mask
m0 under Q. This allows to remark that

PQ⊗(n+1)

(
Y (n+1) ∈ Ĉn,α

(
X(n+1),m0

)
|M (n+1) = m0

)
= PQ⊗(n+1)

(
Y (n+1) ∈ Ĉn,α

(
X(n+1),m0

)
|X(n+1) ∈ F0

)
.

Let (X̃, M̃ , Ỹ ) ∼ Q. Q is built in the following way.
Let F0 ⊆ X such that PX(F0) = ρ.{

if X /∈ F0 and M 6= m0 :(X̃, M̃ , Ỹ ) = (X,M, Y ),

if X ∈ F0 or M = m0 :(X̃, M̃ , Ỹ ) ∼ U(F0)× δm0 × U([−D,D]).

Using this construction, the proof will follow as in Theorem 2.3. The only “tricky points” to
check are (i), (ii), and (iii).

By construction, (iii) is directly satisfied.
Remark that by construction P

(
(X,M, Y ) 6= (X̃, M̃ , Ỹ )

)
≤ 2δ (the worst case scenario being

if F0 has been chosen such that 1 {X ∈ F0}1 {M = m0} a.s.
= 0, leading to an equality in the
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previous equation). Therefore, using Lemma A.5, we get that TV (P,Q) ≤ 2δ, therefore verifying
(i).

The remaining task is to show that (ii) is satisfied. Let B ∈ Y . We have:

P
(
Ỹ ∈ B|X̃, M̃

)
=

 P (Y ∈ B|X,M) if X̃ ∈ F0

Λ (B ∩ [−D;D])
1

2D
if X̃ /∈ F0

=

 P (Y ∈ B|X) if X̃ ∈ F0 as P satisfies Assumption A1

Λ (B ∩ [−D;D])
1

2D
if X̃ /∈ F0

= P
(
Ỹ ∈ B|X̃

)
.

↪→ Classification case.
The idea is as previously, except that, as in the other hardness results, we replace the uniform

distribution by a Dirac. In particular, let y ∈ Y .
Let (X̃, M̃ , Ỹ ) ∼ Q. Q is built in the following way.
Let F0 ⊆ X such that PX(F0) = ρ.{

if X /∈ F0 and M 6= m0 :(X̃, M̃ , Ỹ ) = (X,M, Y ),

if X ∈ F0 or M = m0 :(X̃, M̃ , Ỹ ) ∼ U(F0)× δm0 × δy.
The conclusion follows as in Theorem 2.3, since, as shown in the regression case above, Q is such
that: (i) TV (P,Q) ≤ 2ρ, (ii) Assumption A1 and (iii) holds by construction.

Lemma A.5. Let PZ and PZ′ be two distributions for the random variables X and X ′ taking their
value in Z . TV (PZ ,PZ′) ≤ P(Z 6= Z ′).

Proof.

TV (PZ ,PZ′) = sup
A⊆Z
|PZ(A)− PZ′(A)|

= sup
A⊆Z
|E [1 {Z ∈ A}]− E [1 {Z ∈ A}] |

≤ sup
A⊆Z

E [|1 {Z ∈ A} − 1 {Z ∈ A} |]

= sup
A⊆Z

E
[
|1 {Z ∈ A} − 1 {Z ∈ A} |1

{
Z 6= Z ′

}]
≤ sup

A⊆Z
E
[
1
{
Z 6= Z ′

}]
= sup

A⊆Z
P
(
Z 6= Z ′

)

B Link between missing covariates and uncertainty

B.1 Proofs for Conditional Variance results

B.1.1 Results under PMCAR,Y⊥⊥M |X (Proposition 3.2)

Proof. Under the assumptions, M ⊥⊥ (Y,X), and thus for any m:

E
[
V (Xobs(M),M)|M = m

]
= E

[
V (Xobs(m),m)|M = m

]
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= E
[
V (Xobs(m),m)

]
= E

[
Var

(
Y |Xobs(m)

)]
Moreover, for any m ⊂ m′,

Var
(
Y |Xobs(m′)

)
= E

[
Var

(
Y |Xobs(m)

)
|Xobs(m′)

]
+ Var(E

[
Y |Xobs(m)

]
|Xobs(m′)).

≥ E
[
Var

(
Y |Xobs(m)

)
|Xobs(m′)

]
.

Thus E
[
Var

(
Y |Xobs(m′)

)]
≥ E

[
Var

(
Y |Xobs(m)

)]
. And finally:

E
[
V (Xobs(M),M)|M = m′

]
≥ E

[
V (Xobs(M),M)|M = m

]
.

B.1.2 Results under Gaussian Linear Model and PMCAR

Previous works (Le Morvan et al., 2020b; Ayme et al., 2022; Zaffran et al., 2023) have shown that
under Model 3.4, Y |(Xobs(m),M = m) ∼ N (µ̃m, σ̃m) for any m ∈M, with:

µ̃m = βTobs(m)Xobs(m) + βTmis(m)µ
m
mis|obs

µmmis|obs = µmmis(m) + Σm
mis(m),obs(m)(Σ

m
obs(m),obs(m))

−1(Xobs(m) − µmobs(m)),

σ̃m = βTmis(m)Σ
m
mis|obsβmis(m) + σ2ε

Σm
mis|obs = Σm

mis(m),mis(m) − Σm
mis(m),obs(m)(Σ

m
obs(m),obs(m))

−1Σm
obs(m),mis(m).

We now provide the proof of Proposition 3.5.

Proof. Consider Model 3.4 and assume additionally that the missing mechanism is MCAR. There-
fore, for any m ∈M, Σm = Σ. Hence, for any m ∈M:

Var
(
Y |Xobs(m),M = m

)
= βTmis(m)Σ

m
mis|obsβmis(m) + σ2ε ,

with Σm
mis|obs = Σmis(m),mis(m) − Σmis(m),obs(m)(Σobs(m),obs(m))

−1Σobs(m),mis(m).
Let (m,m′) ∈M2 such that m ⊆ m′. Our goal is to show that:

Var
(
Y |Xobs(m′),M = m′

)
− Var

(
Y |Xobs(m),M = m

)
≥ 0

βTmis(m′)Σ
m′

mis|obsβmis(m′) + σ2ε − βTmis(m)Σ
m
mis|obsβmis(m) − σ2ε ≥ 0

βTmis(m′)Σ
m′

mis|obsβmis(m′) − βTmis(m)Σ
m
mis|obsβmis(m) ≥ 0

βTmis(m′)Σ
m′

mis|obsβmis(m′) − βTmis(m′)

(
Σm
mis|obs 0

0 0

)
βmis(m′) ≥ 0

βTmis(m′)

(
Σm′

mis|obs −
(

Σm
mis|obs 0

0 0

))
βmis(m′) ≥ 0,

holds for any β. Therefore, we have to show that Σm′

mis|obs−
(

Σm
mis|obs 0

0 0

)
is semi-definite positive.

The marginal covariance matrix Σ can be rewritten by blocks in the following way:

Σ =

 A B C
BT D E
CT ET F

 ,
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where: 

A = Σmis(m),mis(m),(
D E
ET F

)
= Σobs(m),obs(m),(

A B
BT D

)
= Σmis(m′),mis(m′),

F = Σobs(m′),obs(m′).

Additionally, assume that Σ > 0 (that is, Σ is definite positive).
Therefore, D > 0, F > 0. Thus F is invertible, of inverse F−1 > 0. Furthermore, G :=

D −EF−1ET is also positive definite, as it is the sum of D > 0 and EF−1ET ≥ 0, and thus G is
invertible.

Σm
mis|obs and Σm′

mis|obs can be rewritten using the previous decomposition.
On the one hand, for m it gives:

Σm
mis|obs =A−

(
B C

)( D E
ET F

)−1(
BT

CT

)
=A−

(
B C

)( G−1 −G−1EF−1
−F−1ETG−1 F−1 + F−1ETG−1EF T

)(
BT

CT

)
=A−

(
B C

)( G−1BT −G−1EF−1CT
−F−1ETG−1BT + F−1CT + F−1ETG−1EF TCT

)
=A−BG−1BT +BG−1EF−1CT

+ CF−1ETG−1BT − CF−1CT − CF−1ETG−1EF TCT

(rearranging) =A− CF−1CT −BG−1BT +BG−1EF−1CT

+ CF−1ETG−1BT − CF−1ETG−1EF TCT

=A− CF−1CT −BG−1
(
BT − EF−1CT

)
+ CF−1ETG−1

(
BT − EF TCT

)
=A− CF−1CT −

(
B − CF−1ET

)
G−1

(
BT − EF−1CT

)
,

and by denoting H := B − CF−1ET , we finally obtain (as F is symmetric):

Σm
mis|obs = A− CF−1CT −HG−1HT .

On the other hand, for m′:

Σm′

mis|obs =

(
A B
BT D

)
−
(
C
E

)
F−1

(
CT ET

)
=

(
A B
BT D

)
−
(
CF−1CT CF−1ET

EF−1CT EF−1ET

)
=

(
A− CF−1CT B − CF−1ET
BT − EF−1CT D − EF−1ET

)
=

(
A− CF−1CT B − CF−1ET
BT − EF−1CT G

)
Σm′

mis|obs =

(
A− CF−1CT H

HT G

)
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Therefore, combining the two terms and rewriting together, we obtain:

Σm′

mis|obs −
(

Σm
mis|obs 0

0 0

)
=

(
A− CF−1CT H

HT G

)
−
(
A− CF−1CT −HG−1HT 0

0 0

)
=

(
A− CF−1CT −A+ CF−1CT +HG−1HT H

HT G

)
Σm′

mis|obs −
(

Σm
mis|obs 0

0 0

)
=

(
HG−1HT H

HT G

)
.

Hence, our objective is to show that
(
HG−1HT H

HT G

)
is semi-definite positive.

Let z =
(
x y

)
∈ R1×(#m+(#m′−#m)).

z

(
HG−1HT H

HT G

)
zT =

(
x y

)(HG−1HT H
HT G

)(
xT

yT

)
= xHG−1HTxT + xHyT + yHTxT + yGyT

= xHG−1GG−1HTxT + xHG−1GyT + yGG−1HTxT + yGyT

= xHG−1G
(
G−1HTxT + yT

)
+ yG

(
G−1HTxT + yT

)
=
(
xHG−1 + y

)
G
(
G−1HTxT + yT

)
=
(
xHG−1 + y

)
G
(
xHG−1 + y

)T
≥ 0 as G is positive definite.

B.2 Impact of the imputation under a linear quantile regression model (Proposi-
tion 3.8)

To prove Item i) of Proposition 3.8, we prove the following Lemma B.1.

Lemma B.1. Assume PMCAR, and Y = β∗TX + ε with ε s.t. E
[
ε|Xobs(M),M

]
= 0.

Then E
[
Y |Xobs(M),M

]
= β∗TΦconditional mean(X,M), with Φconditional mean the imputation

by the conditional mean. Furthermore, if the covariates are independent, then E
[
Y |Xobs(M),M

]
=

β∗TΦmean(X,M), with Φmean the imputation by the mean.

Proof.

E
[
Y |Xobs(M),M

]
= E

[
β∗TX|Xobs(M),M

]
=

d∑
i=1

β∗i E
[
Xi|Xobs(M),M

]
=

d∑
i=1

β∗i (Xi1 {i ∈ obs(M)}
+ E

[
Xi|Xobs(M),M

]
1 {i 6∈ obs(M)})

PMCAR → =

d∑
i=1

β∗i (Xi1 {i ∈ obs(M)}
+ E

[
Xi|Xobs(M)

]
1 {i 6∈ obs(M)})
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=
d∑
i=1

β∗i (Φconditional mean(X,M))i

if (Xi)
d
i=1 ⊥⊥,E

[
Xi|Xobs(M)

]
= E [Xi]→ =

d∑
i=1

β∗i (Φmean(X,M))i

To prove Item ii) of Proposition 3.8, we prove the following Proposition B.2. Indeed, the oracle
predictive intervals vary at least once in length we respect to the patterns, as, on the one hand, under
PMCAR,Y⊥⊥M |X Equation (Len-2) holds and, on the other hand, when Y 6⊥⊥ X the variance of Y given
X is different than the overall variance of Y .

Proposition B.2 (Non-adaptivity of the linear quantile regression). Assume that:
i) the quantile regression is learned within the class of linear models;

ii) the (random) values used to impute have the same expectation than the feature itself, i.e.,
E [Φ(X,m)|M = m] = E [X] for any m ∈M such that P(M = m) > 0.

Then the expectation of the predictive intervals length is independent of the missing pattern.

Proof. Since the quantile regression is learned within the class of linear models, the fitted quantile
functions (upper and lower) can be written as q̂δ(z) = βTδ z + β0δ , with β ∈ Rd and β0 ∈ R.
Therefore, the length of the resulting interval Lα at some—imputed—point Φ(Xobs(M),M) will be:

Lα(Φ(Xobs(M),M)) := q̂δ(u)(Φ(Xobs(M),M))− q̂δ(l)(Φ(Xobs(M),M))

=
(
βTδ(u) − β

T
δ(l)

)
Φ(Xobs(M),M) + β0δ(u) − β

0
δ(l)
,

with δ(l) and δ(u) chosen by the user or fixed by the algorithm such that δ(u) − δ(l) = 1− α. Thus:

E
[
Lα(Φ(Xobs(M),M))

]
= E

[(
βTδ(u) − β

T
δ(l)

)
Φ(Xobs(M),M) + β0δ(u) − β

0
δ(l)

]
=
(
βTδ(u) − β

T
δ(l)

)
E
[
Φ(Xobs(M),M)

]
+ β0δ(u) − β

0
δ(l)
.

Let m ∈M such that P(M = m) > 0. Conditioning by m:

E
[
Lα(Φ(Xobs(M),M))|M = m

]
=
(
βTδ(u) − β

T
δ(l)

)
E
[
Φ(Xobs(M),M)|M = m

]
+ β0δ(u) − β

0
δ(l)
.

Given the assumption that E
[
Φ(Xobs(M),M)|M = m

]
= E [X], one can conclude that:

E
[
Lα(Φ(Xobs(M),M))|M = m

]
=

d∑
j=1

(
βTδ(u) − β

T
δ(l)

)
j
E [X] + β0δ(u) − β

0
δ(l)
⊥⊥M.

C Leave-one-out predictive sets for randomized algorithms

We provide in this section a more detailed proof of leave-one-out or k-fold cross-conformal (Vovk,
2013) and jackknife+ (Barber et al., 2021b) methods which allows us to highlight where exactly the
arguments of data exchangeability and symmetrical algorithm play a role. In particular, by empha-
sizing these precise influences, we can understand how to include a non-deterministic symmetrical
algorithm (such as Random Forest or Stochastic Gradient Descent).
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C.1 On the definition of randomized symmetric algorithms

Definition C.1 (Randomized learning algorithm). A randomized learning algorithm is defined as:

A :

⋃
n≥0

(X × Y)n

× [0, 1] 7→ YX

(
X(k), Y (k)

)n
k=1
× ξ 7→ Â(·)

where ξ encodes the randomness of A.

Definition C.2 (Randomized symmetric algorithm (Kim and Barber, 2023)). A randomized learning
algorithm A is symmetric if for any data set

(
X(k), Y (k)

)n
k=1

, for any permutation σ on J1, nK, there
exists a coupling that maps ξ ∼ U([0, 1]) to ξ′ ∼ U([0, 1]), which depends only on σ, s.t.:

A
((
X(k), Y (k)

)n
k=1

; ξ
)

= A
((
X(σ(k)), Y (σ(k))

)n
k=1

; ξ′
)
.

C.2 Detailing leave-one-out conformal predictors validity proof

Let
(
X(k), Y (k)

)n+1

k=1
be exchangeable, and A a (possible randomized) symmetric algorithm.

Let s be a conformity score function. For i ∈ J1, nK, denote Â−i(·) := A
((
X(k), Y (k)

)n
k=1
k 6=i

)
,

that is the fitted left-one-out algorithm, removing data point i.
Consider the leave-one-out conformal estimator defined as:

ĈLOO
n,α (x) :=

{
y ∈ Y :

n∑
k=1

1
{
s
(
X(k), Y (k); Â−k

)
< s

(
x, y; Â−k

)}
< (1− α)(n+ 1)

}
.

Previous works (Barber et al., 2021b; Gupta et al., 2022) have proven that under exchangeability
of
(
X(k), Y (k)

)n+1

k=1
and symmetry ofA, P

(
Y (n+1) ∈ ĈLOO

n,α

(
X(n+1)

))
≥ 1−2α. We recall below

the key proof’s steps, detailing the last one which uses the exchangeability and symmetry arguments.

Step 1. Remark that:{
Y (n+1) /∈ ĈLOO

n,α

(
X(n+1)

)}
=

{
n∑
k=1

1
{
s
(
X(k), Y (k); Â−k

)
< s

(
X(n+1), Y (n+1); Â−k

)}
≥ (1− α)(n+ 1)

}

:=

{
n∑
k=1

1
{
S(k),n+1 < S(n+1),k

}
≥ (1− α)(n+ 1)

}

:=

{
n∑
k=1

Cn+1,k ≥ (1− α)(n+ 1)

}
.

with S(i),j := s
(
X(i), Y (i); Â−(i,j)

)
the score on data point i of the predictor that has been fitted

without seeing nor data point i nor data point j, for (i, j) ∈ J1, n + 1K2 and extending Â−i to

Â−(i,j) := A
((
X(k), Y (k)

)n+1
k=1

k/∈{i,j}

)
, where the n+ 1 data point is added.

Denote by CA the function building the comparison matrix C ∈ {0, 1}(n+1)×(n+1):
CA

((
X(k), Y (k)

)n+1

k=1

)
i,j

= 1
{
S(i),j > S(j),i

}
= Ci,j .
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Step 2. Deterministically, Barber et al. (2021b) shows that #{i ∈ J1, n + 1K :
n+1∑
j=1
Ci,j ≥

(1− α)(n+ 1)} ≤ 2α(n+ 1). This is shown for any comparison matrix.

Step 3. The last (and crucial) step of leave-one-out conformal predictors is to show that for any
permutation σ on J1, n+ 1K it holds:

(
Cσ(i),σ(j)

)
i,j

d
= (Ci,j)i,j .

Cσ(i),σ(j) = CA

((
X(k), Y (k)

)n+1

k=1

)
σ(i),σ(j)

= 1

{
s

(
Y (σ(i)), X(σ(i)),A

((
X(k), Y (k)

)n+1

k=1,k /∈{σ(i),σ(j)}
; ξ

))

> s

(
Y (σ(j)), X(σ(j)),A

((
X(k), Y (k)

)n+1

k=1,k /∈{σ(i),σ(j)}
; ξ

))}

= 1

{
s

(
Y (σ(i)), X(σ(i)),A

((
X(σ(k)), Y (σ(k))

)n+1

k=1,k /∈{i,j}
; ξ′σ

))

> s

(
Y (σ(j)), X(σ(j)),A

((
X(σ(k)), Y (σ(k))

)n+1

k=1,k /∈{i,j}
; ξ′σ

))}
A is symmetric

= CA

((
X(σ(k)), Y (σ(k))

)n+1

k=1

)
i,j

Thus, leveraging the fact that ξ′σ ⊥⊥
(
X(k), Y (k)

)n+1

k=1
and that

(
X(k), Y (k)

)n+1

k=1
are exchangeable,

we obtain that:(
Cσ(i),σ(j)

)
i,j∈J1,n+1K2

d
= CA

((
X(k), Y (k)

)n+1

k=1

)
= (Ci,j)i,j∈J1,n+1K2 .

Hence, for any permutation σ on J1, n+1K it holds that ΠT
σ CΠσ

d
= C, concluding the proof as then

each element of J1, n+1K is equally likely to belong to {i ∈ J1, n+1K :
n+1∑
j=1
Ci,j ≥ (1−α)(n+1)}.

D Theory on CP-MDA-Nested? and CP-MDA-Nested

Let us first remark that ĈMDA-Nested?
n,α (·) ⊆ ĈMDA-Nested

n,α (·) when the conformity score function outputs
intervals and C̃al = Cal (Remark 4.1).

Proof.{
Y (n+1) /∈ ĈMDA-Nested

n,α

(
X(n+1),M (n+1)

)}
=
{
Y (n+1) > Q̂1−α

(
Uα
(
X(n+1)

))
or Y (n+1) < Q̂α

(
Lα
(
X(n+1)

))}
=

{
(1− α)(#Cal + 1) ≤

n∑
k=1

1
{
Y (n+1) > u(k)α

(
X(n+1)

)}
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or (1− α)(#Cal + 1) ≤
n∑
k=1

1
{
Y (n+1) < `(k)α

(
X(n+1)

)}}

⊂
{

(1− α)(#Cal + 1) ≤
n∑
k=1

1
{
Y (n+1) > u(k)α

(
X(n+1)

)
or Y (n+1) < `(k)α

(
X(n+1)

)}}

=

{
(1− α)(#Cal + 1)

≤
n∑
k=1

1
{
s
((
X(n+1), M̃ (k)

)
, Y (n+1); Â (Φ (·, ·) , ·)

)
> s

((
X(k), M̃ (k)

)
, Y (k); Â (Φ (·, ·) , ·)

)}}
=
{
Y (n+1) /∈ ĈMDA-Nested?

n,α

(
X(n+1),M (n+1)

)}

Therefore, any upper bound on the miscoverage of CP-MDA-Nested? extends to CP-MDA-Nested.

D.1 Marginal validity of CP-MDA-Nested?.

The proof of Theorem 4.2 is highly inspired by the leave-one-out conformal predictors proof, from
Barber et al. (2021b) and detailed previously in Appendix C.

Proof. One can see this proof as analogous of the one of leave-one-out conformal predictors, where
“predicting on point i with point j left out” corresponds to “predicting on point i when additionally
masking it with the mask of point j”.

Step 1. {
Y (n+1) /∈ ĈMDA-Nested?

n,α

(
X(n+1),M (n+1)

)}
=

{
(1− α)(#Cal + 1)

≤
∑
k∈Cal

1
{
s
((
X(n+1), M̃ (k)

)
, Y (n+1); Â (Φ (·, ·) , ·)

)
> s

((
X(k), M̃ (k)

)
, Y (k); Â (Φ (·, ·) , ·)

)}}

:=

{
(1− α)(#Cal + 1) ≤

∑
k∈Cal

1
{
S(n+1),k > S(k),n+1

}}
,

where we defined S(i),j := s
((
X(i),max

(
M (i),M (j)

))
, Y (i); Â (Φ (·, ·) , ·)

)
, that is the score of

the point i when the mask of the point j is applied to it, on top of its own mask M (i).
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Step 2. Define the comparison matrix C ∈ {0, 1}(#Cal+1)×(#Cal+1), s.t. for (i, j) ∈ (Cal ∪ {n+ 1})2:
Ci,j = 1

{
S(i),j > S(j),i

}
. Hence, we now have (since by definition Cn+1,n+1 = 0):

{
Y (n+1) /∈ ĈMDA-Nested?

n,α

(
X(n+1),M (n+1)

)}
=

 ∑
k∈Cal∪{n+1}

Cn+1,k ≥ (1− α)(#Cal + 1)

 .

Denote W (C) = {i ∈ Cal ∪ {n+ 1} :
∑

k∈Cal∪{n+1}
Ci,k ≥ (1− α)(#Cal + 1)}. We can re-write:

{
Y (n+1) /∈ ĈMDA-Nested?

n,α

(
X(n+1),M (n+1)

)}
= {n+ 1 ∈W (C)} .

Therefore P
{
Y (n+1) /∈ ĈMDA-Nested?

n,α

(
X(n+1),M (n+1)

)}
= P {n+ 1 ∈W (C)}. Thus, we will

now bound P {n+ 1 ∈W (C)}.
Again, #W (C) ≤ 2α(#Cal + 1) deterministically (Barber et al., 2021b).

Step 3. To conclude the proof, observe that the matrix C can be viewed as the output of a
deterministic function C of the exchangeable (by A2) sequence

(
X(k),M (k), Y (k)

)n+1

k=1
: C =

C
((
X(k),M (k), Y (k)

)n+1

k=1

)
.

Thus, for any permutation σ on Cal ∪ {n+ 1}, it holds:

C

((
X(k),M (k), Y (k)

)
k∈Cal∪{n+1}

)
d
= C

((
X(σ(k)),M (σ(k)), Y (σ(k))

)
k∈Cal∪{n+1}

)
:= Cσ.

It follows that for any k ∈ Cal∪{n+1}, P{k ∈W (C)} = P{k ∈W (Cσ)} for any permutation
σ on Cal ∪ {n+ 1}. Therefore P{k ∈W (C)} does not depend on k. Finally:

P
{
Y (n+1) /∈ ĈMDA-Nested?

n,α

(
X(n+1),M (n+1)

)}
= P{n+ 1 ∈W (C)}

=
1

#Cal + 1

∑
kCal∪{n+1}

P{k ∈W (C)}

=
1

#Cal + 1
E[ #W (C)]

≤ 1

#Cal + 1
2α(#Cal + 1) = 2α.

D.2 MCV of CP-MDA-Nested?

To prove that CP-MDA-Nested? and CP-MDA-Nested are MCV-P⊗(n+1)
MCAR,Y⊥⊥M |X, we leverage

again the parallel with leave-one-out conformal predictors, but this time seeing the missing pattern
as exogenous randomness, which is possible when working with distributions in PMCAR,Y⊥⊥M |X.

Proof. Under P⊗(n+1)
MCAR,Y⊥⊥M |X, it holds that M (n+1) ⊥⊥

((
X(k), Y (k)

)
k∈Cal

,
(
X(n+1), Y (n+1)

))
.

Thus the sequence
{(
X(k),M (n+1), Y (k)

)
k∈Cal

,
(
X(n+1),M (n+1), Y (n+1)

)}
is exchangeable con-

ditionally to M (n+1).

44



Remark now that for any (X,M, Y ) ∈ X ×M×Y , we can rewrite the score on this point with
augmented mask M̃ := max

(
M,M (n+1)

)
as:

s
((
X, M̃

)
, Y ; Â (Φ (·, ·) , ·)

)
:= s

((
X,M (n+1)

)
, Y ; Ã

(
Φ̃ (·, ·;M) , ·;M

))
,

where, for an additional mask M ′ ∈ M, Φ̃ (X,M ;M ′) := Φ (X,max (M,M ′)) and similarly
Ã (X,M ;M ′) := Â (X,max (M,M ′)).

Thus, we can re-write CP-MDA-Nested? as:{
Y (n+1) /∈ ĈMDA-Nested?

n,α

(
X(n+1),M (n+1)

)}
=

{
(1− α)(#Cal + 1)

≤
∑
k∈Cal

1
{
s
((
X(n+1), M̃ (k)

)
, Y (n+1); Â (Φ (·, ·) , ·)

)
> s

((
X(k), M̃ (k)

)
, Y (k); Â (Φ (·, ·) , ·)

)}}

=

{
(1− α)(#Cal + 1)

≤
∑
k∈Cal

1
{
s
((
X(n+1),M (n+1)

)
, Y (n+1); Ã

(
Φ̃
(
·, ·;M (k)

)
, ·;M (k)

))
> s

((
X(k),M (n+1)

)
, Y (k); Ã

(
Φ̃
(
·, ·;M (k)

)
, ·;M (k)

))}}
.

Therefore, an equivalent rewriting of CP-MDA-Nested? is a specific instance of what is pre-
sented in Algorithm 3, where the differences with CP-MDA-Nested? (Algorithm 1) are highlighted
through green text.

Algorithm 3 MDA based on random masks

Input: Imputation function Φ, fitted predictor Â, conformity score function s (·, ·; f) for f ∈ F :=
YX×M, level α, calibration set

{(
X(k),M (k), Y (k)

)}
k∈C̃al

, test point
(
X(n+1),M (n+1)

)
Output: Prediction set ĈMDA-RandomMask

n,α

(
X(n+1),M (n+1)

)
1: Define G (ν) := Ã

(
Φ̃ (·, ·; ν) ; ν

)
for some ν ∈M

2: for k ∈ C̃al do Additional nested masking
3: Randomly draw νk, independently from

(
X(k), Y (k), X(n+1), Y (n+1)

)
4: Fit ĝk := G (νk) = Ã

(
Φ̃ (·, ·; νk) ; νk

)
5: end for
6:

ĈMDA-RandomMask
n,α

(
X(n+1),M (n+1)

)
:=

{
y ∈ Y : (1− α)(1 + #Cal) >∑

k∈C̃al

1
{
s
((
X(k),M (k)

)
, Y (k); ĝk

)
< s

((
X(n+1),M (n+1)

)
, y; ĝk)

)}
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Indeed, conditionally on M (n+1), we can apply Algorithm 3 to the modified data set(
X(k),M (n+1), Y (k)

)
k∈C̃al

, by using the
(
M (k)

)
k∈C̃al

as random draw for (νk)k∈C̃al
in line 3. This

is legit only when the distribution of
(
X(k),M (n+1), Y (k)

)
k∈C̃al∪{n+1} belongs to P⊗(#C̃al+1)

MCAR,Y⊥⊥M |X,

as then for any k ∈ C̃al, it holds that M (k) ⊥⊥
(
X(k), Y (k), X(n+1), Y (n+1)

)
.

This Algorithm 3 is a special case of leave-one-out CP presented in Appendix C, with a ran-
domized algorithm that only returns a pre-determined function associated with a parameter value,
without fitting anything on the n− 1 data points. Therefore, the validity result of leave-one-out CP
extends to Algorithm 3.

In particular, under P⊗(n+1)
MCAR,Y⊥⊥M |X, CP-MDA-Nested? corresponds to applying Algorithm 3

to the data set
(
X(k),M (n+1), Y (k)

)
k∈Cal

which is exchangeable conditionally on M (n+1), and by
using in line 3 the

(
M (k)

)
k∈Cal

as random draw for (νk)k∈Cal. Therefore, CP-MDA-Nested? is

MCV-P⊗(n+1)
MCAR,Y⊥⊥M |X at the level 1− 2α.

The idea in this re-writing is to see that, conditionally on M (n+1), CP-MDA-Nested? predict-
ing on the test point

(
X(n+1),M (n+1)

)
given the data set

(
X(k),M (k), Y (k)

)n
k=1

, is in fact another
run of CP-MDA-Nested? which predicts on a complete test point X̆(n+1) ∈ X̆ , where X̆ is the set
of dimension |obs

(
M (n+1)

)
| containing only the observed dimensions of X according to M (n+1),

given the cropped data set
(
X̆(k), M̆ (k), Y (k)

)n
k=1

, with M̆ (k) ∈ M̆ that, similarly to X̆ , is the set

of dimension |obs
(
M (n+1)

)
| containing only the observed dimensions ofM according toM (n+1).
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