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Abstract

The theory of Enactive Inference was proposed by Karl Friston and his col-
leagues to explain how the brain infers knowledge about the world through
the subject’s interactive experiences. Sensorimotor states induce perturba-
tions in neural activity, and the brain infers hypothetical causes in the world
that may explain these perturbations. This article aims to reconcile this
neuroscience theory with computer science and artificial-intelligence theories
wherein artificial agents receive input data derived from the environment’s
state and infer internal data structures used to guide decisions. Two critical
challenges arise in both the agent’s active role and the inference algorithm’s
scalability as the environment’s complexity increases. To address these chal-
lenges, we formalize artificial enactive inference through a new Spatial En-
active Markov Decision Process (SEMDP) model. This model rests on low-
level control loops enacted in a three-dimensional Euclidean space containing
objects. Based on the SEMDP, we present a proof-of-concept cognitive ar-
chitecture and an experiment to demonstrate the transcription of the theory
of enactive inference into the domain of artificial intelligence and robotics.

Keywords: Enaction, active inference, constructivist learning, Dynamic
Bayesian Networks, POMDPs, robotics

1. Introduction

Maxwell Ramstead, Michael Kirchhoff, and Karl Friston [1] proposed the
concept of enactive inference when they gave an “enactive interpretation” of
the concept of active inference previously proposed by their research group
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[e.g., 2]. Active inference involves a kind of Bayesian inference which is a
statistical method to assess a possible underlying “model” (or hypothesis) of
the features of the world that may “cause” sensory signals. They stress that
the theory of active inference “emphasizes the tight coupling and circular
causality between perception and action” and that “it concerns the active,
selective sampling of the world by an embodied agent” [1, p. 226]. Following
these arguments, they coined the expression enactive inference to refer to the
process by which an autonomous agent “simultaneously performs inference
and control” in a “causally circular embrace” in which “the actual causes of
sensory input depend on action, while action depends on inference.”

The adjective enactive refers to the broader scope of the theory of en-
action, which, according to Daniel Hutto and Erik Myin [3] can be divided
in three major strands: autopoietic, sensorimotor, and radical. Autopoi-
etic enactivism [4] focuses on grounding cognition in biological dynamics
of a living system. Sensorimotor enactivism [5] focuses on explaining the
character of perceptual experience in terms of knowledge or “mastery” of
sensorimotor contingencies. Radical enactivism [3] focuses primarily on the
anti-representational nature of enactivism. As will be evident in the fore-
going, this paper falls within the sensorimotor enactivism strand. Indeed,
enactive inference focuses on inferring knowledge from sensorimotor interac-
tion. While enactive inference theory proposes an explanation of the agent’s
drives through the free energy principle, it is not mainly focused on elaborat-
ing the agent’s goals and motivations, as the autopoietic strand is. While it
rejects “structural representationalism”, it accepts “internal models” which
distinguishes it from the radical strand.

The enactive inference theory proposes that the agent infers generative
and recognition models. The generative model is a statistical model of how
sensory signals are generated. The recognition model is a statistical model
of the hypothetical causes of the sensory signals; that is, the agent’s “best
guess” about features of the world that it cannot observe directly. Both
models work in tandem: the generative model harnesses prior beliefs at the
beginning of the interaction cycle and produces an anticipation of expected
sensory outcomes. The recognition model harnesses posterior beliefs at the
end of the interaction cycle and produces hypotheses that may explain the
sensory signals.

In computer science, a handful of authors have studied the implementa-
tion of sensorimotor enactivism in artificial agents. For example, Alexan-
der Maye and Andreas Engel [6] used Markov models to describe sequences
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of discrete action-outcome pairs and to infer probabilistic outcomes of the
next action. Felix Woolford proposed the Sensorimotor Sequence Reiterator
[7]. We proposed the Enactive Cognitive Architecture [8]. These studies do
not distinguish between generative and recognition models. They address
the general question of how an enactive artificial agent can infer any data
structure that it can reuse to generate adapted behavior through its lifetime
interacting with the world.

In this paper, we delve further into exploring the connections between the
mathematical formalism of active inference rooted in neuroscience tradition
and the mathematical framework of artificial agent modeling derived from
the computer science tradition, to lay the groundwork for envisioning a the-
ory of artificial enactive inference. We do so by drawing relevant elements
from the literature on Bayesian inference in Dynamic Bayesian Networks,
and on autonomous-agent modeling from the literature on Partially Observ-
able Markov Decision Process (POMDP). We adopt the term data structure
from computer science terminology instead of model to avoid psychological
connotations.

Sections 2 and 3 review the technical foundations of active inference and
POMDPs. The reader familiar with these foundations may proceed directly
to Section 4 that proposes the new SEMDP model, and Section 5 that demon-
strates it in an early experimental robotics testbed. We believe that the
foundational sections are nonetheless useful to introduce important defini-
tions and to explain the need for the three-dimensional-world assumption
introduced in Section 4.2. Section 2 develops and explains how Bayesian
Networks, particularly Dynamic Bayesian Networks (DBNs), provide a for-
mal basis for modeling enactive inference. They prepare the understanding
of the concept of Markov Blanket used in Section 3.4. Section 3.2 shows
that current methods for solving POMDPs require assumptions that are not
satisfied in the context of enactive inference, which also led us to propose the
three-dimensional-world assumption. Nevertheless, POMDPs offer a solid
formal foundation for artificial enactive inference.

2. Inference in artificial agents

In this paper, we adopt the following notation. Bold uppercase letters,
such as A and B, are initially used to represent sets. Elements of these sets
are denoted by lowercase letters, for example, a ∈ A and b ∈ B. P(A)
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denotes the set of subsets of A (partition). ∆(A) denotes the simplex over
A, i.e., the set of probability distributions over A.

Random variables are denoted by uppercase letters, for example, A and
B. P (A = a), or in short P (A), denotes the probability that random variable
A takes any particular value a. P (B = b|A = a), or P (B|A) denotes the
conditional probability that B has the value b given that A has the value a.
We use the assignment operator := to denote that the result of a function is
assigned to a variable.

Notably, sets and variables play a similar role respectively in the contexts
of set theory and probability theory. For example, when the environment
transitions to a particular state, this is expressed in set theory by the fact
that a particular state s is stochastically drawn from among all the possible
states in set S. In probability theory, this is expressed by the fact that
variable S is assigned value s. Therefore, to simplify notation when the
context permits and to imitate most of the POMDP and active inference
literature [e.g., 9, 10], we merge these notations by generally omitting bold
notation for sets beyond this short introduction.

2.1. Bayesian networks

Bayesian networks (BNs) [11] belong to the family of probabilistic graph-
ical models. They combine principles from graph theory, probability theory,
computer science, and statistics. More formally, BNs are defined as follows:

Definition 1 (Bayesian Network [12, 13]). Consider U a finite set of
random variables. A BN is a pair B = ⟨G,Θ⟩ such that :

� G = (V,E) is a directed acyclic graph with V the set of nodes represent-
ing variables from U , and E the set of edges where each edge represents
the conditional dependencies among the corresponding variables.

� Θ is the set of conditional probability distributions, denoted P (v|pa(v)),
of a variable v ∈ V given its parents pa(v).

Figure 1 shows a simple BN representing that variable O depends on its
parent variables S.
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Figure 1: Bayesian network representing that “S influences O” or “O depends on its parent
S” with conditional probabilities P (O|S). The different probabilities involved with these
two variables are linked through Bayes’ theorem: P (O)P (S|O) = P (S)P (O|S) = P (O,S).

2.2. Inference

The term inference refers to the process of reasoning or drawing conclu-
sions about the uncertain variables in the network based on observed evidence
or prior knowledge about some other variables. The main types of inference
that interest us are frequentist inference and probability inference.

Definition 2 (Frequentist inference). Frequentist inference is a method
to estimate probability dependencies from data representing observation of
events.

If a list of events involving variables A and B is available, frequentist
inference gives the estimated conditional probability P̂ (B|A) of B given A
through formula 1.

P̂ (B = b|A = a) =
Number of events in which A = a and B = b

Number of events in which A = a
(1)

For example, consider a robotic arm that can extend and detect impact
with obstacles. We can estimate the probability of impact during extension
by dividing the number of impacts during extension by the total number
of arm extensions. Frequentist inference alone, however, does not allow an
autonomous robot to infer the hidden cause of the impact: the presence of
an obstacle at a certain location.

Definition 3 (Probability inference). Probability inference is the process
of computing the probability distribution of some variables in the network
given the probability of other variables.

Consider an agent observing its environment. Let us denote O the agent’s
observation and S the state of the environment. The fact that the state of
the environment influences the observation can be represented by the BN in
Figure 1. The statistics of S and O are linked by Bayes’ theorem in Equation
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2. If the other terms of the equation are known, probability inference allows
inferring the state of the environment given the observation P (S|O).

P (O)P (S|O) = P (S)P (O|S) = P (O, S) (2)

For example, if our robotic arm only observes its environment through its
“impact sensor”, it could use probability inference to infer the state of the
environment (the existence of obstacles at certain locations), in an analogous
way as a blind person discovers their environment with a cane. This would
require knowing the probability of observing an impact if there is an obstacle
P (O|S), the probability of each state P (S), and the probability of each
observation P (O). If the cardinalities of S and O are large, this may also
require unrealistic computational power because, in general, the computation
of probability inference is NP-hard [14, 15].

In active inference theory, the joint probability distribution P (O, S) over
observations O and hidden causes S is called the generative model. The
statistical mapping P (S|O) from observable consequences O to hidden causes
S is called the recognition model [1, p. 227]. To study how the agent can
maintain these models over a succession of actions and observations, we use
the formalism of Dynamic Bayesian Networks.

2.3. Dynamic Bayesian Networks

Dynamic Bayesian Networks (DBNs) [e.g., 16, 17] are an extension of
Bayesian Networks used to represent the evolution of variables over discrete
time. DBNs extend BNs to model probability distributions over semi-infinite
series of random variables Z1, Z2, ..., Zt.

In general, DBNs are first-order Markov models, meaning that the tem-
poral dependency is specified over two time steps only as illustrated in Figure
2.

Definition 4 (Dynamic Bayesian Network). A DBN is defined as a pair
(B0, B→). B0 is a BN which defines the prior P (Z0). B→ is a 2-step Tempo-
ral Bayesian Network (2TBN) that represents the temporal evolution of the
DBN.

A 2-step Temporal Bayesian Network (2TBN) is a BN divided into two
steps that give the joint probability distribution P (Zt|Zt−1) of variables at
step t given variables at step t− 1.
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Figure 2: Example DBN with two variables Z0 and Z1. B0 represents the prior. B→,
made of Step t− 1 and Step t, represents the two-step evolution of the DBN.

Some DBNs split Zt into three distinct subsets: Xt, Yt, and Ut, respec-
tively, the input, hidden, and output variables. The probability distributions
of variables in Xt can be inferred from observation using frequentist infer-
ence. The probability distributions of variables in Ut can be inferred from
the DBN using probability inference.

When DBNs are used to represent the process of an agent interacting with
its environment then some nodes are identified as decision nodes. Decision
nodes are nodes whose values are set by the agent. Sometimes, the DBN is
enriched with nodes that represent a scalar function such as a reward. Such
enriched DBNs are called influence diagrams. In the rest of this article, the
figures show influence diagrams in which the time subscripts associated with
variables are omitted and the dependencies across time steps are shown with
dotted arrows for clarity.

3. Interactions of artificial agents

In computer science and artificial intelligence, agents receive input data
generated from the environment’s state, compute and maintain internal data
structures used to optimize their behavior and generate output data that
trigger changes in the environment’s state. The most broadly accepted for-
malism to describe this interaction cycle is a Partially Observable Markov
Decision Process (POMDP), which we examine in this section.

3.1. POMDP Framework

A POMDP represents situations in which an artificial agent must make
decisions to optimize some goal by interacting with an environment that it
can only partially observe. At each interaction cycle t, the agent only receives
a partial observation ot generated from the state st hidden to the agent. The
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designer defines a scalar reward function R to specify the agent’s goal. In
general cases, rt is hidden to the agent. The following definition presents the
POMDP formalism:

Definition 5 (POMDP). A POMDP Γ is specified by a 6-tuple Γ = (S,D,O, p, q, R)
where:

� S is a finite set of states;

� D is a finite set of decisions sometimes called actions;

� O is a finite set of observations sometimes called signals;

� p : S×D → ∆(S) is a probabilistic transition function p(st+1|st, dt) that
gives the probability distribution over the successor states st+1 given a
state st ∈ S and a decision dt ∈ D;

� q : S ×D → ∆(O) is a probabilistic observation function q(ot+1|st, dt)
that gives the probability distribution over the observations ot+1 ∈ O
given a state st ∈ S and a decision dt ∈ D ;

� R : S ×D → R is a step reward function.

There exist different variants in the way observations are constructed [e.g.,
18]. Many implementations directly map q(o|s) from state to observation. In
this case, the observation is representational of the state because it can be
interpreted as representing a feature of the state. Some implementations use
a mapping q : S → P(O) from the state to the partition of O, each observa-
tion representing a different feature of the state. In the case of the mapping
q(ot+1|st, dt) used in Definition 5, the observation is non-representational of
the state because the same state can produce different observations depend-
ing on the decision. In this case, o is more accurately named signal than
observation. As enactive inference theory denies the notion that the brain
has direct access to a representation of the environment, this paper abstains
from assuming that o is representational and adopts the term signal.

The POMDP cycle is illustrated in Figure 3 and goes as follows:

� The POMDP is initialized with a probability distribution over the state
space p0 ∈ ∆(S) from which the initial state s0 is drawn. The initial
signal o0 ∈ O is drawn with probability q(o0|s0) that does not involve a
previous decision. This makes, in fact, o0 a representational observation
of s0.
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� At each step t ≥ 0, the decider makes a decision dt ∈ D. The next
state st+1 is drawn with probability p(st+1|st, dt). The next signal ot+1

is drawn with probability q(ot+1|dt, st+1). This decision determines the
reward rt := R(st, dt).

S

O

D

R

S

O

D

R

S

O

D

R

Step 0 Step t− 1 Step t

Figure 3: Influence diagram for a POMDP (adapted from [9], Figure 2) representing the
state S, the signal O, the decision D, and the reward R. Gray nodes are hidden to the
agent. In general cases, the agent only has indirect access to the reward R through the
objective criterion not represented in the figure.

As the POMDP cycle unfolds, it generates a history of signals and deci-
sions used to define the agent’s policy.

Definition 6 (t-step history). The t-step history is the sequence ht = (o0, d0, o1, d1, ..., dt−1, ot)
of signals and decisions until step t. The set of all possible t-step histories is
defined by: H0 = O and Ht = Ht−1 ×D ×O.

The total period over which the system is to be observed is called the plan-
ning horizon and is denoted by T . It can be a finite horizon T = {1, ..., |T |}
or an infinite horizon T = N.

Definition 7 (policy). The policy is a mapping σ : ∪t∈THt → D that gives
the decision dt according to the history ht ∈ Ht. The set of all policies is
denoted Σ.

POMDPs are widely used to model planning and control problems [19].
The designer defines the parameters (S,D,O, p, q, R) to fit a particular prob-
lem, and implements a POMDP solution to address it.
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3.2. Solving POMDPs

In the POMDP literature, a POMDP solution is an algorithm that can
compute an optimal policy. An optimal policy is a policy that optimizes an
objective criterion defined by a value function [20]. Example value functions
are the long-run average reward and the discounted reward. The former is
the limit of the average reward. The latter is the sum of future discounted
reward. It includes a discount factor expressing the agent’s preference for
immediate reward over longer-term reward.

Because of their computational complexity, it is only possible to compute
such value functions in a few POMDPs. Indeed, finite-horizon POMDPs
are PSPACE-complete [21], while infinite-horizon POMDPs are undecidable
[20]. The majority of algorithms for exact planning in POMDPs work by op-
timizing the value function over all belief states. These algorithms can suffer
from the curse of dimensionality, where the dimensionality of the planning
problem is related to the number of states [22]. They can also suffer from
the curse of history : the optimal action may depend on the entire history
of actions and observations. Some recent algorithms, such as point-based
algorithms, perform well [23] but the computational complexity grows
exponentially as a result of these two curses.

While active inference can be used to optimize a value function, this is
not its primary purpose. According to Ryan Smith et al.’s tutorial on active
inference: “there are no additional variables labeled as ‘reward’ or ‘values’.
Instead, preferences are encoded within a specific type of prior probability
distribution—which is often called a prior preference distribution” [10, p. 6].
The prior preference distribution pr ∈ ∆(O) associates a scalar preference
with each signal. There is no value function that aggregates preferences over
time. Instead, “the goal is to infer posterior beliefs over states and policies
when conditioning on observations” [10, p. 11]. In the context of active
inference, solving a POMDP means designing an agent that learns
to infer such beliefs. For the agent, active inference is more a task to
preform than a problem to solve.

3.3. Inferring belief states in POMDPs

The POMDP literature uses the term belief state to refer to the agent’s
estimation of the probability of being in any particular hidden state. Defini-
tion 8 provides a formal definition.
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Definition 8 (t-step belief). Given a policy σ ∈ Σ and an initial belief
b0 ∈ ∆(S), the t-step belief bt is defined by bt(s) = P b0

σ (St = s|Ht = ht) which
gives the agent’s belief at step t that St = s after some history Ht = ht.

Astrom [24] proposed a belief update function to compute the belief state
bt from bt−1, starting from an initial belief b0, in such a way that the belief
state summarizes all the information gathered from the history. In this con-
dition, the belief is a sufficient statistic for ht [25], meaning that it can be
used instead of the history with the advantage that it does not grow with
time. The belief update function is defined as follows:

Definition 9 (Update function). The belief update function is the func-
tion τ : O × ∆(S) × D → ∆(S), which gives the successor belief bt+1 :=
τ(ot+1, bt, dt).

Let us examine τ to understand what prerequisite it entails. It is com-
puted through Equation 3 that gives the belief to be in state s′ on step t+1:

bt+1(s
′) :=

1

P (ot+1|bt, dt)
q(ot+1|s′, dt)

∑
s∈S

p(s′|s, dt)bt(s) (3)

with
P (ot+1|bt, dt) :=

∑
s′∈S

q(ot+1|s′, dt)
∑
s∈S

p(s′|s, dt)bt(s)

Equation 3 uses the transition function p and the observation function
q to compute the next belief state. When an engineer uses a POMDP to
model a physical system, he or she knows p and q a priori, and uses them to
implement τ . For research on autonomous agents, however, we do not wish
to implement p and q because we study how the agent infers hidden states
through experience without presupposed knowledge. Moreover, τ requires
knowledge of the set of states S, which is generally large. Even when p and q
are known, computing τ becomes intractable as the set of states grows [25].

The active inference literature has proposed a method to approximate the
belief state through the minimization of variational free energy [26]. This
method computes the posterior belief bt+1(s) after observation ot through
an iterative process of gradient descent of free energy. The variational free
energy F is computed as a measure of similarity between the posterior belief
and the generative model P (O, S) according to equation 4, adapted from [10,
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eq. 4]. The learning occurs through the iterative process of updating b(s) on
each interaction cycle.

F =
∑
s∈S

b(s)ln
b(s)

P (O, S = s)
(4)

Equation 4 shows that the variational free energy can only be computed
if we presuppose the knowledge the generative model P (O, S). While this
presupposition is applicable in the case of well controlled experiments, it
becomes unrealistic in the case of a robot in an open environment that is
expected to learn without prior knowledge of its sensory apparatus. The
sum and iterations over a large and unknown set of environmental states is
also inapplicable.

3.4. Inference in unknown POMDPs

Very few studies addressed the inference problem in POMDPs when the
set of states S, and transition and observation functions p and q are unknown
to the agent. Alexander Mordvintsev [27] uses differentiable optimization to
learn a Finite State Machine (FSM) representing an unknown environment
whose input is the agent’s actions and whose output is the agent’s signals. It
presupposes the maximum depth of temporal dependency, and the maximum
number of states of the FSM. Our group [28] has proposed a method to learn
a spatial representation of the environment. It presupposes that the enacted
interactions can be localized in a two dimensional space and may cause the
displacement of the agent’s body.

Ramstead et al. refer to the concept of Markov Blanket to differentiate
between the nodes that represent the agent’s internal states and the nodes
that represent the environment [1]. In a Bayesian Network, the Markov blan-
ket of a set of nodes Z0 is the set of nodes ZM that isolates the nodes in Z0

from all the other nodes in the network [29]. The Markov blanket principle
states that the statistics of the nodes in Z0 are entirely defined by the statis-
tics of the nodes in ZM , making the statistics of the nodes in Z0 independent
of the statistics of the other nodes of the graph as if they were hidden be-
hind the Markov blanket. In the POMDP framework, the Markov blanket
of the agent is made of the nodes that belong to the interface between the
agent and the environment: the signal node O and the decision node D. Be-
cause the nodes of the environment are hidden behind the agent’s
Markov blanket, a single node S holds the most complete statistics
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of the environment that the agent can possibly infer through its
experience of interaction in the absence of predefined assumptions.

If the POMDP literature has not proposed tractable solutions for an arti-
ficial agent to perform inference in an unknown environment, and the Markov
blanket argument coming from the BN literature suggests that inference is
not possible beyond the single environment node S, then the question of
artificial enactive inference remains unanswered. The following section puts
forward a new perspective on this issue in light of this literature review.

4. Artificial enactive inference

Enactive Inference theory does not a priori posit representations of the
agent’s observational system and final goals. This contrasts with POMDP
studies that posit these representations in the form of the tuple (S,D,O, p, q, R)
that must be known a priori to infer belief states. In this section, we exam-
ine how to reconcile these two approaches to find the minimal mathematical
assumptions that would be needed in computer science to account for the
neuroscience theory of enactive inference.

From the study of POMDPs, we learned that the problem for an au-
tonomous agent to infer the models introduced in Equation 2 is intractable
in the general case. Moreover, the problem of maximizing a reward obtained
from interaction is also intractable in the general case. The fact that nat-
ural organisms perform enactive inference with their limited computational
resources suggests that enactive inference should be tractable. Therefore,
implementing artificial agents capable of enactive inference is a completely
different endeavor than implementing artificial agents that solve POMDPs.

This section proposes a new description of an agent interacting with its
environment intended to formalize the artificial enactive inference task. To
do so, we begin with presenting a simplification of the POMDP framework
called the EMDP framework. This allows us to express assumptions that
may make the artificial enactive inference task tractable, called the SEMDP
framework.

4.1. Enactive Markov Decision Process (EMDP)

Compared to a POMDP, the main conceptual difference of an EMDP
lies in the fact that the decider receives an interaction at the end of the
cycle, rather than a signal at the beginning. We introduce the concept of
interaction as a primitive of the model to represent a sensorimotor pattern

13



that involves both motor actions and sensory signals. As such, an inter-
action implements the fact that “perception and action cannot be pulled
apart” stressed by the theory of enactive inference introduced in Section 1.
In constructivist learning theory, an interaction corresponds to a Piagetian
sensorimotor scheme. In a robot, an interaction can be implemented through
a control loop involving actuator motion and sensory feedback [30]. Because
interactions depend both on the decision and on the state, they can be seen
as the counterpart of the couple (decision, signal) in a POMDP. Section 5
will provide an example.

Another important difference is that EMDPs do not contain a reward
function. As introduced in Section 3.2, the purpose of enactive inference is
not to maximize reward. The EMDP formalism makes no commitment on the
behavior selection mechanism that drives the agent. For example, Jacqueline
Gottlieb [e.g. 31] has recently proposed a review of various information seek-
ing motivational principles which we believe could be compatible with the
EMDP formalism. It is nonetheless possible to define a preference distribu-
tion pr ∈ ∆(I) that attributes a scalar preference to each interaction similar
to that introduced in Section 3.2. This defines a kind of self-motivation that
we have called interactional motivation in other experiments [32].

As the sets of actions and interactions are finite, we can define EMDPs
on very general state spaces. More specifically, let us proceed by defining the
characteristics of an EMDP:

Definition 10 (EMDP). An Enactive Markov Decision Process is specified
by a 5-tuple ΓE = (S,D, I, p, q) where:

� S is a countable or uncountable set of states;

� D is a finite set of decisions;

� I is a finite set of interactions;

� q : S ×D → ∆(I) is a probabilistic transition function p(it|st, dt) that
gives the probability distribution over the interactions it ∈ I, given a
state st ∈ S and a decision dt ∈ D;

� p : S × I → ∆(S) is a probabilistic transition function p(st+1|st, it)
that gives the probability distribution over the successor state st+1 ∈ S,
given a state st ∈ S and an interaction it ∈ I;
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The EMDP cycle goes as follows:

� The EMPD is initialized with an initial state s0 ∈ S.

� At each step t ≥ 0, The agent makes some decision dt ∈ D. The
enacted interaction it is drawn with probability q(it|st, dt). The next
state st+1 is drawn with probability p(st+1|st, it).

Like a POMDP, an EMDP rests upon the assumption that the same
interaction enacted in the same state always yields the succession state with
the same probability. The EMDP can, therefore, be represented as a 2-step
DBN illustrated in Figure 4.

In an EMDP, the enacted interaction it contains information on the pre-
vious decision dt. The notion of history introduced in section 3.1, is therefore
simplified in the form of the sequence of enacted interactions ht = {i0, ..., it−1}
before step t. As with POMDPs, the history contains the relevant informa-
tion for the decision-making process. It constitutes the Markov blanket that
hides the environment’s structure to the agent.

D

I

S

0

D

I

S

t− 1

D

I

S

t

Figure 4: Influence diagram for an Enactive Markov Decision Process (EMDP). The inter-
action It depends on the decision Dt and the state St. The previous enacted interaction
It−1 influences the decision Dt and the state St. The previous state St−1 influences the
current state St. The nodes I constitute the Markov blanket that hides the nodes S (in
gray) to the agent.

Another notable difference between EMDPs and POMDPs pertains to
the belief and the methodology of information collection from the environ-
ment. In EMDPs, both the transition and observation functions are un-
known. Therefore, it is unfeasible to update the belief. Instead, within
the EMDPs framework, the agent gathers information from its environment
through enacted interactions.
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4.2. Spatial Enactive Markov Decision Process (SEMDP)

Living organisms have evolved in a 3D world where understanding the
location of the organism within that 3D world and being able to localize
objects in that 3D world has been essential for the survival of the species.
It is not surprising, therefore, that mechanisms have evolved to address the
representation of self and objects in 3D space [33, 34, 35, 36, 37, 38]. Equally,
much effort has gone into producing biomimetic counterparts for robots [39,
40, 41, 42, 43, 44]. To account for how such organisms perform enactive
inference in the physical world, we propose the Spatial Enactive Markov
Decision Process (SEMDP) formalism. The SEMDP is a specialization of
the EMDP that encodes the assumption that the set of states S is a three-
dimensional world. A 3D world is a 3D Euclidean space in which objects are
represented as sets of points upon which geometrical affine transformations
can be performed. A 3D Euclidean space is a three-dimensional real vector
space E = R3 associated with Euclidean distance.

We define a SEMDP by extending the EMDP model as a tuple ΓS =
(S,D, I, E , I, p, q) where E is a 3D Euclidean space, and I is the set of direct
isometries over E . A direct isometry, or a rigid motion, is an affine transfor-
mation that preserves distances and angles, i.e., a translation, a rotations, or
a combination of both. As with the EMDP cycle introduced in Section 4.1,
the SEMDP cycle is shown in Figure 5 and goes as follows:

� The SEMDP is initialized with an initial state s0 ∈ S.

� At each step t ≥ 0, The agent makes some decision dt ∈ D. The enacted
interaction it ∈ I, its position ϵt ∈ E , and the isometry ιt ∈ I are
drawn with probability q(it, ϵt, ιt|st, dt). The next state st+1 is drawn
with probability p(st+1|st, it, ϵt, ιt).

The agent implements the assumption that it controls a mobile robot
in the 3D world. The point ϵ, and the isometry ι respectively indicate the
position of the enacted interaction i, and the displacement of the robot dur-
ing the enaction of the interaction. Both ϵ and ι are encoded in egocentric
coordinates relative the robot’s body. For example, if the robot impacts
an obstacle while enacting an interaction, the impact interaction is local-
ized at the position of the robot’s bumper, and the isometry represents the
translation of the robot before being blocked by the obstacle. This 3D-world
assumption finds support in the observation that most animals can localize
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their interactions in their surrounding environment and can detect their own
displacement (e.g., through vestibular signal and optic flow). Jeff Hawkins
and his group express this hypothesis as follows:

“Everything is perceived at a location. As we attend to each
object, we perceive the distance and direction from ourselves to
these objects and where they are relative to each other. The
sense of location and distance is inherent to perception, it occurs
without effort or delay” [45, p. 12].

Note that the agent does not have access to any putative “absolute posi-
tion” of the robot in the environment.
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Figure 5: Representation of a Spatial Enactive Markov Decision Process (SEMDP). The
memory state M influences the decision D. The interaction I is associated with its relative
position E and with the displacement I of the robot. The state S (gray nodes) representing
the environment is hidden to the agent.

As in a POMDP and an EMDP, the history constitutes the relevant infor-
mation for the decision-making process. In a SEMDP, it becomes defined as
the sequence of enacted interactions with their spatial position ϵ ∈ E and the
robot’s displacement ι ∈ I before step t: ht = {i0, ϵ0, ι0, ..., it−1, ϵt−1, ιt−1}.
The history is stored in memory M organized spatially.

The memory update function becomes defined as τ : M × I×E ×I → M
and gives the successor memory state mt+1 := τ(mt, it, ϵt, ιt). At the end
of step t, τ applies the inverse isometry ι−1

t to the position of all previously
memorized enacted interactions: ϵn := ι−1

t (ϵn) for n ∈ {0, ..., t − 1}. The
reason τ uses the inverse isometry is that the displacement of the interaction
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relative to the robot is the inverse of the displacement of the robot relative to
the environment. And then τ adds the new enacted interaction it at position
ϵt to memory, as will be shown in the cognitive architecture presented next.

4.3. Cognitive architecture for enactive inference in a SEMDP

We designed a brain-inspired cognitive architecture to implement the pol-
icy of a SEMDP capable of enactive inference. Its code is shared online [46].
We drew inspiration from areas used for spatial representation in the mam-
malian brain [47], specifically the superior colliculus associated with egocen-
tric memory and hexagonal grid cells in the hippocampus associated with
allocentric memory.

Figure 6 outlines the modules of the architecture. At the end of step t,
the enacted interaction it is added to egocentric spatial memory using its
position ϵt. The positions of the previous interactions are updated using ι−1

t

as introduced above. Simultaneously, it is also added to hierarchical sequen-
tial memory. The sequence learning mechanism is a kind of sensorimotor
sequence reiterator as some authors have proposed [7] and as we have de-
scribed in previous articles [8, 48]. In essence, it records a series of enacted
interactions and organizes them in a hierarchy in which longer sequences are
made of series of shorter sequences. When a sub-sequence is recognized in
the short-term history, its following sub-sequence is proposed for future en-
action. This mechanism results in the agent learning habits of interactions.
It can also be seeded with “innate” behaviors.

Egocentric spatial memory is converted into allocentric spatial memory
by reference to a fixed point in space. By default, the initial point where i0
was enacted is used as the reference. The architecture examines the hypoth-
esis that closely located interactions may be afforded by a single physical
object present in the environment. For this examination, the architecture
creates tuples that associate interactions with their allocentric position. We
call these tuples affordances. Next, the architecture gathers affordances lo-
cated next to each other in sets that may describe the physical object “as the
agent experiences it through interaction”. This learning process that goes
from interactions to objects may seem counter-intuitive because many stud-
ies proceed in the opposite direction by learning affordances of presupposed
objects. It is, however, the spirit of active inference to infer the causes in
the environment (hypothetical objects) that explain the agent’s sensorimotor
experience. We use the term phenomenon to refer to a set of affordances in-
tended to represent a physical object. This usage of the term complies with
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Figure 6: Cognitive architecture for SEMDP. Bottom: the history hn: for n ∈ {0, t}.
Enacted interactions in associated with their position ϵn and isometry ιn are represented
as small 3D blocks with arrows. The cognitive architecture incorporates the long-term
memory of hierarchical sequences of interactions (top), egocentric and allocentric working
spatial memories (center), and the long-term memory of inferred phenomena (left). Right:
the Decider makes decision dt on the basis of the states of all the memory modules.
Top right: the emotion appraisal module is not used in this study except for simulating
emotional states displayed by the robot’s color led.
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its common-sense usage: “something” that a cognitive being perceives in the
environment. Thórisson offers a more technical definition of the term phe-
nomenon that also matches this usage: “any useful grouping of a subset of
spatio-temporal patterns experienced by an agent in an environment” [49, p.
8]. The phenomenon sets are the product of the enactive inference process.

This cognitive architecture implements a finite memory policy : the num-
ber of enacted interactions stored in memory M grows linearly with time. It
can be bounded by forgetting interactions older than an arbitrary step limit
l since its purpose is not to optimize a value. Enacted interactions are du-
plicated in the various modules of the architectures, but the maximum size
remains bounded by the number of modules multiplied by l. Therefore, the
cognitive architecture complies with Definition 11 of a finite-memory policy
proposed, for example, by Chatterjee et al. [50]. In practice, the required
memory size remains orders of magnitude lower than the memory capacity
of a regular personal computer.

Definition 11 (Finite-Memory policy). A policy σ is said to have finite-
memory if it can be modeled by a finite-state transducer. Formally, σ =
(σu, σa,M,m0), where M is a finite set of memory states, m0 is the initial
memory state, σa : M → D is the decision selection function, and σu :
M ×D ×O → M is the memory update function.

5. Experiment

We built a mobile robot called PetitCat based on the “Robot car” of
brand Osoyoo [51]. It includes omnidirectional wheels allowing axial and
lateral translations, a pivoting head holding an ultrasonic telemeter, a bar
of luminosity sensors directed to the floor in front of the robot, and a WiFi
module. We added an inertial measurement unit, a color sensor directed to
the floor underneath the robot, and an RGB LED on top. Figure 7 illustrates
this configuration.

5.1. Settings

The PC implements the cognitive architecture that selects decision dt
and sends it to the robot via WiFi in the decision packet. The decision
packet also includes additional information not detailed in this paper such
as instructions to move the head, and color of the RGB LED. Table 1 lists
the set D of possible decisions. The Arduino board decodes the decision and
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Figure 7: Hardware configuration showing the PetitCat robot controlled by an Arduino
board. Actuators are the motors controlling the omnidirectional wheels, the servo con-
trolling the head direction, and the RGB LED displaying a representation of the robot’s
internal state. Sensors are the ultrasonic telemeter, the floor luminosity sensor bar, the
inertial measurement unit, and the floor color sensor. The PC implements the cognitive
architecture and remote controls the robot through WiFi by sending decision packets, and
receiving interaction packets back from the robot.

implements the control loop that enacts the corresponding interaction over
a predefined default time span or angle span.

Table 1: Set of available decisions D

Decision Description Default span

turn left Rotate in the spot to the left angle = π/4
backward Translate backward duration = 1 s
turn right Rotate in the spot to the right angle = −π/4
swipe left Translate to the left duration = 1 s
swipe right Translate to the right duration = 1 s
forward Translate forward duration = 1 s

To enact the interaction, the Arduino board runs a timer and a control
loop that continuously checks the floor luminosity, the yaw, the linear accel-
eration, and the ultrasonic echo distance. This loop also constantly adjusts
the direction of the head in search of the shortest echo distance. When an in-
terruption event is triggered, the robot stops the interaction and returns the
interaction packet to the PC, containing information about the enacted in-
teraction and the event. Table 2 summarizes the possible events. The floor
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event additionally triggers a slight automatic withdrawal that prevents the
robot from crossing the black line.

Table 2: Set of interrupting events

Code Description

floor Drop in floor luminosity indicating a black line on the floor
impact Strong deceleration indicating an impact against an obstacle
blocked Weak acceleration on startup indicating that the robot is blocked by an obstacle
left echo Echo distance below 150 mm and head angle above 30° indicating an obstacle to the left
front echo Echo distance below 150 mm and head angle between -30° and 30° indicating an obstacle in front
right echo Echo distance below 150 mm and head angle below -30° indicating an obstacle to the right
span up The target span has been reached (rotation angle or duration)

Upon reception, the PC transcribes the interaction packet into the en-
acted interaction it ∈ I, its position ϵt ∈ E , and the robot’s displacement
ιt ∈ I. The set of enacted interactions is made of the combination of the
possible decisions and their interrupting events, making 6 decisions x 7 events
= 42 interactions. The position ϵt depends on the type of the event. Inter-
actions involving the floor, impact, and blocked events are localized at the
front edge of the robot. Interactions caused by echoes are localized at the
distance of the echo, in the direction of the head. The isometry ιt represent-
ing the robot’s displacement is a combination of the yaw and translation on
the floor. The yaw is measured by the inertial measurement unit with the
relatively good precision of ±2%. The translation is obtained by multiply-
ing the robot’s speed by the duration of the interaction before interruption
(approximately 200 mm/s). It has a poor precision of ±20%. While the
cognitive architecture can handle positions and displacements in the three-
dimensional space, this experiment only uses the two-dimensional horizontal
plane.

We seeded the sensorimotor sequence reiterator with two basic behaviors.
Behavior 1 consists of turning to the left when a right echo event is trig-
gered. Behavior 2 consists of moving forward as long as no floor, impact,
left echo, or front echo event is triggered, and swiping to the left after
those events are triggered. These simple behaviors are sufficient to infer the
shape of simple objects and the arena as reported next.

5.2. Results

With the seed behaviors presented above, when the robot is switched
on, it repeatedly decides to move forward until a floor or echo event is
triggered. After that, the robot swipes to the left and turns. This behavior
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Figure 8: Left: The PetitCat robot. Right: The robot and a bottle in the arena delimited
by a black line.

results in the robot circling around the “phenomena” that it encounters while
constructing data structures in spatial memory that account for the shape
of these phenomena. For example, when the phenomenon is a bottle placed
on the floor, the robot constructs the data structures shown in Figure 9
after less than a hundred interactions. The shapes inferred by the robot,
while imprecise, allow discriminating between different phenomena. Detailed
descriptions are available in a previous article [52].

When the phenomenon is the arena delimited by the black line, the robot
circles inside it. An example run can be seen in video [53]. Figure 10 (left)
shows a graphical representation of the arena constructed in phenomenon
memory at step t = 58 when the robot completed its tour. Each bold segment
represents an affordance based upon an interaction with the black line in, n ∈
{0, ..., t} at position ϵn moved by the inverse isometries ι−1

m ,m ∈ {n+1, ..., t}
accumulated over steps. The thin oval black line shows the interpolated
border of the arena. Over time, the imprecision in the robot’s displacements
accumulates, and the position of interactions in memory drifts. The robot
uses the color patch on the floor detected through the color sensor as an
absolute reference to correct the drift when the robot returns to the color
patch. The robot also infers that the space outside the border is out of reach,
which is represented by black hexagons in Figure 10 (right).
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Figure 9: Graphical representations of phenomena encoded as sets of affordances. Each
affordance is represented by a blue-gray triangle (cone of echo-localization) and an orange
half-circle (estimated position of echo). Black line: the object’s outline inferred by the
robot. Right: Phenomenon constructed from a bottle of diameter 100 mm. Left: Phe-
nomenon constructed from two bottles next to each other. The robot “sees” them as a
single solid object.
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Figure 10: Left: graphical representation of the arena in phenomenon memory at step
58, flipped to the same direction as in Figure 8 for easier understanding. Bold black or
colored segments: affordances constructed from interactions with the black line detected
by luminosity and color sensors. Gray or colored triangles: position of the robot on each
interaction cycle. Thin black line: the shape of the arena inferred by the robot. Right:
alocentric memory represented as an hexagonal grid. Black hexagons: the area that the
robot has inferred is inaccessible.

6. Conclusion

Our experimental results show that a robot can perform artificial enac-
tive inference as defined within the framework of Spatial Enactive Markov
Decision Process. The robot exploits the presupposition that it can localize
its interactions in its surrounding space, and sense its own displacements.
This assumption is built into the robot through the choice of sensors, and
hard-coded in its cognitive architecture. What is not hard-coded and left for
the robot to infer is ontological knowledge about the objects that populate
the environment.

This study merely begins to explore the intricacies involved in inferring
complex knowledge through interactive experiences. Perhaps the most in-
triguing question is that of implementing motivational drives in autonomous
robots. Friston has proposed the free energy principle according to which the
agent makes the decisions that minimize prediction error. Prediction error
is the difference between sensory signal anticipated through the generative
model and sensory signal actually measured.

Our cognitive architecture computes prediction errors of each sensory
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signal. For example, when the robot decides to move forward for one second
toward an object, it anticipates its displacement based on its estimated speed,
and tries to predict the distance to the object that will be measured after
the displacement. The echo-localization prediction error is the difference of
this anticipation computed at the beginning of the interaction cycle minus
the signal measured at the end of the interaction cycle. It may depend on
various factors such as irregularities on the floor, imprecision of the sensor
itself, battery level which impacts the robot’s speed, and of course, whether
the object has moved since the last measure. We cannot find a unique variable
whose optimization would correlate with minimization of prediction error of
all the sensors.

To paraphrase Josha Bach’s vision on how motivational drives may work
in biological-organisms [54, t.c. 1:18:00], we imagine that a newly-switched-
on robot should be driven by numerous intrinsic drives that may involve
individual and social preferences as well as cognitive needs. These drives
would be seeded in the robot’s initial cognitive architecture as reflex that
direct the robot until it can form higher goals. We don’t expect that this
process could be achieved only by optimizing a unique scalar value. Instead,
it would require intelligence. The robot would have to make experiments
and draw inferences starting with hard-coded first-principle reasoning mech-
anisms. Such mechanisms do not require an initial personal self, but they
may be a prerequisite for the construction of the self.

Some authors like György Buzsáki have claimed that the human brain
recycles spatial-computation capacities inherited through phylogenetic evo-
lution to perform reasoning upon abstract concepts [55]. This suggests that
future progress in designing SEMDP agents may lead to autonomous robots
capable of constructing abstract knowledge grounded on their own sensori-
motor experience.
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Thórisson (Ed.), Proceedings of the Third International Workshop on
Self-Supervised Learning, Vol. 192 of Proceedings of Machine Learning
Research, PMLR, 2022, pp. 77–88.

31



[53] O. L. Georgeon, Robot exploring the arena (2023).
URL https://youtu.be/rKYiXNGiyiE

[54] L. Fridman, Joscha bach: Life, intelligence, consciousness, AI & the
future of humans (2023).
URL https://youtu.be/e8qJsk1j2zE
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