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Abstract

A line digraph L(G) = (A,E) is the digraph constructed from the
digraph G = (V,A) such that there is an arc (a, b) in L(G) if the terminal
node of a in G is the initial node of b. The maximum number of arcs
in a line digraph with m nodes is (m/2)2 + (m/2) if m is even, and
((m− 1)/2)2 +m− 1 otherwise. For m ≥ 7, there is only one line digraph
with as many arcs if m is even, and if m is odd, there are two line digraphs,
each being the transpose of the other.

Keywords: Line Digraph, Graph theory, Combinatorial, Linegraph

1 Introduction

Introduced in [4], the line digraph transformation is, given a simple digraph
G = (V,A) with m arcs, there is an arc (a, b) in the line digraph L(G) = (A,E)
if the terminal node of a in G is the initial node of b. We say G is a root
digraph of L(G). The following caracterization of line digraphs is provided in
[4].

Theorem 1 ([4], Theorem 7). A digraph is a line digraph if and only if none of
the Shortcut, Eight and Deviation digraphs shown in Figure 1 is a subgraph,
and every Z digraph is in a K2,2.
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(a) Eight (b) Deviation (c) Shortcut (d) Z

Figure 1: Forbidden subdigraphs.
The subgraph Z is allowed if the dotted arc is present, which forms K2,2.

Given a fixed value of m, we want to caracterize the line digraphs of m
nodes with maximum number of arcs. Equivalently, we want to caracterize the
root digraphs with m arcs maximizing Φ(G) =

∑
v∈V d+v · d−v (the outgoing and

incoming degrees of v) as it is the number of arcs in its line digraph.

Motivations The undirected version of this question is trivial, the graph with
the most edges, the clique, being a line graph. Previous works have been devoted
to the same question for root graph with a fixed number of nodes and edges
[1, 2]. The result is not obvious on the directed version of the problem, as
forbidden digraphs are not induced. Similar work has been done on other graph
classes[3, 5, 6].

Results In this paper, we first show in Section 2 that the maximum number

of arcs in the line digraphs with m nodes is
(
m
2

)2
+ m

2 arcs if m is even, and(
m−1
2

)2
+m− 1 arcs otherwise. In Section 3, we then show that those bounds

are tight by providing all the root digraphs achieving them.

Notations Like used previously, m denotes the number of arcs in the root
digraphs and thus the number of node in the line digraphs while n denotes the
number of nodes in the root digraphs. We use d−u and d+u for the incoming and
outgoing degrees of u. If necessary, we specify the digraph G with dG,u.
A circuit is a sequence of consecutive arcs whose two extremity nodes are
identical. An arc is incident on a node if one of its extremities is that node.
Given G = (V,A), G - u is the digraph (V \ u,A \ {(u, x), (x, u)}∀x∈V ) and
G - (u, v) is the digraph (V,A \ (u, v)). An optimal digraph G with m arcs
is such that, for all digraphs F with m arcs, Φ(F ) ≤ Φ(G). The transpose
digraph GT = (V,AT ) of the digraph G = (V,A) is such (a, b) ∈ A ⇔ (b, a) ∈
AT .

2 Maximum number of arcs in a line digraph

In this section we provide a close formula for the maximum number of arcs in a
line digraph of some given order.
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Lemma 1. Let H be a line digraph of odd order m ≥ 7, then H contains at
least one node with dv ≤ m−1

2 .

Proof. Let m = 2p + 1 and H = (A,E) be a line digraph with order m. We
assume that, for every node vi, dvi ≥ p+ 1.

As m is odd, some node v ∈ A does not belong to a 2-circuit otherwise there
exists an Eight (figure 1) digraph in H. Consequently there are at least p + 1
distinct neighbors to v. With Γ−

v , the set of predecessor nodes of v, Γ+
v the

set of successor nodes of v and Γ0
v the set of nodes not adjacent to v, we have

|Γ−
v |+ |Γ+

v | ≥ p+ 1, |Γ0
v| ≤ p− 1 and |Γ−

v |+ |Γ+
v |+ |Γ0

v| = 2p.
As shown in Figure 2a, if two nodes of Γ−

v or two nodes of Γ+
v are linked,

H contains a Shortcut. Similarly, a node of Γ−
v cannot be the predecessor of a

node in Γ+
v . Consequently, if a node of Γ−

v ∪Γ+
v belongs to a 2-circuit, then the

other node of the circuit is in Γ0
v. As |Γ−

v ∪Γ+
v |− |Γ0

v| ≥ 2, there exist two nodes
in Γ−

v ∪ Γ+
v that are not contained in a 2-circuit. Let x be one of those nodes,

there are at least p+ 1 distinct neighbors to it.
As shown in Figure 2b, there is at most one successor in Γ−

v to a node in Γ+
v

otherwise H contains a Deviation. Similarly, there is at most one predecessor
in Γ+

v to a node in Γ−
v . Thus there is at most one neighbor y in Γ−

v ∪ Γ+
v to x.

As there are p+1 distinct neighbors to x and |Γ0
v| ≤ p− 1, every node of Γ0

v

is neighbor of x. As y may belong to at most one 2-circuit, then at least p− 2
nodes of Γ0

v are neighbors of y (and thus common neighbors of x and y). Note
that p− 2 ≥ 1 as m ≥ 7. Let z be any of those nodes.

v

(a) Adding a dotted arc cre-
ates a Shortcut; adding a
bold arc is possible.

v

(b) If the bold arc is added,
dotted arcs create a Devia-
tion with the node v

z

y x

v

(c) Arcs between x or y and
Γ0
v nodes are not currently

oriented.

Figure 2: Arcs between Γ−
v , Γ

+
v and Γ0

v

Figure 2c illustrates those links when x ∈ Γ+
v . The case where x ∈ Γ−

v is
identical (and consists in swapping x and y on the figure). Any orientation of
the links (y, z) and (x, z) leads either to a Shortcut or a Deviation. This last
contradiction invalidates the hypothesis and prove the lemma.

Theorem 2. In a line digraph H of order m, there are at most
(
m
2

)2
+ m

2 arcs

if m is even, and at most
(
m−1
2

)2
+ m − 1 arcs otherwise. Those bounds are

tight.
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Proof. We prove Theorem 2 by induction on m, initialization for digraphs of
order 6 or less is available in the annexe.

If m is odd, by Lemma 1, there exists one node v of degree at most m−1
2 .

Let H ′ = H − v. By induction on the digraph order, one can show that there

are at most
(
m−1
2

)2
+ m−1

2 arcs in H ′. As none of those arcs are incident to v,

then there are at most
(
m−1
2

)2
+ m−1

2 + m−1
2 arcs in H. So the theorem is true

in the odd case.
If m is even. By induction on the digraph order, for every node v of H, There

are at most Bm =
(
m−2
2

)2
+m− 2 arcs in the digraph H − v. We consider the

following linear program where xij is a binary variable representing the presence
of the arc (i, j) in the digraph. Note that no constraint is given on the fact that
H is a line digraph. Consequently, the program gives an upper bound on the
number of arcs. We also provide the dual of the program on the right.

max

m∑
i=1

m∑
j=1
j ̸=i

xij

m∑
j=1
j ̸=i

m∑
k=1
k ̸=i
k ̸=j

Xjk ≤ Bm ∀i ∈ J1;mK

xij ∈ {0, 1} ∀i ̸= j ∈ J1;mK

min

m∑
i=1

BmRi

∑
k ̸=i
k ̸=j

Rk ≤ 1 ∀i ̸= j ∈ J1;mK

Ri ≥ 0 ∀i ∈ J1;mK

A feasible primal solution for the linear relaxation consists in setting xij

to
(m−2

2 )
2
+m−2

(m−1)(m−2) for all i and j. A feasible dual solution consists in setting

Ri = 1/(m− 2) for all i. In the two cases, we get the following objective value((
m− 2

2

)2

+m− 2

)
· m

m− 2
=

(
(m− 2) ·m

4

)
+m =

(m
2

)2
+

m

2

We also get the desired upper bound. The two upper bounds are tight as
we can achieve them with the digraphs of Figure 3.

Figure 3: Example of a line digraph with maximum number of arcs. This is a
complete oriented bipartite with a maximum number of return arcs, and an

additional node in the complete bipartite for the odd case.

Let see that these digraphs are line-digraphs. Since being bipartite, there
is no triangle in the undirected graph underlying, and so there is no Shortcut.
Each node v has d−v = 1 or d+v = 1, so there are no Eights either. In a Deviation,
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there is a node u with d+u > 1, a node v with d−v > 1, and two paths of size two
from u to v. Since this is bipartite, the paths from a node u with an d+u > 1 to
v with d−v > 1 are all odd, so there is no Deviation. All nodes with an outgoing
degree strictly greater than 1 have the same successors, and all nodes with an
ingoing degree strictly greater than 1 have the same predecessors, so there is no
Z outside a K2,2. This concludes the proof of Theorem 2.

3 Unicity of maximum line digraphs

Now that we know the maximum number of arcs, let us show that the only
digraphs reaching this value are those shown in Figure 3. Since Φ(G) is the
number of arcs in L(G), as a consequence of Theorem 2

Corollary 1. Let G a digraph with m arcs, Φ(G) =
∑

v∈V d+v ·d−v ≤
(
m
2

)2
+ m

2

arcs if m is even, and Φ(G) ≤
(
m−1
2

)2
+m− 1 arcs otherwise.

Let Om be the digraph with a central node w, ⌊m/2⌋ 2-length circuit from
the central node and, if m is odd, a final incoming arc on w as shown in Figure 4.

w

(a) Om m even

w

(b) Om m odd

w

(c) OT
m m odd

Figure 4: Optimal digraphs for m = 12 and m = 11. The one on the left
verifies Φ(G) = 6 ∗ 6 + (1 ∗ 1) · 6 =42. Those on the right verify

Φ(G) = 5 ∗ 6 + (1 ∗ 1) · 5 + 1 ∗ 0 = 35

These are the root digraphs of the line digraphs shown in Figure 3. For

theses digraphs, by Theorem 2, Φ(Om) = (m−1)2

4 + m − 1 if m is odd and

Φ(Om) = Φ(OT
m) = m2

4 + m
2 if it’s even. Let us show that every optimal digraph

with m arcs is isomorphic to Om or OT
m. Note that Om = OT

m if m is even.

Lemma 2. If G is optimal, then, for any arc (u, v) ∈ A,

d−u + d+v ≥

{
m
2 + 1 if m is even
m−1
2 if m is odd

Proof. Consider the digraph F = G− (u, v). Then Φ(F ) = Φ(G)− (d−u + d+v ).
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There are m− 1 arcs in the digraph F . Suppose m is even. By Theorem 2:

Φ(G) =
m2

4
+

m

2
and Φ(F ) ≤ (m− 2)2

4
+m− 2

So d−u + d+v ≥ m2

4
+

m

2
−
(
(m− 2)2

4
+m− 2

)
≥ m

2
+ 1

The same applies if m is odd, by Theorem 2:

Φ(G) =
(m− 1)2

4
+m− 1 and Φ(F ) ≤ (m− 1)2

4
+

m− 1

2

So d−u + d+v ≥ (m− 1)2

4
+m− 1−

(
(m− 1)2

4
+

m− 1

2

)
≥ m− 1

2

Corollary 2. If G is optimal, for any pair of arcs (u, v) and (x, y) then, if
F = G− (u, v), d−G,u + d+G,v + d−F,x + d+F,y ≥ m

Proof. This is an application of Lemma 2 first with arc (u, v) in digraph G and
then with arc (x, y) in digraph F .

Lemmas 3 to 5 show that if G is optimal, it must contain a 2-length circuit.

Lemma 3. If G is optimal, with no 2-length circuit, then, for any pair of
consecutive arcs (u, v) and (v, x) we have (x, u) ∈ A.

Proof. Let F = G − (u, v). Then d−F,v = d−G,v − 1. Since there is no 2-length

circuit in G, then x ̸= u and d+F,x = d+G,x. By Corollary 2, β = d−G,u + d+G,v +

d−G,v + d+G,x − 1 ≥ m. For all (s, t) ∈ A, if αs,t = 1u=t +1v=s + 1v=t +1x=s ≤ 1

then β =
∑

(s,t)∈A αs,t − 1 < m, contradiction. Note that αs,t ≤ 2 because

u ̸= v and v ̸= x. So ∃(s, t) ∈ A, αs,t = 2. There are three cases for arc (s, t)
: the arc (v, u) or the arc (x, v), which are excluded since there is no 2-length
circuit in G, the last option being the arc (x, u), which is the desired result.

Lemma 4. If G is optimal with no 2-length circuit, then every pair of arcs are
incident on a same node.

Proof. Suppose there are two arcs in G with no common extremity, (u, v) and
(x, y). Note that the degree of x and y inG−(u, v) is unchanged. By Corollary 2,
β = d−u + d+v + d−x + d+y ≥ m. Let αs,t = 1u=t + 1v=s + 1x=t + 1y=s ≤ 2. Since
αu,v = αx,y = 0 and β =

∑
(s,t)∈A αs,t then ∃(p, q), (s, t) ∈ A, αp,q = αs,t = 2.

There are four cases, the arcs (v, u), (y, x), (v, x) and (y, u). The first two cases
are excluded because G contains no 2-length circuit. So there is the circuit
(u, v, x, y, u) in G. According to Lemma 3, the arcs (x, u) and (u, x) are in G,
which is excluded by hypothesis.

Lemma 5. If G is optimal, then there is at least one 2-length circuit in G.
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Proof. It is assumed that m ≥ 4. The cases m = 2 and m = 3 can be handled
by exhaustive enumeration. Assume that there is no symmetric arcs in G. By
Lemma 4, two arcs of G have a common node. If there is a triangle (u, v, w) in
the undirected graph underlying G, any other arc must be incident on at least
two nodes of the triangle to have a node in common with each arc. Since m ≥ 4
then there is a 2-length circuit in G.

If there is no triangle in the undirected graph underlying G, and all pairs of
arcs have a node in common, then all arcs are incident to the same node w. If
there is no 2-length circuit in G, by Lemma 3, w is either a source (d−w = 0) or
a sink (d+w = 0), but then Φ(G) = 0 and G is not optimal.

Lemmas 6 to 9 show that if G is optimal with m ≥ 7 arcs and there is a
2-length circuit, then G is isomorphic to Om or OT

m (Figure 4).

Lemma 6. If G is optimal and there is a 2-length circuit (u, v, u) then every
arc is incident to u or v.

Proof. Let F = G− (u, v). Then d−F,v = d−G,v−1 and d+F,u = d+G,v−1. By Corol-

lary 2, d−G,u+d+G,v+d−G,v+d+G,u−2 ≥ m. Let αs,t = 1u=t+1v=s+1v=t+1u=s.

We have αu,v = αv,u = 2 and ∀(s, t) ∈ A \ {(u, v), (v, u)}, αs,t ≤ 1 (otherwise it
would be a loop or G would be a multigraph). We have

∑
(s,t)∈A αs,t ≥ m+ 2,

so ∀(s, t) ∈ A \ {(u, v), (v, u)}, αs,t = 1 and every arc is incident on u or v.

Lemma 7. If G is optimal with m ≥ 7
• and there is a 2-length circuit C1 = (u, v, u)
• and there is another 2-length circuit C2

• and all nodes of G are neighbors of u or all nodes of G are neighbors of v
Then all arcs are incident to u or all arcs are incident to v.

Proof. C2 arcs are incident to u or v by Lemma 6. Without loss of generality,
let assume that C2 = (u, x, u). Then by Lemma 6, every arc is incident to u
or v and every arc is incident to u or x so an arc that is not incident to u is
necessarily (v, x) or (x, v). There can therefore be no more than 2 arcs that are
not incident to u by Lemma 6. If m ≥ 7, there is at least one other arc incident
to u. So if we consider the digraph F where (v, x) and (x, v) are replaced by
(u, y) and (y, u) where y is a new node, we verify that Φ(F ) > Φ(G), which is
excluded by optimality of G.

Lemma 8. If G is optimal, with a unique 2-length circuit (u, v, u) and all nodes
are neighbors of u or all nodes are neighbors of v, then all arcs are incident to
u or all arcs are incident to v.

Proof. Let assume that all nodes are neighbors of u (case of v is symmetrical).
Let separate the nodes of G− (u, v) into six sets:

7



• Xuv successor nodes of u
and predecessors of v.

• Xvu successor nodes of v
and predecessors of u.

• Γ−
uv predecessor nodes of u and v.

• Γ−
u predecessor nodes of u

but not adjacent to v.

• Γ+
u successor nodes of u

but not adjacent to v.

• Γ+
uv successor nodes of u and v.

Since there is no 2-length circuit in G except (u, v, u), there are no other
categories. Note that all the nodes in these 6 categories are of degree 1 (if they
are adjacent only to u) or 2 (if they are adjacent to u and v).

Let now consider the digraph F where

• for x ∈ Xuv, we replace the arc (x, v) by (x, u)

• for x ∈ Xvu, we replace the arc (v, x) by (u, x)

• for x ∈ Γ−
uv, we replace the arc (x, v) by arc (y, u) where y is a new node.

• for x ∈ Γ+
uv, we replace the arc (v, x) by arc (u, z) where z is a new node.

Let Γ = Γ−
uv ∪ Γ+

uv ∪ Γ−
u ∪ Γ+

u . So we have

Φ(G) = d−u · d+u + d−v · d+v +
∑

x∈Xuv

d−x · d+x +
∑

x∈Xvu

d−x · d+x +
∑
x∈Γ

d−x · d+x

Φ(G) = d−u · d+u + d−v · d+v +
∑

x∈Xuv

1 +
∑

x∈Xvu

1 + 0

In F , v is now adjacent only to u with the 2-length circuit. All other arcs
incident to v are now incident to u.

Φ(F ) = (d−u + d−v − 1) · (d+u + d+v − 1) + 1 · 1 +
∑

x∈Xuv

1 +
∑

x∈Xvu

1

Φ(F ) = Φ(G) + d−u · d+v + d−v · d+u − d−v − d+v − d−u − d+u + 2

Φ(F ) = Φ(G) + (d−u · d+v + 1− d−u − d+v ) + (d−v · d+u + 1− d−v − d+u )

So F is optimal and since Φ(G) = Φ(F ) then
(d−u · d+v + 1− d−u − d+v ) + (d−v · d+u + 1− d−v − d+u ) = 0

Note that for any pair of positive non-zero integers, we have xy + 1 ≥ x+ y.
Equality exists only if x = 1 or y = 1. We deduce from this inequality that

d−u = 1 or d+v = 1 and that d−v = 1 or d+u = 1. If d−v = d+v = 1 then the lemma
is proved. If d−u = d+u = 1 then u has only v as a neighbor, the digraph

contains only these two nodes and the lemma is proved. If d−u = d−v = 1 then
among the neighbors of u subsist the sets Γ+

uv and Γ+
u . If Γ

+
uv = ∅ then the

lemma is proved. So let consider a node x ∈ Γ+
uv and G” the digraph where

the arc (v, x) is replaced by (x, u). Let Σ =
∑

y∈V \{x,u,v} d
+
y d

−
y .

Φ(G) = d−u · d+u + d−v · d+v + d−x · d+x +Σ = 1 · d+u + 1 · d+v + 2 · 0 + Σ

Φ(G”) = (d−u + 1) · d+u + d−v · (d+v − 1) + (d−x − 1) · (d+x + 1) + Σ

Φ(G”) = Φ(G) + d+u − d−v + (d−x − 1) · (d+x + 1) = Φ(G) + d+u − 1 + 1

8



This contradicts the optimality of G. The case d+u = 1 and d+v = 1 is
symmetrical. The lemma has been proved.

Lemma 9. If G is optimal with m ≥ 7 and a 2-length circuit (u, v, u) then
every arc is incident to u or every arc is incident to v.

Proof. By Lemma 6, every arc is incident to u or v. If any node is neighbor of
u or any node is neighbor of v then according to Lemma 7 and 8, the lemma is
proved. Else consider X = {x1, x2, . . . , xp} the set of neighbors of u which are
not neighbors of v and Y = {y1, y2, . . . , yq} the set of v which are not neighbors
of u. Suppose q ≤ p. Let construct the digraph F where the arcs (yi, v)
(respectively (v, yi)) are replaced by (xi, v) (respectively (v, xi)). By optimality
of G, for all i ≤ q, xi and yi are sources or xi and yi are sinks. Otherwise,
d−F,xi

· d+F,xi
= 1 and so Φ(F ) > Φ(G). Without loss of generality, let assume

that x1 and y1 are sources. So there are the arcs (x1, u) and (x1, v) in F . Since
G is optimal, so is F . Note that in F every node is neighbor of u or every node
is neighbor of v so by Lemma 7 and 8, every arc of F is incident to u or every arc
of F is incident to v. This contradicts the existence of (x1, u) and (x1, v).

Theorem 3. If G is optimal and m ≥ 7 then G is isomorphic to Om or OT
m.

Proof. By Lemma 5, there are two symmetric arcs (u, v) and (v, u) in G. By
Lemma 9, every arc is incident to u or every arc is incident to v. Let assume
without loss of generality that they are incident to u. So G is a star where every
node is adjacent to u and is connected to u by one arc or two symmetrical arcs.
Note that if there is a source and a sink in G connected to u then we can merge
these nodes to increase Φ(G). So there are only sources or only sinks in G. If
there are no source and no sink in G, then we are in the case of the first digraph
in Figure 4. If there are only sources in G, we can deduce that d+u ≤ d−u . If
there is only one source in G, then we are in the case of the last digraph in
Figure 4. And if there are two sources x and y in G, then by replacing (y, u) by
(u, x), we obtain a digraph F such that

Φ(F ) = Φ(G)− d+u + d−u + 1

Since d+u ≤ d−u , we have a contradiction with the optimality of G. Similarly, if
there are only sinks inG, we are in the case of the second digraph in Figure 4.

4 Conclusion

In this paper, we have shown that the maximum number of arcs in a line digraph

with n nodes is
(
n
2

)2
+ n

2 arcs if n is even, and
(
n−1
2

)2
+ n− 1 arcs otherwise.

We have also shown that , for n ≥ 7, the only line digraphs with so many arcs
are those shown in Figure 3.
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5 Annexe

Here we present the initialization of the proof of Theorem 2, for line digraphs
of order ≤ 6. We show this using the root digraph and we want to maximize
Φ(G) =

∑
v∈V d+v · d−v . All digraphs are assumed to be connected. We call u a

best node, if ∀v ∈ V, d+v · d−v ≤ d+u · d−u .

Lemma 10. If all arcs of a digraph G are incident to the best node b, with x
incoming arcs and y outgoing arcs, then Φ(G) ≤ x ∗ y+min(x, y), with equality
if there are max(x, y) + 1 nodes in G.

Proof. Let assume that x ≥ y, the other case is symmetrical. There are at least
x neighbors at b. If there are x + 1 nodes in G then there is an outgoing arc
from all the neighbors of b, and there is an incoming arc to y of them. Thus
Φ(G) = x ∗ y +min(x, y). If there are x + 1 + k nodes in G (0 ≤ k ≤ y), then
there is an incoming arc to k nodes with d+ = 0, an outgoing arc from x−y+k
neighbors of b with d− = 0, and there is a 2-length circuit with y − k of them.
Thus Φ(G) = x ∗ y + y − k ≤ x ∗ y + y.

We will treat each digraph according to its number of arcs and the value of
the best node.
If there are two arcs in G. ∀v ∈ V, d+v ·d−v ≤ 1. If there are two nodes {u, v}
in G, then there must be the arcs (u, v) and (v, u), thus Φ(G) = 2 (figure 5). If
there are three nodes in G, then Φ(G) ≤ 1.

Figure 5: root digraph with four arcs and their line digraph
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if there are three arcs in G. ∀v ∈ V, d+v · d−v ≤ 2.
If a best node u is such that d+u · d−u = 2, then d+u = 2 and d−u = 1 (resp

d+u = 1 and d−u = 2). In this case by Lemma 10, Φ(G) = 3 if there are three
nodes in G (figure 6, resp figure 7) and Φ(G) < 3 if there are more nodes.

If a best node u is such that d+u · d−u = 1, and Φ(G) ≥ 3, then there are at
least three nodes with d+ · d− = 1 in G, this only happens with the 3-circuit
(figure 8). In this case, it requires more than three arcs to have Φ(G) > 3.

Figure 6

Figure 7
Figure 8

root digraph with four arcs and their line digraph

if there are four arcs in G. ∀v ∈ V, d+v · d−v ≤ 4.
If a best node u is such that d+u · d−u = 4, then d+u = 2 and d−u = 2. In

this case by Lemma 10, Φ(G) = 6 if there are three nodes in G (figure 9) and
Φ(G) < 6 if there are more nodes.

If a best node u is such that d+u · d−u = 3, then d+u = 3 and d−u = 1 (resp
d+u = 1 and d−u = 3). In this case by Lemma 10, Φ(G) ≤ 4 < 6

If a best node u is such that d+u · d−u = 2, then d+u = 2 and d−u = 1 (resp
d+u = 1 and d−u = 2). Let assume that Φ(G) ≥ 6. If there is only one best node
in G, then there are at least four nodes with d+ · d− = 1, then

∑
v∈V d+v > 4,

impossible. If there are two best nodes in G, then there are at least two nodes
with d+ · d− = 1, then

∑
v∈V (d

+
v + d−v ) > 2 ∗ 4, impossible. If there are at least

three best nodes in G, then
∑

v∈V (d
+
v + d−v ) > 2 ∗ 4, impossible.

If a best node u is such that d+u · d−u = 1 and Φ(G) ≥ 6, then there are at
least six nodes with d+ · d− = 1 in G, then

∑
v∈V d+v > 4, impossible.

Figure 9: root digraph with four arcs and their line digraph

if there are five arcs in G. ∀v ∈ V, d+v · d−v ≤ 6.
If a best node u is such that d+u · d−u = 6, then d+u = 3 and d−u = 2 (resp

d+u = 2 and d−u = 3). In this case by Lemma 10, Φ(G) = 8 if there are four
nodes in G (figure 10a, resp figure 10b) and Φ(G) < 8 if there are more nodes.

If a best node u is such that d+u · d−u = 4, then d+u = 4 and d−u = 1 (resp
d+u = 1 and d−u = 4) or d+u = 2 and d−u = 2. If d+u = 4 (resp d−u = 4), then by
Lemma 10, Φ(G) ≤ 5 < 8. If d+u = 2 and d−u = 2, then there is only one best
node in G, otherwise it would have at least six arcs since two nodes can only
share two arcs. For the same reason, there is not a node v such that d+v ·d−v = 3
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in G. If there is a node v such that d+v · d−v = 2 in G, then it must share two
arcs with u. Then there are two arcs between u and v, an incoming arc on u,
an outgoing arc from u, and an incident arc on v. If there are three nodes in
G, then Φ(G) = 4 + 2 + 2 = 8 (figure 10c). If there are four nodes in G, then
Φ(G) ≤ 4 + 2 + 1 + 0 < 8. If there are five nodes in G, then Φ(G) = 6 < 8. If
there is no node such that d+ · d− = 2 in G and Φ(G) ≥ 8, then there are at
least four nodes with d+ · d− = 1, and

∑
v∈V d+v > 5, impossible.

If a best node u is such that d+u · d−u = 3, then d+u = 3 and d−u = 1 (resp
d+u = 1 and d−u = 3) and there is only one best node in G, otherwise it would
have at least six arcs since two nodes can only share two arcs. Let assume
Φ(G) ≥ 8. If there is one node such that d+ · d− = 2 in G, then there are at
least three nodes with d+ · d− = 1, and

∑
v∈V (d

+
v + d−v ) > 2 ∗ 5. If there are

two nodes such that d+ · d− = 2 in G, then there is at least one node with
d+ · d− = 1, and

∑
v∈V (d

+
v + d−v ) > 2 ∗ 5. If there are at least three nodes

such that d+ · d− = 2 in G, then
∑

v∈V (d
+
v + d−v ) > 2 ∗ 5. If there is no node

such that d+ · d− = 2 in G and Φ(G) ≥ 8, then there is at least five nodes with
d+ · d− = 1, and

∑
v∈V d+v > 5, impossible.

If a best node u is such that d+u ·d−u = 2, then d+u = 2 and d−u = 1 (resp d+u = 1
and d−u = 2). Let assume that Φ(G) ≥ 8. If there are at most two best nodes in
G, then there are at least four nodes with d+·d− = 1, and

∑
v∈V (d

+
v +d−v ) > 2∗5,

impossible. If there are three best nodes in G, then there are at least two nodes
with d+ · d− = 1, and

∑
v∈V (d

+
v + d−v ) > 2 ∗ 5, impossible. If there are at least

four best nodes in G, then
∑

v∈V (d
+
v + d−v ) > 2 ∗ 5, impossible.

If a best node u is such that d+u · d−u = 1 and Φ(G) ≥ 8, then there are at
least eight nodes with d+ · d− = 1 in G, and

∑
v∈V d+v > 5, impossible.

(a) (b)

(c)

Figure 10: root digraph with five arcs and their line digraph

if there are six arcs in G. ∀v ∈ V, d+v · d−v ≤ 9.
If a best node u is such that d+u · d−u = 9, then d+u = 3 and d−u = 3. In this

case by Lemma 10, Φ(G) = 12 if there are four nodes in G (figure 11a) and
Φ(G) < 12 if there are more nodes.

If a best node u is such that d+u · d−u = 8, then d+u = 4 and d−u = 2 (resp
d+u = 2 and d−u = 4). In this case by Lemma 10, Φ(G) ≤ 10 < 12.

If a best node u is such that d+u · d−u = 6, then d+u = 3 and d−u = 2 (resp
d+u = 2 and d−u = 3) and there is no other node such that d+ · d− ≥ 3 in G,
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otherwise it would have at least seven arcs since two nodes can only share two
arcs. Let assume Φ(G) ≥ 12. If there is one node such that d+ · d− = 2 in G,
then there are at least four nodes with d+ ·d− = 1, and

∑
v∈V (d

+
v +d−v ) > 2∗6.

If there are two nodes such that d+ · d− = 2 in G, then there are at least two
nodes with d+ · d− = 1, and

∑
v∈V (d

+
v + d−v ) > 2 ∗ 6. If there are at least three

nodes such that d+ · d− = 2, then
∑

v∈V (d
+
v + d−v ) > 2 ∗ 6. If there is no node

such that d+ · d− = 2 in G and Φ(G) ≥ 12, then there are at least six nodes
with d+ · d− = 1, and

∑
v∈V d+v > 6, impossible.

If a best node u is such that d+u · d−u = 5, then d+u = 5 and d−u = 1 (resp
d+u = 1 and d−u = 5). In this case by Lemma 10, Φ(G) ≤ 10 < 12.

If a best node u is such that d+u · d−u = 4, then d+u = 4 and d−u = 1 (resp
d+u = 1 and d−u = 4) or d+u = 2 and d−u = 2. If d+u = 4 (resp d−u = 4), then there
is no other node such that d+ · d− ≥ 2 in G, otherwise it would have at least
seven arcs since two nodes can only share two arcs. If Φ(G) ≥ 12, then there
are at least eight nodes with d+ · d− = 1 in G, and

∑
v∈V d+v > 6, impossible.

If d+u = 2 and d−u = 2, then there are at most three nodes such that d+ · d− ≥ 3
in G, otherwise it would have at least seven arcs since two nodes can only share
two arcs. If there are three best nodes in G, then Φ(G) = 12 (figure 11a).
Else, if there is a node v such that d+v · d−v = 3 in G, then it must share two
arcs with u. So there are two arcs between u and v, an incoming arc on u,
an outgoing arc from u, and two arcs with the same orientation on v. If there
are four nodes in G, then Φ(G) ≤ 4 + 3 + 2 + 0 < 12. If there are five nodes
in G, then Φ(G) ≤ 4 + 3 + 1 + 0 + 0 < 12. If there are six nodes in G, then
Φ(G) ≤ 4 + 3 + 0 + 0 + 0 < 12. If there are exactly two best nodes in G, then
they must share two arcs and there must be at least four nodes in G. If there
are four nodes in G, then Φ(G) = 4 + 4 + 1 + 1 < 12. If there are five nodes
in G, then Φ(G) = 4 + 4 + 1 + 0 + 0 < 12. If there are six nodes in G, then
Φ(G) = 4+4+0+0+0+0 < 12. If there is only one best node in G, let assume
Φ(G) ≥ 12. If there are one or two nodes such that d+ ·d− = 2 in G, then there
are at least four nodes with d+ · d− = 1, and

∑
v∈V (d

+
v + d−v ) > 2 ∗ 6. If there

are at least three nodes such that d+ ·d− = 2 in G, then
∑

v∈V (d
+
v +d−v ) > 2∗6.

If there is no node such that d+ · d− = 2 in G and Φ(G) ≥ 12, then there are at
least eight nodes with d+ · d− = 1, and

∑
v∈V d+v > 6, impossible.

If a best node u is such that d+u · d−u = 3, then d+u = 3 and d−u = 1 (resp
d+u = 1 and d−u = 3) and there are at most three nodes such that d+ · d− = 3 in
G, otherwise it would have at least seven arcs since two nodes can only share
two arcs. Let assume Φ(G) = 12, if there are at least two best nodes {u, v} in
G, then they must share two arcs. So there are two arcs between u and v. If
d+u = d+v , then there are four, five or six nodes in G and Φ(G) = 3+3+0 < 12.
If d+u ̸= d+v , then there are four nodes in G, Φ(G) < 3+ 3+ 1+ 1 < 12. If there
are five nodes in G, then Φ(G) = 3+3+1+0+0 < 12. If there are six nodes in
G, then Φ(G) = 3+3+0+0+0+0 < 12. Let assume that there is only one best
node in G. If there are one or two nodes such that d+ · d− = 2 in G, then there
are at least five nodes with d+ ·d− = 1, and

∑
v∈V (d

+
v +d−v ) > 2∗6. If there are

at least three nodes such that d+ · d− = 2 in G, then
∑

v∈V (d
+
v + d−v ) > 2 ∗ 6.

If there is no node such that d+ · d− = 2 in G and Φ(G) ≥ 12, then there are at
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least nine nodes with d+ · d− = 1, and
∑

v∈V d+v > 6, impossible.
If a best node u is such that d+u · d−u = 2, then d+u = 2 and d−u = 1 (resp

d+u = 1 and d−u = 2). Let assume that Φ(G) ≥ 12. If there are at most three best
nodes in G, then there are at least six nodes with d+ ·d− = 1, and

∑
v∈V d+v > 6,

impossible. If there are four best nodes in G, then there are at least four nodes
with d+ · d− = 1, and

∑
v∈V d+v > 6, impossible. If there are at least five best

nodes in G, then
∑

v∈V (d
+
v + d−v ) > 2 ∗ 6, impossible.

If a best node u is such that d+u · d−u = 1 and Φ(G) ≥ 12, then there are at
least twelve nodes with d+ · d− = 1 in G, then

∑
v∈V d+v > 6, impossible.

(a) (b)

Figure 11: root digraph with six arcs and their line digraph
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