
HAL Id: hal-04587467
https://hal.science/hal-04587467

Preprint submitted on 28 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Diffeomorphic interpolation for efficient
persistence-based topological optimization

Mathieu Carriere, Marc Theveneau, Théo Lacombe

To cite this version:
Mathieu Carriere, Marc Theveneau, Théo Lacombe. Diffeomorphic interpolation for efficient
persistence-based topological optimization. 2024. �hal-04587467�

https://hal.science/hal-04587467
https://hal.archives-ouvertes.fr

Diffeomorphic interpolation for efficient
persistence-based topological optimization

Mathieu Carrière
DataShape

Centre Inria d’Université Côte d’Azur
Sophia Antipolis, France

mathieu.carriere@inria.fr

Marc Theveneau∗

Shape Analysis Group
Computer Science department, McGill

Montréal, Quebec, Canada
marc.theveneau@mila.quebec

Théo Lacombe
Laboratoire d’Informatique Gaspard Monge,
Univ. Gustave Eiffel, CNRS, LIGM, F-77454

Marne-la-Vallée, France
theo.lacombe@univ-eiffel.fr

Abstract

Topological Data Analysis (TDA) provides a pipeline to extract quantitative topo-
logical descriptors from structured objects. This enables the definition of topo-
logical loss functions, which assert to what extent a given object exhibits some
topological properties. These losses can then be used to perform topological op-
timization via gradient descent routines. While theoretically sounded, topological
optimization faces an important challenge: gradients tend to be extremely sparse,
in the sense that the loss function typically depends on only very few coordinates
of the input object, yielding dramatically slow optimization schemes in practice.
Focusing on the central case of topological optimization for point clouds, we pro-
pose in this work to overcome this limitation using diffeomorphic interpolation,
turning sparse gradients into smooth vector fields defined on the whole space,
with quantifiable Lipschitz constants. In particular, we show that our approach
combines efficiently with subsampling techniques routinely used in TDA, as the
diffeomorphism derived from the gradient computed on a subsample can be used
to update the coordinates of the full input object, allowing us to perform topo-
logical optimization on point clouds at an unprecedented scale. Finally, we also
showcase the relevance of our approach for black-box autoencoder (AE) regular-
ization, where we aim at enforcing topological priors on the latent spaces associ-
ated to fixed, pre-trained, black-box AE models, and where we show that learning
a diffeomorphic flow can be done once and then re-applied to new data in linear
time (while vanilla topological optimization has to be re-run from scratch). More-
over, reverting the flow allows us to generate data by sampling the topologically-
optimized latent space directly, yielding better interpretability of the model.

1 Introduction

Persistent homology (PH) is a central tool of Topological Data Analysis (TDA) that enables the
extraction of quantitative topological information (such as, e.g., the number and sizes of loops, con-
nected components, branches, cavities, etc) about structured objects (such as graphs, times series or

∗Part of this work was done when MT was intern in the Laboratoire d’Informatique Gaspard Monge and
student in Université Paris-Saclay.

Preprint. Under review.

point clouds sampled from, e.g., submanifolds), summarized in compact descriptors called persis-
tence diagrams (PDs). PDs were initially used as features in Machine Learning (ML) pipelines; due
to their strong invariance and stability properties, they have been proved to be powerful descriptors
in the context of classification of time series [39, 19], graphs [5, 23, 24], images [2, 25, 16], shape
registration [7, 6, 34], or analysis of neural networks [22, 3, 26], to name a few.

Another active line or research at the crossroad of TDA and ML is (persistence-based) topological
optimization, where one wants to modify an object X so that it satisfies some topological constraints
as reflected in its persistence diagram Dgm(X). The first occurrence of this idea appears in [21],
where one wants to deform a point cloud X ∈ Rn×d so that Dgm(X) becomes as close as possible
(w.r.t. an appropriate metric denoted by W) to some target diagram Dtarget, hence yielding to the
problem of minimizing X 7→ W (Dgm(X), Dtarget). This idea has then been revisited with different
flavors, for instance by adding topology-based terms in standard losses in order to regularize ML
models [14, 31, 29], improving ML model reconstructions by explicitly accounting for topological
features [16], or improving correspondences between 3D shapes by forcing matched regions to have
similar topology [34]. Formally, this goes through the minimization of an objective function

L : X 7→ ℓ(Dgm(X)) ∈ R, (1)

where ℓ is a user-chosen loss function that quantifies to what extent Dgm(X) reflects some pre-
scribed topological properties inferred from X . Under mild assumptions (see Section 2), the map
L is differentiable generically and its gradients are obtained as a byproduct of the computation of
Dgm(X). However, these approaches are limited in practice by two major issues: (i) the com-
putation of X 7→ Dgm(X) scales poorly with the size of X (e.g., number of points n in a point
cloud, number of nodes in a graph, etc), and (ii) the gradient ∇L(X) tends to be very sparse: if
X = (x1, . . . , xn) ∈ Rn×d is a point cloud, ∇L(X)i ̸= 0 for only very few indices i ∈ {1, . . . , n}
(the corresponding points are called the critical points of the topological gradient, see Section 2.1).

Related works. Several articles have studied topological optimization in the TDA literature. The
standard, or vanilla, framework to define and study gradients obtained from topological losses was
described in [4, 28], where the high sparsity and long computation times were first identified. To
mitigate this issue, the authors of [32] introduces the notion of critical set that extends the usually
sparse set of critical points in order to get a gradient-like object that would affect more points in X .
In [36], the authors use an average of the vanilla topological gradients of several subsamples to get
a denser and faster gradient. On the theoretical side, the authors of [27] demonstrated that adapting
the stratified structure induced by PDs to the gradient definition enables faster convergence.

Limitations. Despite proposing interesting ways to accelerate gradient descent, the approaches
mentioned above are still limited in the sense that their proposed gradients are not defined on the
whole space, but only on a sparse subset of the current observation X , which still prevents their
use in different contexts, that we investigate in our experiments (Section 4). First, when the data
has more than tens of thousands of points, the number of subsamples needed to capture relevant
topological structures (when using [36]), as well as the critical set computations (when using [32]),
both become practically infeasible. Second, when optimizing the topology of datasets obtained as
latent spaces of a black-box autoencoder model (i.e., an autoencoder with forbidden access to its
architecture, parameters, and training), then (a) the topological gradients of [36, 32] cannot be re-
used to process new such datasets, and topological optimization has to be performed from scratch
every time that new data comes in, (b) this also impedes their transferability, as re-running gradient
descent every time makes it very difficult to guarantee some stability for the final output, and finally
(c) one cannot generate new data by sampling the optimized latent spaces directly, as it would
require to apply the sequence of reverted gradients (which are not well-defined everywhere).

Contributions and Outline. In this article, we propose to replace the standard gradient ∇L(X)
of (1) derived formally by a diffeomorphism v : Rd → Rd that interpolates ∇L(X) on its non-zero
entries, that is v(xi) = ∇L(X)i for i ∈ I := {j | ∇L(X)j ̸= 0} and is, in some sense, as smooth
as possible. More precisely, our contribution is three-fold:

• We introduce a diffeomorphic interpolation of the vanilla topological gradient, which ex-
tends this gradient to a smooth and denser vector field defined on the whole space Rd, and
which is able to move a lot more points in X at each iteration,

2

t = 0 t = 1 t = 2 t = 3 t = 5 births

d
ea
th
s

t

t

0 1

2

2

3

5

Figure 1: Illustration of the Vietoris-Rips filtration on a point cloud in Rd, focusing on one-dimensional topo-
logical features (loops). When the filtration parameter t increases, loops appear and disappear in the filtration.
These values are accounted in the resulting persistence diagram (right).

• We prove that its updates indeed decrease topological losses, and we quantify its smooth-
ness by upper bounding its Lipschitz constant (in the context of topological losses),

• We showcase its practical efficiency: we show that it compares favorably to the main base-
line [32] in terms of convergence speed, that its combination with subsampling [36] allows
to process datasets whose sizes are currently out of reach in TDA, and that it can success-
fully be used for the tasks mentioned above concerning black-box autoencoder models.

Section 2 provides necessary background in Topological Data Analysis and diffeomorphic interpo-
lations. Section 3 presents our approach and its corresponding guarantees, and Section 4 showcases
our experiments. Limitations and further research directions are discussed in Section 5.

2 Background

2.1 Topological Data Analysis

In this section, we recall the basic materials of Topological Data Analysis (TDA), and refer the
interested reader to [20, 33] for a thorough overview. We restrict the presentation to our case of
interest: extracting topological information from a point cloud using the standard Vietoris-Rips (VR)
filtration. A more extensive presentation of the TDA machinery is provided in Appendix A.

Let X = (x1, . . . , xn) ∈ Rn×d. The Vietoris-Rips filtration consists of building an increasing
sequence of simplicial complexes (Kt)t over X by inserting a simplex σ = (xi1 , . . . , xip) whenever
∀j, j′ ∈ {1, . . . , p}, ∥xij−xij′∥ ≤ t. Each time a simplex σ is inserted, it either creates a topological
feature (e.g., inserting a face creates a cavity, that is a 2-dimensional topological feature) or destroy
a pre-existing feature (e.g., the face insertion fills a loop, that is a 1-dimensional feature, making
it topologically trivial). The persistent homology machinary tracks the apparition and destruction
of such features in the so-called persistence diagram (PD) of X , denoted by Dgm(X). Therefore,
Dgm(X) is a set of points in R2 of the form (tb, td) with td ≥ tb, where each such point accounts for
the presence of a topological feature inferred from X that appeared at time tb following the insertion
of an edge (xi1 , xi2) with ∥xi1 − xi2∥ = tb and disappeared at time td following the insertion of an
edge (xi3 , xi4) with ∥xi3 − xi4∥ = td. Figure 1 illustrates this construction. From a computational
standpoint, computing the VR diagram of X ∈ Rn×d that would reflect topological features of
dimension d′ ≤ d runs in O(nd′+2), making the computation quickly unpractical when n increases,
even when restricting to low-dimensional features as loops (d′ = 1) or cavities (d′ = 2).

Topological optimization. PDs are made to be used in downstream pipelines, either as static
features (e.g., for classification purposes) or as intermediate representations of X in optimization
schemes. In this work, we focus on the second problem. We formally consider the minimization of
objective functions of the form

L : X ∈ Rn×d 7→ ℓ(Dgm(X)) ∈ R. (2)

Here, ℓ represents a loss function taking value from the space of persistence diagrams, denoted by
D in the following. The space D can be equipped with a canonical metric, denoted by W and
whose formal definition is not required in this work, for which a central result is that the map
X 7→ Dgm(X) is stable (Lipschitz continuous) [17, 18, 35]. Therefore, if ℓ is Lipschitz continuous,
so is L hence it admits a gradient almost everywhere by Rademacher theorem. Building on these the-
oretical statements, one can consider the “vanilla” gradient descent update Xk+1 := Xk−λ∇L(Xk)

3

for a given learning-rate λ > 0 and iterate it in order to minimize (2). Theoretical properties of this
seminal scheme (and natural extensions, e.g., stochastic) have been studied in [4, 27], where con-
vergence (to a local minimum of L) is proved.

From a computational perspective, deriving ∇L(X) comes in two steps. Let µ := Dgm(X), written
as µ = {(bi, di) | i ∈ I} for some finite set of indices I . To each i ∈ I correspond four (possibly
coinciding) points xi1 , xi2 , xi3 , xi4 in the input point cloud X . Intuitively, minimizing µ 7→ ℓ(µ)
boils down to prescribe a descent direction (δbi, δdi) ∈ R2 to each (bi, di) for i ∈ I , where δbi =
∂ℓ
∂bi

(µ) and δdi = ∂ℓ
∂di

(µ). Backpropagating this perturbation to X will move the corresponding
points xi1 , xi2 , xi3 , xi4 in order to increase or decrease the distances ∥xi1 − xi2∥ = bi and ∥xi3 −
xi4∥ = di accordingly. This yields to the following formula:

∂L

∂x
(X) =

∑
i, x→(bi,di)

[
∂ℓ

∂bi
· ∂bi
∂x

+
∂ℓ

∂di
· ∂di
∂x

]
(X), (3)

where the notation x → (bi, di) means that x ∈ X appears in (at least) one of the four points yielding
the presence of (bi, di) in the diagram µ = Dgm(X). A fundamental contribution of [28, §3.3] is
to prove that the chain rule formula (3) is indeed valid2. Most of the time, a point x ∈ X will not
belong to any critical pair (σb, σd) and the above gradient coordinate is 0. Therefore, the gradient of
L depends on very few points of X , yielding the sparsity phenomenon discussed in Section 1.

Examples of common topological losses. Let X = (x1, . . . , xn) ∈ Rn×d be a point cloud and
Dgm(X) = {(bi, di) | i ∈ I} be its persistence diagram. There are several natural losses that have
been introduced in the TDA literature:

• Topological simplification losses: typically of the form
∑

i∈Ĩ(bi − di)
2, where Ĩ ⊂ I .

Such losses push (some of the) points in Dgm(X) toward the diagonal ∆ = {b = d},
hence destroying the corresponding topological features appearing in X .

• Topological augmentation losses [4]: similar to simplification losses, but typically attempt-
ing to push points in Dgm(X) away from ∆, i.e., minimizing −∑

i∈Ĩ(bi − di)
2, to make

topological features of X more salient. As such losses are not coercive, they are usually
coupled with regularization terms to prevent points in X going to infinity.

• Topological registration losses [21]: given a target diagram Dtarget, one minimizes
W (Dgm(X), Dtarget) where W denotes a standard metric between persistence diagrams.
This loss attempts to modify X so that it exhibits a prescribed topological structure.

2.2 Diffeomorphic interpolations

In order to overcome the sparsity of gradients appearing in TDA, we rely on diffeomorphic interpo-
lations (see, e.g., [40, Chapter 8]). Let X = (x1, . . . , xn) ∈ Rn×d, let I ⊆ {1, . . . , n} denote the set
of indices on which ∇L(X) is non-zero and let ai := (∇L(X))i ∈ Rd for i ∈ I . Our goal is to find a
smooth vector field ṽ : Rd → Rd such that, for all i ∈ I , ṽ(xi) = ai. To formalize this, we consider
a Hilbert space H ⊂ (Rd)R

d

for which the map δαx : f 7→ ⟨α, f(x)⟩Rd = αT f(x) is continuous for
any (α, x) ∈ Rd ×Rd. Such a space is called a Reproducing Kernel Hilbert Space (RKHS)3. A cru-
cial property is that there exists a matrix-valued kernel operator K : Rd×Rd → Rd×d whose outputs
are symmetric and positive definite, and related to H through the relation ⟨kαx , kβy ⟩H = αTK(x, y)β

for all x, y, α, β ∈ Rd, where kαx ∈ H is the unique vector provided by the Riesz representation
theorem such that ⟨kαx , f⟩ = ⟨α, f(x)⟩. Conversely, any such kernel K induces a (unique) RKHS
H (of which K is the reproducing kernel). Now, we can consider the following problem:

minimize ∥v∥H , s.t. v(xi) = ai, ∀i ∈ I,

that is, we are seeking for the smoothest (lowest norm) element of H that solves our interpolation
problem. The solution ṽ of this problem is the projection of 0 onto the affine set {v ∈ H | v(xi) =
ai,∀i ∈ I}. Observe that ṽ belongs to the orthogonal of {v ∈ H | v(xi) = 0,∀i ∈ I}, and thus of

2This is not trivial, because the intermediate space D is only a metric space.
3In many applications, RKHS are restricted to spaces of functions valued in R or C, but the theory adapts

faithfully to the more general setting of vector-valued maps.

4

{v ∈ H | ⟨kαi
xi
, v⟩

H
= 0, ∀i ∈ I, αi ∈ Rd}, and therefore ṽ ∈ span({kαi

xi
| i ∈ I}). This justifies to

search for ṽ in the form of ṽ(x) =
∑

i∈I K(x, xi)αi, and the interpolation that it must satisfy yields
ṽ(x) =

∑
i∈I K(x, xi)(K−1a)i, where K is the block matrix (K(xi, xj))i,j∈I and a = (ai)i∈I .

See also [40, Theorem 8.8]. In particular, it is important to note that ṽ inherits from the regularity
of K and will typically be a diffeomorphism in this work. If K is the Gaussian kernel defined by
K(x, y) := exp

(
−∥x−y∥2

2σ2

)
Id for some bandwidth σ > 0, a choice to which we stick to in the rest

of this work, the expression of ṽ reduces to

ṽ(x) =
∑
i∈I

ρσ(∥x− xi∥)αi, (4)

where ρσ(u) := e−
u2

2σ2 , and αi := (K−1a)i with K = (ρσ(∥xi − xj∥)Id)i,j∈I . Note that ṽ
can be understood as the convolution of a with a Gaussian kernel, but involving a correction K−1

guaranteeing that after the convolution, the interpolation constraint is satisfied. We will call ṽ the
diffeomorphic interpolation associated to the vectors and indices {ai | i ∈ I}.

3 Diffeomorphic interpolation of the vanilla topological gradient

3.1 Methodology

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

Point cloud
L(X) (Vanilla)

v(X) (Diffeo)

Figure 2: (blue) A point cloud
X , and (black) the negative gradi-
ent −∇L(X) of a simplification loss
which aims at destroying the loop by
collapsing the circle (reduce the loop’s
death time) and tearing it (increase the
birth time). While ∇L(X) only affects
four points in X , the diffeomorphic in-
terpolation ṽ(X) (orange, σ = 0.1) is
defined on Rd, hence extends smoothly
to other points in X .

We aim at minimizing a loss function L : X 7→ ℓ(Dgm(X)) as
in (2), starting from some initialization X0, and assuming that
L is lower bounded (typically by 0) and locally semi-convex.
This assumption is typically satisfied by the topological losses
ℓ introduced in Section 2.1. Gradient descents implemented in
practice are (explicit) discretization of the gradient flow

dX

dt
∈ −∂L(X(t)), X(0) = X0, (5)

where ∂L(X) := {v |L(Y) ≥ L(X) + v · (Y −X) + o(Y −
X) for all X,Y } denotes the subdifferential of L at X . Note
that a topological loss L is typically not differentiable every-
where, since the map X 7→ Dgm(X) is differentiable almost
everywhere but not in C1,1. However, uniqueness of the gra-
dient flow on a maximal interval [0,+∞[is guaranteed if L is
lower bounded and locally semi-convex [15, §B.1].

In this work, we propose to use the dynamic described by the
diffeomorphism ṽt introduced in (4) interpolating the current
vanilla topological gradient ∇L(Xt) at each time t, formally
considering solutions X̃ of

dX̃

dt
= −ṽt(X̃(t)), X̃(0) = X0. (6)

Here, slightly overloading notation, ṽt(X̃(t)) denotes the n×d

matrix where the i-th line is given by ṽt(X̃(t)i). The flow at time T associated to (6) is the map

φT : x0 7→ x0 −
∫ T

0

ṽt(x(t))dt, ẋ(t) = −ṽt(x(t)), x(0) = x0, (7)

which can inverted by simply following the flow backward (i.e., by following ṽt instead of −ṽt). We
now guarantee that at each time t, following ṽt instead of the vanilla topological gradient ∇L(Xt)
still provides a descent direction for the topological loss L.

Proposition 3.1. For each t ≥ 0, it holds that dL(X̃(t))
dt = −∥∇L(X̃(t))∥2 ≤ 0.

Proof. One has dL(X̃(t))
dt = −⟨∇L(X̃(t)), ṽt(X̃(t))⟩ = −∑n

i=1(∇L(X̃(t)))i · (ṽt(X̃(t)))i. Since
∇L(X̃(t))i = 0 for i ̸∈ I , and ṽt(X̃(t))i = −∇L(X̃(t))i for i ∈ I , the result follows.

5

Moreover, it is also possible to upper bound the smoothness, i.e., the Lipschitz constant, of ṽ:

Proposition 3.2. Let L be the simplification or augmentation loss computed with k = |Ĩ| PD points,
as defined at the end of Section 2.1. Let ṽ = ṽt be the diffeomorphic interpolation associated to the
vanilla topological gradient at time t ≥ 0. Then, one has, ∀x, y ∈ Rd and t ≥ 0:

∥ṽ(x)− ṽ(y)∥2 ≤ ∥ṽ(x)− ṽ(y)∥1 ≤ Cd · σd−1 · κ(K) · Persk(Dgm(X̃(t))) · ∥x− y∥2,

where Cd =
√
d · 23+ d+1

2 · π d−1
2 , κ(K) is the condition number of K, and Persk(Dgm(X̃(t))) is

the sum of the k largest distances to the diagonal in Dgm(X̃(t)).

The proof is deferred to Appendix B. This upper bound can be used to quantify how smooth the
diffeomorphic interpolation is (when computed from topological losses) as close points can still have
significantly different gradients if the Lipschitz constant is large. Overall, smoothness is affected by
the dimension d (curse of dimensionality), the bandwidth of the Gaussian kernel σ (as kernels with
large σ can affect more points), the condition number κ(K) (ill-conditioned kernel matrices are
more sensitive), and the distances to the diagonal in the current PD (larger topological features lead
to larger vanilla topological gradients for simplification or augmentation losses).

3.2 Subsampling techniques to scale topological optimization

As a consequence of the limited scaling of the Vietoris-Rips filtration with respect to the number of
points n of the input point cloud X , it often happens in practical applications that computing the
VR diagram Dgm(X) of a large point set X (a fortiori its gradient) turns out to be intractable. A
natural workaround is to randomly sample s-points from X , with s ≪ n, yielding a smaller point
cloud X ′ ⊂ X . Provided that the Hausdorff distance between X ′ and X is small, the stability
theorem [18, 17, 8] ensures that Dgm(X ′) is close to Dgm(X). See [11, 12, 9] for an overview of
subsampling methods in TDA.

However, the sparsity of vanilla topological gradients computed from topological losses strikes fur-
ther when relying on subsampling: only a tiny fraction of the seminal point cloud X is likely to be
updated at each gradient step. In contrast, using the diffeomorphic interpolation ṽ (of the vanilla
topological gradient) computed on the subsample X ′ still provides a vector field defined on the
whole input space Rd, in particular on each point of X and the update can then be performed in
linear time with respect to n. This yields Algorithm 1. Figure 3 illustrates the qualitative benefits
offered by the joint use of subsampling and diffeomorphic interpolations when compared to vanilla
topological gradients. A larger-scale experiment is provided in Section 4.

Algorithm 1 Diffeomorphic gradient descent for topological loss functions with subsampling

Input: Initial X0 ∈ Rn×d, loss function ℓ, learning rate λ > 0, subsampling size s ∈ {1, . . . , n},
max. epoch T ≥ 1, stopping criterion.
Set L : X 7→ ℓ(Dgm(X)) (+ possibly a regularization term in X).
for k = 1, . . . , T do

Subsample X ′
k−1 = {x′

1, . . . , x
′
s} uniformly from Xk−1.

Compute ∇L(X ′
k−1) (vanilla topological gradient)

Compute the diffeomorphic interpolation ṽ(X ′
k−1) from ∇L(X ′

k−1) using (4).
Set Xt := Xk−1 − λṽ(Xk−1).
if stopping criterion is reached then

Return Xk

end if
end for
Return XT

Stopping criterion. A natural stopping criterion for Algorithm 1 is to assess whether the loss
L(Xt) = ℓ(Dgm(Xt)) is smaller than some ε > 0. However, computing Dgm(Xt) can be in-
tractable if Xt is large. Therefore, a tractable loss to consider is L̂(Xt) := E[ℓ(Dgm(X ′

t))], where
X ′

t is a uniform s-sample from Xt. Under that perspective, Algorithm 1 can be re-interpreted
as a kind of stochastic gradient descent on L̂, for which two standard stopping criteria can be

6

(a) t = 0 (b) t = 100 (Vanilla) (c) t = 500 (Vanilla) (d) t = 100 (Diffeo)

Figure 3: Showcase of the usefulness of subsampling combined with diffeomorphic interpolations to minimize
a topological simplification loss, with parameters λ = 0.1, s = 50, n = 500. (a) Initial point cloud X (blue),
subsample X ′ (red), vanilla topological gradient on the subsample (black) and corresponding diffeomorphic
interpolation (orange). (b) and (c), the point cloud Xt after running t = 100 and t = 500 steps of vanilla
gradient descent. (d) the point cloud Xt after running t = 100 steps of diffeomorphic gradient descent.

used: (a) compute an exponential moving average of the loss on individual samples X ′
t over

iterations, or (b) compute a validation loss, i.e., sample X ′
t,(1), . . . , X

′
t,(K) and estimate L̂ by

K−1
∑K

k=1 ℓ(Dgm(X ′
t,(k))). Empirically, we observe that the latter approach with K = n/s (more

repetitions for smaller sample sizes to mitigate variance) yields the most satisfactory results (faster
convergence toward a better objective Xt) overall, and thus stick to this choice in our experiments.

4 Numerical experiments

We provide numerical evidence for the strength of our diffeomorphic interpolations. PH-
related computations relies on the library Gudhi [37] and automatic differentiation relies on
tensorflow [1]. The “big-step gradient” baseline [32] implementation is based on oineus4. The
first two experiments were run on a 11th Gen Intel(R) Core(TM) i5-1135G7 @ 2.40GHz,
the last one on a 2x Xeon SP Gold 5115 @ 2.40GHz.

Convergence speed and running times. We sample uniformly N = 200 points on a unit circle
in R2 with some additional Gaussian noise, and then minimize the simplification loss L : X 7→∑

(b,d)∈Dgm(X) |d|2, which attempts to destroy the underlying topology in X by reducing the death
times of the loops by collapsing the points. The respective gradient descents are iterated over a
maximum of 250 epochs, possibly interrupted before if a loss of 0 is reached (Dgm(X) is empty),
with a same learning rate λ = 0.1. The bandwidth of the Gaussian kernel in (4) is set to σ = 0.1. We
include the competitor oineus [32], as—even though relying on a fairly different construction—this
method shares a key idea with ours: extending the vanilla gradient to move more points in X . We
stress that both approaches can be used in complementarity: compute first the “big-step gradient”
of [32] using oineus, and then extend it by diffeomorphic interpolation. Results are displayed in
Figure 4. In terms of loss decrease over iterations, both “big-step gradients" and our diffeomorphic
interpolations significantly outperform vanilla topological gradients, and their combined use yields
the fastest convergence (by a slight margin over our diffeomorphic interpolations alone). However,
in terms of raw running times, the use of oineus involves a significant computational overhead,
making our approach the fastest to reach convergence by a significant margin.

Subsampling. We now showcase how using our diffeomorphic interpolation jointly with subsam-
pling routines (Algorithm 1) allows to perform topological optimization on point clouds with thou-
sands of points, a new scale in the field. For this, we consider the vertices of the Stanford Bunny
[38], yielding a point cloud X0 ∈ Rn×d with n = 35, 947 and d = 3. We consider a topolog-
ical augmentation loss (see Section 2.1) for two-dimensional topological features, i.e., we aim at
increasing the persistence of the bunny’s cavity. The size of n makes the computation of Dgm(X0)
untractable (recall that it scales in O(n4)); we thus rely on subsampling with sample size s = 100
and compare the vanilla gradient descent scheme and our scheme described in Algorithm 1. Results
are displayed in Figure 5. Because it only updates a tiny fraction of the initial point cloud at each

4https://github.com/anigmetov/oineus

7

https://github.com/anigmetov/oineus

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

Init.

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0
Vanilla output

1.0 0.5 0.0 0.5 1.0

2

1

0

1

Diffeo output

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

Oineus output

0.5 0.0 0.5 1.0

6

4

2

0

2

4

6
Oineus+Diffeo output

Figure 4: (Top) From left to right: initial point cloud, and final point cloud for the different flows. (Bottom)
Evolution of the loss with respect to the number of iterations and with respect to running time.

0 200 400 600 800 1000

Epoch

0.008

0.007

0.006

0.005

0.004

0.003

0.002

0.001

0.000

Lo
ss

Evolution of loss over iterations

Vanilla
Diffeo

Figure 5: From left to right: initial Stanford bunny X0, the point cloud after 1, 000 epochs of vanilla topological
gradient descent (barely any changes), the point cloud after 200 epochs of diffeomorphic gradient descent, after
1,000 epochs, and eventually the evolution of losses for both methods over iterations.

iteration, the vanilla topological gradient with subsampling barely changes the point cloud (nor de-
creases the loss) in 1,000 epochs. In sharp contrast, as our diffeomorphic interpolation computed on
subsamples is defined on R3, it updates the whole point cloud at each iteration, making possible to
decrease the objective function where the vanilla gradient descent is completely stuck. Note that a
step of diffeomorphic interpolation, in that case, takes about 10 times longer than a vanilla step. An
additional subsampling experiment can be found in Appendix C.

Black-box autoencoder models. Finally, we apply our diffeomorphic interpolations to black-box
autoencoder models. In their simplest formulation, autoencoders (AE) can be summarized as two
maps E : Rd → Rd′

and D : Rd′ → Rd called encoder and decoder respectively. The intermediate
space Rd′

in which the encoder E is valued is referred to as a latent space (LS), with typically
d′ ≪ d. In general, without further care, there is no reason to expect that the LS of a point cloud X ,
E(X) = {E(x1), . . . , E(xn)}, reflects any geometric or topological properties of X . While this
can be mitigated by adding a topological regularization term to the loss function during the training
of the autoencoder [29, 4], this cannot work in the setting where one is given a black-box, pre-
trained AE. However, replacing (E,D) by (φ ◦E,D ◦ φ−1) for any invertible map φ : Rd′ → Rd′

yields an AE producing the same outputs yet changing the LS E(X), without explicit access to
the AE’s model. Hence, we propose to learn such a φ with diffeomorphic interpolations: given
some latent space E(X), we apply T steps of our diffeomorphic gradient descent algorithm to X 7→
ℓ(Dgm(X)) initialized at E(X). We thus get a sequence of smooth displacements −ṽ1, . . . ,−ṽT of
Rd′

that discretizes the flow (7) via φ : x0 7→ x0−
∑T

k=1 ṽk(xk−1) where xk−xk−1 = −ṽk(xk−1),
and such that Dgm(φ(E(X))) is more topologically satisfying. This fixed diffeomorphism φ can
then be re-applied to any new data coming out of the encoder in a deterministic way. Moreover, any
random sample from the topologically-optimized LS can be inverted without further computations
by following ṽT , ṽT−1, . . . , ṽ1, which allows to push the new sample back to the initial LS, and then
apply the decoder on it. Again, this cannot be achieved with baselines [36, 32].

8

Figure 7: COIL images, their corresponding initial LS in blue and final LS obtained with diffeomorphic gradient
descent in orange, the topological loss, and the same LSs colored with ground truth angles with final (left) vs.
initial (right) correlations with predicted angles displayed as titles, for both vase (left) and duck (right).

In order to illustrate these properties, we trained a variational autoencoder (VAE) to project a family
of datasets of images representing rotating objects, named COIL [30], to two-dimensional latent
spaces. Given that every dataset in this family is comprised of 288 pictures of the same object taken
with different angles, one can impose a prior on the topology of the corresponding LSs, namely that
they are sampled from circles. However, the VAE architecture is shallow (the encoder has one fully-
connected layer (100 neurons), and the decoder has two (50 and 100 neurons), all layers use ReLu
activations), and thus the learned latent spaces, although still looking like curves thanks to continuity,
do not necessarily display circular patterns. This makes generating new data more difficult, as latent
spaces are harder to interpret. To improve on this, we learn a flow φ as described above with an
augmentation loss associated to the 1-dimensional PD point which is the most far away from the
diagonal, in order to force latent spaces to have significant one-dimensional Vietoris-Rips persistent
homology. As the datasets are small, we do not use subsampling, and we use learning rate λ = 0.1,
Gaussian kernels with bandwidth σ = 0.3 and an increase of at least 3. in the topological loss (from
an iteration to the next) to stop the algorithm5.

Figure 6: As the four samples from the
topologically-optimized LS (blue) are far
from the initial LS (orange), the decoded im-
ages are fuzzy. However, reverting φ and
following the corresponding green trajecto-
ries allows to render good-looking images.

We provide some qualitative results in Figure 7 (see also
Appendix C, Figure 10). In order to quantify the im-
provement, we also computed the correlation between the
ground-truth angles θi and the angles θ̂i computed from
the topologically-optimized LS embeddings with

θ̂i := ∠(φ◦E(xi)−Ê[φ◦E(X)], φ◦E(x1)−Ê[φ◦E(X)]),

where Ê[φ ◦ E(X)] := n−1
∑n

i=1 φ ◦ E(xi), and φ de-
notes our flow or the sequence of vanilla gradients. See
the table below.

Optim. Duck Cat Pig Vase Teapot
Vanilla 0.56 0.79 0.17 0.85 0.32
Diffeo 0.6 0.83 0.74 0.93 0.39

As expected, correlation becomes better after forcing the
latent spaces to have the topology of a circle. This
better interpretability is also illustrated in Figure 6, in
which four angles are specified, which are mapped to the
topologically-optimized LS, then pushed to the initial LS of the black-box VAE by following the
reverted flow of our learned diffeomorphism φ, and finally decoded back into images.

5 Conclusion

In this article, we have presented a way to turn sparse topological gradients into dense diffeomor-
phisms with quantifiable Lipschitz constants, and showcased practical benefits of this approach in
terms of convergence speed, scaling, and applications to black-box AE models on several datasets.
Several questions are still open for future work.

In terms of theoretical results, we plan on working on the stability between the diffeomorphic inter-
polations computed on a dataset and its subsamples. This requires some control over the locations

5As we noticed that 3. was a consistent threshold for detecting whether the representative cycle of the most
persistent PD point changed between iterations.

9

of the critical points, which we expect to be possible in statistical estimation; indeed sublevel sets
of density functions are know to have stable critical points [10, Lemma 17].

Concerning the AE experiment, we plan to investigate the limitations presented in the figure below:
as the initial LSs have zero (left) or two (right) loops, it is impossible to
unfold them with diffeomorphisms; instead the optimized latent spaces
either also exhibit no topology, or mixes different angles. In future work,
we plan on investigating other losses or gradient descent schemes for
diffeomorphic topological optimization, including stratified procedures

similar to [27] that allow for local topological changes during training.

References

[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Good-
fellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz
Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore,
Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever,
Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol
Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. Software avail-
able from tensorflow.org.

[2] Henry Adams, Tegan Emerson, Michael Kirby, Rachel Neville, Chris Peterson, Patrick Ship-
man, Sofya Chepushtanova, Eric Hanson, Francis Motta, and Lori Ziegelmeier. Persistence
images: a stable vector representation of persistent homology. Journal of Machine Learning
Research, 18(8):1–35, 2017.

[3] Tolga Birdal, Aaron Lou, Leonidas Guibas, and Umut Simsekli. Intrinsic dimension, persistent
homology and generalization in neural networks. In Advances in Neural Information Process-
ing Systems 34 (NeurIPS 2021), volume 34, pages 6776–6789. Curran Associates, Inc., 2021.

[4] Mathieu Carrière, Frédéric Chazal, Marc Glisse, Yuichi Ike, Hariprasad Kannan, and Yuhei
Umeda. Optimizing persistent homology based functions. In 38th International Conference
on Machine Learning (ICML 2021), volume 139, pages 1294–1303. PMLR, 2021.

[5] Mathieu Carrière, Frédéric Chazal, Yuichi Ike, Théo Lacombe, Martin Royer, and Yuhei
Umeda. PersLay: a neural network layer for persistence diagrams and new graph topological
signatures. In 23rd International Conference on Artificial Intelligence and Statistics (AISTATS
2020), pages 2786–2796. PMLR, 2020.

[6] Mathieu Carrière, Steve Y. Oudot, and Maks Ovsjanikov. Stable topological signatures for
points on 3d shapes. Computer Graphics Forum, 34(5):1–12, 2015.

[7] Frédéric Chazal, David Cohen-Steiner, Leonidas Guibas, Facundo Mémoli, and Steve Oudot.
Gromov-Hausdorff stable signatures for shapes using persistence. Computer Graphics Forum,
28(5):1393–1403, 2009.

[8] Frédéric Chazal, Vin De Silva, and Steve Oudot. Persistence stability for geometric complexes.
Geometriae Dedicata, 173(1):193–214, 2014.

[9] Frédéric Chazal, Brittany Fasy, Fabrizio Lecci, Bertrand Michel, Alessandro Rinaldo, and
Larry Wasserman. Subsampling methods for persistent homology. In 32nd International Con-
ference on Machine Learning (ICML 2015), volume 37, pages 2143–2151. PMLR, 2015.

[10] Frédéric Chazal, Brittany Fasy, Fabrizio Lecci, Bertrand Michel, Alessandro Rinaldo, and
Larry Wasserman. Robust topological inference: distance to a measure and kernel distance.
Journal of Machine Learning Research, 18(159):1–40, 2018.

[11] Frédéric Chazal, Brittany Fasy, Fabrizio Lecci, Alessandro Rinaldo, Aarti Singh, and Larry
Wasserman. On the bootstrap for persistence diagrams and landscapes. Modelirovanie i Analiz
Informatsionnykh Sistem, 20(6):111–120, 2013.

[12] Frédéric Chazal, Brittany Fasy, Fabrizio Lecci, Alessandro Rinaldo, and Larry Wasserman.
Stochastic convergence of persistence landscapes and silhouettes. Journal of Computational
Geometry, 6(2):140–161, 2015.

10

[13] Frédéric Chazal and Steve Yann Oudot. Towards persistence-based reconstruction in euclidean
spaces. In Proceedings of the twenty-fourth annual symposium on Computational geometry,
pages 232–241. ACM, 2008.

[14] Chao Chen, Xiuyan Ni, Qinxun Bai, and Yusu Wang. A topological regularizer for classifiers
via persistent homology. In The 22nd International Conference on Artificial Intelligence and
Statistics, pages 2573–2582. PMLR, 2019.

[15] Lenaic Chizat and Francis Bach. On the global convergence of gradient descent for over-
parameterized models using optimal transport. Advances in neural information processing
systems, 31, 2018.

[16] James R Clough, Nicholas Byrne, Ilkay Oksuz, Veronika A Zimmer, Julia A Schnabel, and
Andrew P King. A topological loss function for deep-learning based image segmentation
using persistent homology. IEEE transactions on pattern analysis and machine intelligence,
44(12):8766–8778, 2020.

[17] David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. Stability of persistence diagrams.
Discrete & Computational Geometry, 37(1):103–120, 2007.

[18] David Cohen-Steiner, Herbert Edelsbrunner, John Harer, and Yuriy Mileyko. Lipschitz func-
tions have l p-stable persistence. Foundations of computational mathematics, 10(2):127–139,
2010.

[19] Meryll Dindin, Yuhei Umeda, and Frederic Chazal. Topological data analysis for arrhyth-
mia detection through modular neural networks. In Advances in Artificial Intelligence: 33rd
Canadian Conference on Artificial Intelligence, Canadian AI 2020, Ottawa, ON, Canada, May
13–15, 2020, Proceedings 33, pages 177–188. Springer, 2020.

[20] Herbert Edelsbrunner and John Harer. Computational topology: an introduction. American
Mathematical Soc., 2010.

[21] Marcio Gameiro, Yasuaki Hiraoka, and Ippei Obayashi. Continuation of point clouds via
persistence diagrams. Physica D: Nonlinear Phenomena, 334:118–132, 2016.

[22] Thomas Gebhart and Paul Schrater. Adversary detection in neural networks via persistent
homology. arXiv preprint arXiv:1711.10056, 2017.

[23] Christoph Hofer, Florian Graf, Bastian Rieck, Marc Niethammer, and Roland Kwitt. Graph fil-
tration learning. In 37th International Conference on Machine Learning (ICML 2020), volume
119, pages 4314–4323. PMLR, 2020.

[24] Max Horn, Edward de Brouwer, Michael Moor, Bastian Rieck, and Karsten Borgwardt. Topo-
logical Graph Neural Networks. In 10th International Conference on Learning Representations
(ICLR 2022). OpenReviews.net, 2022.

[25] Xiaoling Hu, Li Fuxin, Dimitris Samaras, and Chao Chen. Topology-preserving deep image
segmentation. In Advances in Neural Information Processing Systems 32 (NeurIPS 2019),
pages 5657–5668. Curran Associates, Inc., 2019.

[26] Théo Lacombe, Yuichi Ike, Mathieu Carrière, Frédéric Chazal, Marc Glisse, and Yuhei Umeda.
Topological Uncertainty: monitoring trained neural networks through persistence of activation
graphs. In 30th International Joint Conference on Artificial Intelligence (IJCAI 2021), pages
2666–2672. International Joint Conferences on Artificial Intelligence Organization, 2021.

[27] Jacob Leygonie, Mathieu Carrière, Théo Lacombe, and Steve Oudot. A gradient sampling
algorithm for stratified maps with applications to topological data analysis. Mathematical
Programming, pages 1–41, 2023.

[28] Jacob Leygonie, Steve Oudot, and Ulrike Tillmann. A framework for differential calculus on
persistence barcodes. Foundations of Computational Mathematics, pages 1–63, 2021.

[29] Michael Moor, Max Horn, Bastian Rieck, and Karsten Borgwardt. Topological autoencoders.
In 37th International Conference on Machine Learning (ICML 2020), volume 119, pages
7045–7054. PMLR, 2020.

[30] S. A. Nene, S. K. Nayar, and H. Murase. Columbia Object Image Library (COIL-100). In
Technical Report CUCS-005-96, 1996.

[31] Arnur Nigmetov, Aditi S Krishnapriyan, Nicole Sanderson, and Dmitriy Morozov. Topological
regularization via persistence-sensitive optimization. arXiv preprint arXiv:2011.05290, 2020.

11

[32] Arnur Nigmetov and Dmitriy Morozov. Topological optimization with big steps. Discrete &
Computational Geometry, pages 1–35, 2024.

[33] Steve Y Oudot. Persistence theory: from quiver representations to data analysis, volume 209.
American Mathematical Society, 2015.

[34] Adrien Poulenard, Primoz Skraba, and Maks Ovsjanikov. Topological function optimization
for continuous shape matching. In Computer Graphics Forum, volume 37, pages 13–25. Wiley
Online Library, 2018.

[35] Primoz Skraba and Katharine Turner. Wasserstein stability for persistence diagrams. arXiv
preprint arXiv:2006.16824, 2020.

[36] Yitzchak Solomon, Alexander Wagner, and Paul Bendich. A fast and robust method for global
topological functional optimization. In International Conference on Artificial Intelligence and
Statistics, pages 109–117. PMLR, 2021.

[37] The GUDHI Project. GUDHI User and Reference Manual. GUDHI Editorial Board, 3.6.0
edition, 2022.

[38] Greg Turk and Marc Levoy. Zippered polygon meshes from range images. In Proceedings of
the 21st annual conference on Computer graphics and interactive techniques, pages 311–318,
1994.

[39] Yuhei Umeda. Time series classification via topological data analysis. Information and Media
Technologies, 12:228–239, 2017.

[40] Laurent Younes. Shapes and diffeomorphisms. Springer-Verlag, 2010.

12

A A more extensive presentation of TDA

The starting point of TDA is to extract quantitative topological information from structured
objects—for example graphs, points sampled on a manifold, time series, etc. Doing so relies on
a piece of algebraic machinery called persistent homology (PH), which informally detects the pres-
ence of underlying topological properties in a multiscale way. Here, estimating topological proper-
ties should be understood as inferring the number of connected components (topology of dimension
0), the presence of loops (topology of dimension 1), of cavities (dimension 2), and so on in higher
dimensional settings.

Simplicial filtrations. Given a finite simplicial complex6 K, a filtration over K is a map t 7→
Kt ⊆ K that is non-decreasing (for the inclusion). For each σ ∈ K, one can record the value t(σ) :=
inf{t |σ ∈ Kt} at which the simplex σ is inserted in the filtration. From a topological perspective,
the insertion of σ has exactly one of two effects: either it creates a new topological feature in Kt

(e.g., the insertion of an edge can create a loop, that is, a one-dimensional topological feature) or it
destroys an existing feature of lower dimension (e.g., two independent connected components are
now connected by the insertion of an edge). Relying on a matrix reduction algorithm [20, §IV.2],
PH identifies, for each topological feature appearing in the filtration, the critical pair of simplices
(σb, σd) that created and destroyed this feature, and as a byproduct the corresponding birth and
death times t(σb), t(σd).7 The collection of intervals (t(σb), t(σd)) is a (finite) subset of the open
half-plane {(b, d) ∈ R2 | b < d}, called the persistence diagram (PD) of the filtration (Kt)t. The
distance of such a point (tb, td) to the diagonal {b = d}, namely 2−

1
2 |t(σb) − t(σd)|, is called the

persistence of the corresponding topological feature, as an indicator of “for how long” could this
feature be detected in the filtration (Kt)t.

Note that if (σb, σd) is a critical pair for our filtration (Kt)t, it holds that |σb| = |σd|+1. The quantity
|σb| − 1 is the dimension of the corresponding topological feature (e.g., loops, which are created by
the insertion of an edge and killed by the insertion of a triangle, are topological features of dimension
one). From a computational perspective, deriving the PD of a filtration (Kt)t is empirically8 quasi-
linear with respect to the number of simplices in K (which can still be extremely high in the case of
Vietoris-Rips filtration—see below—where K = 2V with |V | = n being typically quite large).

The Vietoris-Rips filtration. A particular instance of simplicial filtration that will be extensively
used in this work is the Vietoris-Rips (VR) one. Given X = (x1, . . . , xn) ∈ Rn×d a point cloud of
n points in dimension d, one consider the simplicial complex K = 2X and then the filtration (Kt)t
defined by

σ = {xi1 . . . xip} ∈ Kt ⇐⇒ ∀j, j′ ∈ {1, . . . , p}, ∥xij − xij′∥ ≤ t. (8)

The corresponding persistence diagram will be denoted, for the sake of simplicity, by Dgm(X).

Note that for t < 0, Kt = ∅, when t ≥ diam(X), Kt = K, and there is always a point with
coordinates (0,+∞) in Dgm(X) accounting for the remaining connected component when t →
∞. This is the unique point in Dgm(X) for which the second coordinate is +∞ (and is often
discarded in practice, as it does not play any significant role). Intuitively, Dgm(X) reflects the
topological properties that can be inferred from the geometry of X; this can be formalized by various
results which state, roughly, that if the xi are i.i.d. samples from a regular measure µ supported on
a submanifold M ⊂ Rd, then with high probability the topological properties of M are reflected in
Dgm(X) (see [13, 9]). From a computational perspective, note that the VR filtration only depends
on X through the pairwise distance matrix (∥xi−xj∥)1≤i,j≤n, and thus the complexity of computing
Dgm(X) depends only linearly in d9. On the other hand, since Dgm(X) scales (at least) linearly

6A simplicial complex is a combinatorial object generalizing graphs and triangulations. Given a finite set
of vertices V = {v1, . . . , vn}, a finite simplicial complex K is a subset of 2V (whose elements are called
simplices) such that σ ∈ K ⇒ τ ∈ K, ∀τ ⊆ σ (if a simplex is in the complex, its faces must be in it as well).

7It may happen that a topological feature appears at some time tb and is never destroyed, in which case
the death time is set to +∞. However, in the context of the Vietoris-Rips filtration, extensively studied in this
work, this (almost) never happens. See the next paragraph.

8The theoretical worst case yields a cubic complexity, but the matrix that has to be reduced is typically very
sparse, enabling this practical speed up.

9However, the statistical efficiency of Dgm(X) when it is used as an estimator for the topology of an
underlying manifold M deteriorate when the intrinsic dimension of M increases.

13

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Initial and final point cloud

init

final state

0.1 0.2 0.3 0.4 0.5 0.6

Birth

0.1

0.2

0.3

0.4

0.5

0.6

D
ea

th

Initial and final persistence diagrams

0 25 50 75 100 125 150 175 200

−0.4

−0.3

−0.2

−0.1

Evolution of the loss over iterations

Figure 8: Topological optimization of an initial point cloud X (in red) by minimizing X 7→∑
(b,d)∈Dgm(X) −|d|2+

∑
x∈X dist(x, [−1, 1]2). This loss favors the apparition of topological features (loops)

while the regularization term penalizes points that would go to infinity otherwise.—Experiment reproduced
following the setting of [4], using code available at https://github.com/GUDHI/TDA-tutorial/blob/
master/Tuto-GUDHI-optimization.ipynb.

with respect to the number of simplices in K, computing the whole VR diagram of a point cloud
X ∈ Rn×d can take up to O(2n) operations. Even if one restricts topological features of dimension
d′ ≤ d (e.g. d′ = 1 if one only considers loops)—as commonly done—the complexity is of order
O(nd′+2), which becomes quickly intractable if n is large, even if d′ = 1 or 2.

B Delayed proofs

Proof of Proposition 3.2. One has: ∥ṽ(x) − ṽ(y)∥1 = ∥∑i∈I(K(x, xi) −
K(y, xi))(−K−1∇L(X̃(t)))i∥1 ≤ ∑

i∈I |ρσ(∥x−xi∥)−ρσ(∥y−xi∥)| · ∥(−K−1∇L(X̃(t)))i∥1,
since we are using Gaussian kernels. As |ρσ(∥x − xi∥) − ρσ(∥y − xi∥)| ≤ Cd,σ∥x − y∥2,
with Cd,σ = 2

d+1
2 π

d−1
2 σd−1 (see [2, Theorem 8]), it follows that ∥ṽ(x) − ṽ(y)∥1 ≤

Cd,σ∥x− y∥2 · ∥K−1∥1 · ∥∇L(X̃(t))∥1.

Let us upper bound the term ∥∇L(X̃(t))∥1. Let us start with the simplification loss, one has ∂ℓ
∂bi

=

2(bi − di) and, writing bi = ∥xi1 − xi2∥2 (for some critical points xi1 , xi2 ∈ X̃(t)), one has
∂bi
∂xi1

=
xi1−xi2

∥xi1
−xi2

∥2
and ∂bi

∂xi2
= − xi1−xi2

∥xi1
−xi2

∥2
. Similarly, one has ∂ℓ

∂di
= −2(bi − di), and writing

di = ∥xi3 − xi4∥2 provides the corresponding partial derivatives.

Applying (3), this gives:

∥∇L(X̃(t))∥1 =
∑

x∈X̃(t)

∥
∑

x
b,1→(bi,di)

2(bi − di)
x− xi2

∥x− xi2∥2
−

∑
x
b,2→(bi,di)

2(bi − di)
xi1 − x

∥xi1 − x∥2

−
∑

x
d,1→(bi,di)

2(bi − di)
x− xi4

∥x− xi4∥2
+

∑
x
d,2→(bi,di)

2(bi − di)
xi3 − x

∥xi3 − x∥2
∥1,

where
b,1→ (resp.

b,2→) means that x appears as left point (resp. right point) in the computation of
the birth filtration value bi of one of the k PD points (bi, di) ∈ Dgm(X̃(t)) associated to the
loss, and similarly for death filtration values. A brutal majoration finally gives ∥∇L(X̃(t))∥1 ≤
2
√
d
∑

x∈X̃(t)

∑
x→(bi,di)

|bi − di| ≤ 8
√
d · Persk(Dgm(X̃(t))), as there are at most four points

associated to every (bi, di) ∈ Dgm(X̃(t)). One can easily see that the same bound applies to the
augmentation loss.

Let us finally bound ∥K−1∥1, one has ∥K−1∥1 = κ(K)/∥K∥1 ≤ κ(K). Indeed, as we are using
Gaussian kernels, ∥K∥1 = max1≤i≤n

∑n
j=1 ρσ(∥xi − xj∥2) ≥ 1.

C Complementary experimental results and details

Subsampling and improving over [4]. We reproduce the experiment of [4, §5], see also Figure 8,
but starting from an initial point cloud X0 of size n = 2000 instead of n = 300. This makes the

14

https://github.com/GUDHI/TDA-tutorial/blob/master/Tuto-GUDHI-optimization.ipynb
https://github.com/GUDHI/TDA-tutorial/blob/master/Tuto-GUDHI-optimization.ipynb

1.0 0.5 0.0 0.5 1.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Init

1.0 0.5 0.0 0.5 1.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Vanilla, epoch 750

1.0 0.5 0.0 0.5 1.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Diffeo, epoch 750

0 200 400 600
Epoch

0.3

0.2

0.1

0.0

0.1

0.2

Lo
ss

Evolution of loss
Vanilla
Diffeo

Figure 9: Topological optimization with subsampling. From left to right, the initial point cloud X0, the point
cloud after 750 steps of vanilla gradient descent (+subsampling), the point cloud after 750 steps of diffeomor-
phic interpolation gradient descent (+subsampling), loss evolution over epochs. Parameters: λ = 0.1, σ = 0.1.

Figure 10: Topologically-optimized LSs for duck, cat, pig, vase and teapot.

raw computation of Dgm(Xk) at each gradient step unpractical. Following Section 3.2 we rely on
subsampling with sample size s = 100 and apply Algorithm 1. Results are summarized in Figure 9.
While relying on vanilla gradients and subsampling barely changes the point cloud even after 750
epochs, the diffeomorphic interpolation gradient with subsampling manages to decrease the loss.

More extensive reports of running time and comments. On the hardware used in our experi-
ments (The first two experiments were run on a 11th Gen Intel(R) Core(TM) i5-1135G7 @
2.40GHz, the last one on a 2x Xeon SP Gold 5115 @ 2.40GHz.), we report the approximate fol-
lowing running times:

• Small point cloud optimization without subsampling (see Figure 4, n = 200 points): one
gradient descent iteration takes about 1s for vanilla and Diffeo (our). The use of oineus
integrated in our pipeline raises the running time (per iteration) to 10 to 20 seconds. Note

15

that Diffeo and oineus may converge in less steps than Vanilla, preserving a competitive
advantage. We also believe that oineus has a significant room for improvement in terms
of running times and may be a promising method in the future to be used jointly with our
diffeomorphic interpolation approach.

• Iterating over the stanford bunny with subsampling (n = 35, 947, s = 100) takes about 3
seconds per iteration for Vanilla and 20 second for our diffeomorphic interpolation method.
The increase in running time with respect to the previous experiment mostly lies on instan-
tiating and applying the n × d (d = 3) vector field ṽ (requires to compute ρi(x − xi) for
each new x (n of them) and sampled xi (|I| of them, which is typically very small), hence
a ∼ O(n) complexity).

• Training the VAE for the COIL dataset is the most computationally expensive part of this
work: it takes about 3 hours per shape (20 of them). In contrast, performing the topological
optimization take few dozen of minutes (less than one hour) for each shape. Applying it
is done in few seconds at most. Recall that our method is designed to handle pre-trained
models (which may be way more sophisticated than the one we used!); and its running time
does not depend on the complexity of the model.

16

	Introduction
	Background
	Topological Data Analysis
	Diffeomorphic interpolations

	Diffeomorphic interpolation of the vanilla topological gradient
	Methodology
	Subsampling techniques to scale topological optimization

	Numerical experiments
	Conclusion
	A more extensive presentation of TDA
	Delayed proofs
	Complementary experimental results and details

