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Abstract

Many algorithms have been suggested for the shape-from-shading problem, and
some years have passed since the publication of the survey paper by Zhang et al. [1].
In this new survey paper, we try to update their presentation including some recent
methods which seem to be particularly representative of three classes of methods:
methods based on partial differential equations, methods using optimization, and
methods approximating the image irradiance equation. One of the goals of this
paper is to set the comparison of these methods on a firm basis. To this end,
we provide a brief description of each method, highlighting its basic assumptions
and mathematical properties. Moreover, we propose some numerical benchmarks
in order to compare the methods in terms of their efficiency and accuracy in the
reconstruction of surfaces corresponding to synthetic, as well as to real images.
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1 Introduction

A great number of papers on the shape-from-shading (SFS) problem have ap-
peared since the publication of the classical study by Horn and Brooks [2].
This is probably due to the fact that, despite the simplicity of its formulation,
the SFS problem deserves analysis and new approaches, since a global method
for its resolution under realistic assumptions is still lacking. Many technical
questions (e.g., the uniqueness of solutions without continuity assumptions)
remain open. Moreover, new mathematical tools and numerical techniques
have appeared in the last decade, so it seems to us appropriate to update the
scenario. Some of the new methods involve non-smooth solutions and several
types of boundary conditions, guarantee convergence to an approximate solu-
tion under rather broad assumptions, are reasonably fast and in some cases
can be extended to deal with dark shadows (i.e., black spots) in the image.

In this paper, following Zhang et al. [1], we review a number of methods for
the SFS problem which seem to be the most representative in three classes:
methods of resolution of partial differential equations, methods using mini-
mization, and methods approximating the image irradiance equation. We sur-
vey the methods, taking into account the mathematical formulation behind
the problem, the tools that are used to compute the solution, their features
and the assumptions needed by each of them. After this analysis, we select
three methods (one per class) which can be applied to the orthographic SFS
problem.

Another goal of this paper is to set up a collection of significant tests which
can be used to compare the methods, giving users more precise information
about their accuracy in terms of several quantitative indicators. To this end
we have chosen a set of different types of images which includes smooth and
non-smooth, as well as synthetic and real images. It should be noted that four
of those images have already been proposed in [1]. We have also tried to define
a rigorous methodology to compare the algorithms.

All this information will be useful to the reader who has to choose between
different SFS methods. Moreover, a companion web site of this paper is avail-
able (www.irit.fr/sfs), that was constructed by the authors. It contains an
SFS bibliography with more than 1100 BibTex entries, a web interface allow-
ing the tests presented in this paper to be performed on-line, and a portable
platform with all the codes used for the tests. We hope that this effort will be
appreciated by the community and that many other authors will contribute
to the construction of that web site, increasing little by little the number of
benchmarks and providing their codes.

To the best of our knowledge, this is one of the first attempts to compare the
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algorithms in such a precise way, apart from the survey paper by Zhang et al.

[1], where the comparisons are mainly of a qualitative nature. It should also
be mentioned that in other papers, a description of some existing methods can
be found, e.g. [3–7].

The paper is organized as follows. In Section 2, we present a brief outline of
our model problem, the orthographic SFS problem. Section 3 is devoted to
a short description of the main classes of methods and of what we think are
the most representative algorithms in every class. In Section 4, three methods
(one per class) are selected for the tests. In Section 5, we describe our method-
ology to compare these methods, and give the mathematical definitions of the
errors, as well as some hints at reconstructing the physical quantities of the
model (normals and greylevels), starting from the shapes computed by ev-
ery algorithm. Section 6 contains the tests including error tables, figures and
comments. Finally, in Section 7 we summarize the results of our analysis.

2 Problem Formulation

2.1 Shape-from-Shading Equations

We start by giving a brief outline of the SFS problem and introducing the basic
assumptions. We attach to the camera a three-dimensional coordinate system
(Oxyz), such that Oxy coincides with the image plane and Oz coincides with
the optical axis. Under the assumption of orthographic projection, the visible
part of the scene is, up to a scale factor, a graph z = u(x), where x = (x, y)
is an image point. As is well known [2], the SFS problem can be modeled by
the “image irradiance equation”:

R(n(x)) = I(x), (1)

where I(x) is the greylevel measured in the image at point x (in fact, I(x) is
the irradiance at point x, but both quantities are proportional) and R(n(x)) is
the reflectance function, giving the value of the light re-emitted by the surface
as a function of its orientation i.e., of the unit normal n(x) to the surface at
point (x, u(x)). This normal can easily be expressed as:

n(x) =
1

√

1 + p(x)2 + q(x)2
(−p(x),−q(x), 1), (2)

where p = ∂u/∂x and q = ∂u/∂y, so that ∇u(x) = (p(x), q(x)). Irradiance
function I is the datum in the model since it is measured at each pixel of the
image, for example in terms of a greylevel (from 0 to 255). To construct a
continuous model, we will assume that I takes real values in the interval [0, 1].
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Height function u, which is the unknown of the problem, has to be recon-
structed on a compact domain Ω ⊂ R

2, called the “reconstruction domain”.
Assume that there is a unique light source at infinity whose direction is in-
dicated by the unit vector ω = (ω1, ω2, ω3) ∈ R

3. Also assume for simplicity
that ω is given (in some works, ω as well is considered as unknown, see e.g.

[8,9], even if this new problem is sometimes ill-posed [10]). Recalling that, for
a Lambertian surface of uniform albedo equal to 1, R(n(x)) = ω ·n(x), Eq. (1)
can be written, using (2):

I(x)
√

1 + |∇u(x)|2 + (ω1, ω2) · ∇u(x)− ω3 = 0 for x ∈ Ω, (3)

which is a first order non-linear partial differential equation (PDE) of the
Hamilton-Jacobi type. Points x ∈ Ω such that I(x) is maximal correspond to
the particular situation where ω and n(x) point in the same direction: these
points are usually called “singular points”.

Let us mention that Eq. (3) is not the most general equation of SFS [11]: since
real materials are not purely Lambertian, some publications are concerned
with non-Lambertian SFS problems [12–14]; moreover, the situation is more
complex in the presence of other lighting models [15,16] or when the inter-
reflections are taken into account [17,18]. We will also consider the equation
which appears in most of the papers and corresponds to frontal light source
at infinity i.e., ω = (0, 0, 1). Then (3) becomes the “eikonal equation”:

|∇u(x)| = f(x) for x ∈ Ω, (4)

where:

f(x) =

√

1

I(x)2
− 1. (5)

In the last few years, new models have appeared. The main goal of those
models is to modify the classical assumptions, in order to deal with real-life
applications. In fact, although the classical SFS problem has attracted many
researchers for years, its impact on applications has been rather limited. The
major modification that has been considered is to replace the usual assump-
tion that the projection of scene points during a photographic process is or-
thographic, with the more realistic assumption of perspective projection. Very
few papers had considered perspective projection [19–23], and none of them
had established the equation of this more realistic model. The new model
problem is called “perspective shape-from-shading” (PSFS). Recently, three
papers have established almost simultaneously the PSFS equation [24–26],
which is still a non-linear PDE. Moreover, in [22,27], the light source is no
longer assumed to be located at infinity, but at the center of projection.
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2.2 Additional Equations

Equations (3) or (4) are sometimes complemented with boundary conditions
on ∂Ω or with additional information to select a unique solution. One can set
up a boundary value problem which imposes either a value to the solution u
(Dirichlet type boundary condition), or a value on the normal derivative (Neu-
mann type boundary condition), or a so-called “state constraint” boundary
condition where one imposes an equation to be satisfied on the boundary. For
an image containing an “occluding boundary”, it is usual to use it as bound-
ary ∂Ω of the reconstruction domain Ω. For example, in Fig. 1, if the part of
the image representing the object in greylevels (“silhouette”) is Ω, then ∂Ω
coincides with the occluding boundary.

∂Ω

Ω

Fig. 1. Object with occluding boundary, which might be used as boundary ∂Ω.

A current choice is to consider Dirichlet type boundary conditions in order to
take into account (at least) two different possibilities. The first corresponds to
the assumption that the surface is standing on a flat background i.e., we set:

u(x) = 0 for x ∈ ∂Ω. (6)

The second possibility occurs when the height of the surface on the occluding
boundary is known. This situation leads to the more general condition:

u(x) = g(x) for x ∈ ∂Ω. (7)

The solution of Eq. (3) or of the Dirichlet problems (3)-(6) or (3)-(7) will give
the surface corresponding to greylevel I(x) measured in Ω. Let us now review
the methods of resolution of these problems.

3 Review of Shape-from-Shading Methods

A large number of SFS methods which use a great variety of mathematical
tools are available. We classify the methods into three classes: methods of
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resolution of PDEs, methods using optimization, and methods approximating
the image irradiance equation (a very similar classification is proposed in [1]).

3.1 Methods of Resolution of PDEs

Equations (3) and (4) have attracted much attention in the research commu-
nity in PDEs for their wide range of applications. In the framework of the SFS
problem, several methods of resolution have been tested: characteristic strips
expansion, approximation of viscosity solutions, etc.

3.1.1 Characteristic Strips Expansion

The first mention of 3D reconstruction using photometric cues is due to the
Dutch astronomer Van Diggelen [28]. The first resolution was suggested by
Rindfleisch [29], who demonstrated that if the photometric behaviour of a
surface follows certain properties, then the shape can be expressed as an inte-
gral along a set of convergent straight lines. He implemented this computation
on images of the Moon, claiming that its surface verifies the necessary photo-
metric properties reasonably well. Later, Horn suggested calling this problem
“shape-from-shading”, and showed that the resolution proposed by Rindfleisch
in a particular case could be generalized, while still using the characteristic
strips expansion [30], under the following two conditions: (i) the function u has
to be of class C2; (ii) the 5-uplet (x, y, u, p, q) has to be known at every point
of a curve called the “initial curve”, which means in fact that two boundary
conditions are needed simultaneously, one on u (Dirichlet boundary condition)
and the other on (p, q) (Neumann boundary condition). The “characteristic
lines” (which are the lines along which the integration has to be performed)
can be of any form in the image plane, and this differs from the case studied
by Rindfleisch.

Besides the inherent defect of error accumulation, which is typical of every
method of resolution using integration, the determination of these character-
istic lines is a new problem in itself, since they also are defined through inte-
gration. Therefore, the accuracy of boundary conditions is much more crucial
than for other methods. It follows that a certain number of obstacles must
be overcome, e.g. the crossing of characteristic lines, which should normally
occur only at singular points, or the presence of holes in Ω, which must be
filled using secondary lines [30].

Finally, this method has been essentially used for the theoretical study of the
number of solutions of class C2 of the eikonal equation: a number of uniqueness
results have been provided (see [31–34] and the references therein).
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3.1.2 Approximation of Viscosity Solutions

Starting from the paper by Rouy and Tourin [35], the most recent approach
to the resolution of SFS uses the notion of “viscosity solutions” to first order
PDEs, see e.g. [36]. To give an idea, these are almost-everywhere solutions (a.e.
solutions) which can be obtained as the limit in a family of solutions for reg-
ularized second order problems (the so-called “vanishing viscosity” method).
These solutions are typically Lipschitz continuous solutions (but discontinu-
ous viscosity solutions have also been considered in the literature, cf. [36]).
The development of the theory of viscosity solutions for Hamilton-Jacobi type
equations provides a good framework for the analysis of the SFS problem.

Moreover, several algorithms have been proposed to compute viscosity solu-
tions. Finite difference numerical methods have been used in [35,37] for the
resolution of (4) and generalized to the resolution of (3) in [38]. Similar results
have been obtained by Oliensis and Dupuis [39] with an algorithm based on
the Markov Chain approximation. Unfortunately, the Dirichlet problem (3)-
(7) can have several “weak solutions” in the viscosity sense and also several
classical solutions (due to the so-called “concave/convex ambiguity”, see [30]).
As an example, all the surfaces represented in Fig. 2 are viscosity solutions of
the same equations (4)-(6), which is a particular case of (3)-(7). The solution
represented in Fig. 2-a is the maximal solution and is smooth. All the non-
smooth a.e. solutions which can be obtained by a reflection with respect to a
horizontal axis, are still admissible weak solutions (cf. Fig. 2-b). In this ex-
ample, the lack of uniqueness of the viscosity solutions is due to the existence
of a singular point, where the right hand side of (4) vanishes. An additional
effort is then needed to define which the preferable solution since the lack of
uniqueness is also a big drawback when trying to compute a numerical solu-
tion. In order to circumvent these difficulties, the problem is usually solved by
adding some information such as the height at each singular point [37].

(a) (b)

Fig. 2. Illustration of the concave/convex ambiguity: (a) maximal solution and (b)
a.e. solutions giving the same image.

More recently, an attempt has been made to eliminate the need for a priori

additional information. In recent results in the theory of viscosity solutions, the
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“maximal solution” without additional information apart from the equation
was characterized, as was the construction of an algorithm which converges to
that solution. A result by Ishii and Ramaswamy [40] applied to SFS guarantees
that if function I is continuous and the number of singular points is finite, then
a unique maximal solution (in the viscosity sense) of (3)-(7) exists. It should
be noted that their result on the characterization of the maximal solution does
not apply to the general situation when the set of singular points has a positive
measure (this is the case, for example, of a flat roof). More general uniqueness
results for maximal solutions of (4)-(7) or (3)-(7) have been recently obtained
by Camilli et al. [41,42]. Several papers have followed this approach providing
different algorithms to compute the maximal solution, which has been shown
to be unique, see e.g. [43–45] and the references therein.

Since the PSFS equation is a first order non-linear PDE as well, some of the
methods have been adapted to the perspective model. Tankus et al. apply
[46,47] a modification of the fast marching finite difference method for the
eikonal equation, originally proposed by Kimmel and Sethian [48], and show
that PSFS can be used successfully on medical images for reconstruction of
organs. Prados et al. propose [27,49] two algorithms and show convergence.
They prove an existence and uniqueness result for the PSFS equation coupled
to state constraint boundary condition, in the case where the light source is
located at the center of projection. Moreover, they use a control theoretical
interpretation of the equation to build their approximation schemes (as in
[41]), showing convergence under some restrictive assumptions. An interest-
ing application to reconstruction of faces validates their approach (for this
application, see also [50]).

We conclude this section by mentioning a few other extensions in the frame-
work of viscosity solutions. All the theoretical results mentioned above use
the regularity of the greylevel function I, which is supposed to be (at least)
continuous. Naturally, real images do not fit that assumption, even in the case
of Lambertian objects. The continuity assumption for I has been removed in
papers by Kain and Ostrov [51] and by Prados and Faugeras [52]. Both these
papers also contain a scheme and some numerical examples. Finally, the pa-
per by Falcone et al. [53] deals with the case of an oblique light source with
black shadows in the image and gives a convergent scheme in the framework
of viscosity solutions.

3.1.3 Other PDE Methods

Another approach which produces a global solution to SFS consists in the
search for equal-height contours, originally proposed by Bruckstein [54] and
later re-introduced by Kimmel and Bruckstein [55,56]. The method consists of
two major steps: the computation of weighted distance functions from all the
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singular points, using a level set method, and the merging of these surfaces.
The algorithm can compute a global solution (which is an a.e. solution) of
eikonal equation (4) in the reconstruction domain, only combining the local
solutions obtained during the first step. Interestingly, this method has been
extended to the case of near light source [22].

Finally, the idea of solving the eikonal equation using a power series expansion
at a singular point, in the case of a greylevel function of class C∞, has been
introduced by Bruss [57] and has been extended to the analytical greylevel
functions by Durou and Piau, which could exhibit a “non-visible deformation”
i.e., a continuous family of analytical shapes giving the same image [58]. This
is an important theoretical result but, nevertheless, no algorithm has been
derived from this method of resolution.

3.1.4 Boundary Conditions

The use of PDE methods for the resolution of the SFS problem leads nec-
essarily to the definition of some sort of boundary conditions. This is one of
the differences with respect to the methods using optimization, since for those
methods boundary conditions can be imposed but are not compulsory. A de-
tailed analysis of the well-posedness of the boundary value problem for non-
linear PDEs in the framework of weak solutions (in the viscosity sense) can be
found in Barles’ book [36] and in the references therein. It is important to note
that the addition of boundary conditions does not solve the concave/convex
ambiguity and that in practical applications boundary conditions are seldom
known.

The choice between the different types of boundary conditions is a question of
appropriateness and simplicity, or depends on the additional information avail-
able on the object (if any). The Dirichlet boundary condition is typically used
when the object is standing on a flat background and the surfaces meets the
background at ∂Ω, or if the height on ∂Ω is known (or assumed, for example by
symmetry). Neumann boundary conditions correspond to ∂u/∂ν(x) = m(x),
where ν(·) represents the outward normal to domain Ω. A typical use of it is
when we know (or we presume) that the level curves of the surface are orthogo-
nal to the boundary ∂Ω or to a subset of it where we simply choose m(x) = 0.
The Neumann boundary condition gives more freedom in the computation
since it only imposes the value of a derivative and does not fix the height of
the surface at the boundary. Naturally, also this condition modifies the sur-
face. State constraint boundary conditions differ from the previous ones since
they do not impose a value either for the height or for its normal derivative.
In this respect, it has been interpreted as a “no boundary condition” choice
[59], although this interpretation is rather superficial. In fact, a real function
u bounded and uniformly continuous is said to be a “state constraint viscosity
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solution” if and only if it is a subsolution (in the viscosity sense) in Ω and
a supersolution in Ω (i.e., up to the boundary). It can also be stated as a
Dirichlet boundary condition, simply setting g(x) = gc on ∂Ω, where gc is a
constant, provided:

gc > max
x∈Ω
{u(x)} . (8)

Note that in our problem, this is a mild assumption since we can easily fix an
upper bound for the height of the object. The effect of the state constraint
boundary condition is to produce solutions that grow inwards from the bound-
ary ∂Ω. This choice can be appropriate in some situations and wrong in other
situations, in any case also this boundary condition affects the computation.

3.2 Methods Using Optimization

The second class of algorithms which have been suggested are optimization
methods based on the variational approach. Note that these algorithms can
work in the most general case of Eq. (1), contrary to the PDE methods. In
this class of methods, three basic ingredients must be chosen: the unknowns,
the functional which has to be optimized (in fact, minimized), and the mini-
mization method. Surprisingly, a certain number of papers falling within the
domain of optimization do not clearly show the implications of these choices,
so that the choice of a functional is sometimes only guided by considerations
on convergence. Even in [60], which is a major reference in the field, the discus-
sion of several functionals is based on the possibility of finding an algorithm
that converges towards a minimum. Indeed, it is possible a priori to freely
combine any functional and any minimization algorithm.

3.2.1 Unknowns

The first difficulty encountered in the SFS problem is the choice of the un-
knowns. The natural unknown i.e., height u, is rarely used [61]: problems
of convergence [60] or of slowness [62] are mentioned. Many papers deal-
ing with optimization use p = ∂u/∂x and q = ∂u/∂y as unknowns (see
e.g. [63,60,64,62]), because u appears in the image irradiance equation only
through its first derivatives; however, if u is supposed to be of class C2, p and
q are two non-independent functions, since:

∂p

∂y
=

∂q

∂x
. (9)

Other unknowns have been used: the three unknowns (u, p, q) have been dealt
with simultaneously [3,65]; the stereographic coordinates of the normal [66,67]
present the great interest of being bounded on the occluding boundaries, con-
trary to (p, q); the normal itself is sometimes used [68,69]. Finally, several
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model-based approaches have been proposed, such as quadratic models [70],
triangular elements [71], deformable models [72] or B-splines [73].

When dealing with other unknowns than u itself, an additional problem is then
to compute u. For instance, using (p, q) as unknowns, the following equations
must be solved:















∂u

∂x
= p,

∂u

∂y
= q,

(10)

which give (9) by elimination of u. Nevertheless, since Eqs. (10) are linear in
u, the problem of integration is much easier to solve than the SFS problem.

3.2.2 Functionals

The only quantity which has to be minimized, whatever the unknowns, is the
“brightness error”. Using u as unknown, defining function r so that R(n(x)) =
r(p(x), q(x)), and using least square error, this term can be expressed as:

F1(u) =
∫

x∈Ω
[r(∂u/∂x(x), ∂u/∂y(x))− I(x)]2 dx. (11)

Using (p, q), a strictly equivalent functional to F1(u) is:

F2 (p, q, µ) =
∫

x∈Ω
[r(p(x), q(x))− I(x)]2 dx +

∫

x∈Ω
µ(x)

[

∂p(x)

∂y
− ∂q(x)

∂x

]

dx,

(12)
where µ is a Lagrange multiplier i.e., a new unknown [60]. This last func-
tional is often approximated by another one (for numerical reasons) where
the constraint term becomes a least square penalty term, often called the
“integrability term” [60]:

F3 (p, q) =
∫

x∈Ω
[r(p(x), q(x))− I(x)]2 dx + λi

∫

x∈Ω

[

∂p(x)

∂y
− ∂q(x)

∂x

]2

dx.

(13)
Several discrete implementations of this functional have been proposed [63,60].
A problem is that it is parametric, contrary to F1(u) and F2 (p, q, µ), depend-
ing on parameter λi which is called the “integrability factor”. Another way
of translating functional (12), without introducing any parameter, consists in
imposing the hard constraint (9) in an iterative process: this leads to the well-
known method by Frankot and Chellappa [64], where integrability is forced
at each step. Symmetrically, it has recently been proposed in [69] to impose
Eq. (1) at each step of an iterative optimization method. Another least square
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penalty term which has been much used is the “smoothness term” [61]:

F4 (p, q) =
∫

x∈Ω
[r(p(x), q(x))− I(x)]2 dx + λs

∫

x∈Ω

[

|∇p(x)|2 + |∇q(x)|2
]

dx,

(14)
where λs is a second parameter given the name of “smoothing factor”. Inciden-
tally, one critical point of the optimization approach is that, given a noise-less
image with assumptions satisfied, the true surface will minimize functionals
F1(u) and F2(p, q, µ), but the same may not be said of the “improvement”
that results in functional F4(p, q). This can be avoided by progressively de-
creasing λs as long as the brightness error decreases [3,61]. Of course, some
authors have used the functional combining both least square penalty terms
[65,62]:

F5 (p, q) =
∫

x∈Ω
[r(p(x), q(x))− I(x)] 2dx + λi

∫

x∈Ω

[

∂p(x)

∂y
− ∂q(x)

∂x

]2

dx

+λs

∫

x∈Ω

[

|∇p(x)|2 + |∇q(x)|2
]

dx.

(15)
Finally, some other least square penalty terms have been used, as for example
the “image intensity gradient constraint” [74] and, beside the classical least
square estimator, robust estimators have also been used [75].

3.2.3 Methods of Minimization

When a given functional is chosen, two main strategies to find its minimum
exist, as recalled in [65]: either the Euler equations associated with the func-
tional are solved, or the functional is directly minimized. The first strategy
has been used much more often than the second one (see e.g. [63,66,60,64,3]),
since it is easier to implement and generally faster, but its main drawback
is possible divergence [76], because convergence is hard to prove for a Jacobi
iteration. Nevertheless, on the one hand, such a method is proved to be conver-
gent in [67] and, on the other hand, linearizing the reflectance function renders
the associated Euler equations linear [71], thus avoiding possible problems of
divergence. Conjugate gradient descent has been used as a method of direct
minimization in [65,61], providing results of rather good quality, but conver-
gence is not guaranteed, contrary to the classical gradient descent method
combined with line search [62].

The approximate solutions computed are typically local minima of the func-
tional. To obtain a global minimum, a global optimization algorithm has to
be used, typically a stochastic algorithm like simulated annealing [77,73] or
genetic algorithms [78]. Naturally, the price to pay is a longer CPU time for
the computation. This problem of a long computing time has been partially
solved either using multiresolution [65,72,77] or dealing with a parametric
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model with few parameters [73]. Finally, Courteille et al. [26] have extended
some minimization algorithms to PSFS, showing some applications to docu-
ments digitization.

3.3 Methods Approximating the Image Irradiance Equation

There exists a third class of SFS methods, whose name designates their com-
mon feature, recognizing that all of them make an approximation of the image
irradiance equation. In [1], they are classified into two sub-classes: local meth-
ods and linear methods.

3.3.1 Local Methods

Local methods make the computation of the normal at each point in the
image, independently of the same computation for the other points, but they
need a strong assumption on the observed surface, which is generally difficult
to justify. Without that assumption, these methods would be unfeasible. The
usual assumption which is made on the surface is that it is locally spherical [79–
81], except in [82], where it is assumed to be locally cylindrical, but the latter
paper is concerned with radarclinometry, which is quite different from SFS.
The consequence of making this very strong assumption is that the obtained
normals are usually very far from being integrable, so that the computed
shapes are often very bad, except if the observed shape exactly satisfies the
local assumption i.e., if the shape is a part of a sphere or of a cylinder.

3.3.2 Linear Methods

Linear methods make either a global or a local linear approximation of the
reflectance function. Global linear approximation means that the same ap-
proximation is used for all points in the image [83–86], as is also the case
for an already cited optimization method [71] (this proves how difficult a
strict classification of the SFS methods is). Obviously, a global approximation
of the reflectance function cannot reasonably be used, unless the normal is
quasi-invariant on the whole surface, even if Pentland proved in [83] that, the
greater the angle between the observer’s direction and the lighting direction,
the better this approximation. Consequently, it appears that this approach is a
little limited, even if the implementations which follow from it are convincing,
using either finite differences [84–86] or Fourier transform [83].

Local linear approximation of the reflectance function is used in [87], a method
of resolution that will be discussed in detail in Section 4.2.3. Now, let us select
one method per class for the tests.
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4 Selection of Three Shape-from-Shading Methods for the Tests

After the survey, in which a number of methods have been classified and com-
mented, we have now to select a few methods, in order to test their perfor-
mances. We first discuss the opportuneness of making such a selection. After
that, we detail the three selected methods in a common formalism and give
the subtleties that make them work.

4.1 Selection of Shape-from-Shading Methods

4.1.1 Discussion

Selecting several SFS methods belonging to the same class, in order to nu-
merically compare them, is much easier than selecting methods belonging to
different classes, as in [1] or in the present work, because the mathematical
tools that are behind them are very different, and they do not always require
the same data. Whereas a survey has to be as exhaustive as possible, a selec-
tion must be significant. Thus, one method at least per class must be selected
i.e., three methods at least. Ideally, the best method of each class should be
selected, but such a ranking strongly depends on which benchmarks are used.
Thus, rather than selecting the methods according to their performances, we
aim at selecting methods which can be compared i.e., methods that require
the same data. For example, the method described in [88] requires the height
at each singular point, contrary to many other methods: would it make sense
to conclude that this method works better than another one?

4.1.2 Selection of One Shape-from-Shading Method per Class

First Class. A big problem with the characteristics method proposed by Horn
[30] is the uneven sampling of the image due to the characteristic strips going
their own way. The method by Falcone and Sagona [43] is chosen since it is an
approximation method which provably converges to the “maximal solution”
(in the viscosity sense) and does not require any additional knowledge on the
surface, as for example the height at singular points. Kimmel and Bruckstein’s
method [56] had been originally selected as a second representative of the first
class, but the merging process is allowed to continue after the first solution
is computed, which means that it is quite difficult to define a stopping rule.
Moreover, since the merging process is separated (offline) and uses a dynamic
list of local solutions, this makes it quite difficult to compare this algorithm
with others in terms of CPU time. This shows, if necessary, that implementing
a method, just using the description given in a paper, is not technically evident.
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Second Class. Most of the methods using optimization require knowledge of
the normal in ∂Ω, which is of no use for the selected methods of both other
classes, but Daniel and Durou’s method does not require this knowledge, be-
cause it uses functional F5(p, q) with two penalty terms. This renders the
minimization problem well-posed in the absence of boundary condition on
(p, q) [89], even if in [32], the use of a smoothing term is considered as su-
perfluous to avoid infinite ambiguity. This is a first argument to select that
method as representative of the second class. Moreover, even if the methods
proposed in [65], which use the same functional F5(p, q), are of good quality,
mostly in terms of CPU time, they are not provably convergent, contrary to
Daniel and Durou’s method.

Third Class. Amongst the methods approximating the image irradiance equa-
tion, the only method that can be applied to a variety of situations is that
of Tsai and Shah [87], since that method uses local linearization. In [1], it is
one of the six methods which are compared. Even if it numerically obtains
the worst overall rank (total error of 59.3, to be compared to 41.3 for the best
method, which shows that the scores are very close), it is qualitatively the best
method on synthetic images, while the greatest part of the scores is obtained
on real images, for which all the reconstructions are of very bad quality. This
method, which is also iterative, sometimes diverges, but that can be avoided
by stopping the iteration after a fixed number of steps, as recommended by
the authors.

4.1.3 Comparison with the Survey by Zhang et al.

It can be argued that two of the three methods that we select were devised by
us, and that the source code of the third selected method is freely available 1 .
Moreover, it can be argued that in the survey by Zhang et al., twice as many
methods are tested than in ours i.e., six methods. Although this survey was
extremely useful to us, the selection of the methods which are numerically
tested is open to criticism. First, only one of the six methods was devised by the
authors, even if they claim the following: “We manually selected parameters
for each algorithm in order to obtain the best results”. Second, it is obvious
that the third class (methods approximating the image irradiance equation) is
much over-represented, with four methods out of six (Lee and Kuo’s [71], Lee
and Rosenfeld’s [80], Pentland’s [90], Tsai and Shah’s [87]), even if Lee and
Kuo’s method can also be considered as a minimization method (the other
minimization method is that of Zheng and Chellappa [74]). Finally, Bichsel
and Pentland’s method [88], which is the only PDE method, requires the

1 The source codes of the survey by Zhang et al. are available by anony-
mous ftp under the pub/tech paper/survey directory, at eustis.cs.ucf.edu

(132.170.108.42).
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height at each singular point.

4.2 Description of the Three Selected Methods

Now we describe the fully discrete schemes of the three selected methods,
discretizing the image with a regular square mesh of size δ. A node of this mesh,
or pixel, is designated by (i, j): it corresponds to the point xi,j of coordinates
(i δ, j δ) in system (Oxy). The set of pixels (i, j) such that xi,j ∈ Ω is designated
by D and its number of elements by N = card(D). We define also the three
following subsets of D: a pixel (i, j) of D is in D if (i + 1, j) and (i, j + 1) are
in D; it is in Din if its four nearest neighbours (i + 1, j), (i, j + 1), (i − 1, j)
and (i, j − 1) are in D; it is in Dbd if it is outside Din.

4.2.1 Falcone and Sagona’s Method

First we introduce the semi-Lagrangian approximation for (4), (6) or (4), (7).
Note that this method works on the more general case (3), (7) (see [53]). Here
and in the sequel we will assume for simplicity that u ≥ 0 in Ω. This is not
restrictive, since Eq. (4) depends only on ∇u and we can always add to u the
minimum value of u(x) on Ω to satisfy that requirement. In order to obtain
an approximation scheme in the form of a fixed point problem, it is useful
to introduce a change in the unknown v(x) = 1 − exp (−u(x)). Note that
by definition 0 ≤ v ≤ 1. The SFS problems (4), (6) or (4), (7) for the new
unknown v are:















v(x) + max
a∈B2(0,1)

{

− a

f(x)
· ∇v(x)− 1

}

= 0 for x ∈ Ω,

v(x) = 0 or v(x) = 1− exp (−g(x)) for x ∈ ∂Ω,

(16)

where f is given by (5) and B2(0, 1) is the R
2 unit ball. It is known that (16)

has a unique continuous viscosity solution provided f is bounded and never
vanishes in Ω [91]. We look for a solution v in the space of piecewise affine
functions which are linear on the cells (P 1 finite element approximation):















v(xi,j) = min
a∈B2(0,1)

{ exp(−h) v (xi,j(a))}+ 1− exp(−h) for (i, j) ∈ Din,

v(xi,j) = 0 or v(xi,j) = 1− exp (−g(xi,j)) for (i, j) ∈ Dbd,

(17)
where h is a small parameter, xi,j(a) = xi,j +ha/f(xi,j) and v (xi,j(a)) is com-
puted by linear interpolation on the pixels of the grid. If V denotes the array
containing the N values v(xi,j), for (i, j) ∈ D, then (17) can be reformulated
as V = H(V), H : R

N → R
N . In [92,93] it has been proved that the numerical
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solution to (17) exists and is unique by a fixed point argument on the iteration
Vk+1 = H(Vk). Moreover, an a priori estimate for the convergence holds true
provided function f is Lipschitz continuous (we refer the interested reader to
[93] and [45] for a precise result). We note in passing that 0 ≤ V ≤ 1 implies
0 ≤ H(V) ≤ 1 and that V1 ≤ V2 implies H(V1) ≤ H(V2). This mono-
tonicity property implies that, starting from a subsolution (V0 ≤ H(V0)), the
sequence will monotically converge to the fixed point. This property is crucial
in speeding up convergence and it also helps to compute the maximal solution
(see [43]). Other acceleration techniques for the eikonal equation can be found
in [94,95] where the so-called “fast marching method” is described. It should
be noted that the presence of singular points makes the vectorfield a/f(xi,j)
unbounded since f vanishes. This is an additional difficulty which is usually
solved by truncating f below at the ε level. In this way, f(x) is replaced by
fε(x) = max {f(x), ε} in eikonal equation (4). Naturally, the algorithm has
to be analyzed with respect to ε. This was first done by Camilli and Siconolfi
in [42], who showed that the solution of the perturbed problem actually con-
verges to the solution of the original problem for ε going to 0. Following that
result, Camilli and Grüne suggested a scheme which converges to the maximal
solution of the eikonal equation in [44]. More recently, Sagona [45] has proved
the convergence to the maximal solution of the above algorithm and has es-
tablished an a priori error estimate in the L∞ norm which takes into account
all the perturbation and discretization parameters. The crucial condition for
the convergence to the maximal solution is:

h

∣

∣

∣

∣

∣

1

fε

∣

∣

∣

∣

∣

∞

≤ δ. (18)

If Vin denotes the array containing the values v(xi,j), for (i, j) ∈ Din, and
Vbd the array containing the values v(xi,j), for (i, j) ∈ Dbd, then the algo-
rithm corresponding to Falcone and Sagona’s method [43], designated in the
following by FS, is:

fix h, ε and ζ

fix Vbd as in (17), k ← 0 and V0
in ← (0, ..., 0)

repeat

compute H(Vk
in) as in (17)

Vk+1
in ← H(Vk

in)

k ← k + 1

until |H(Vk
in)−Vk

in|∞ < ζ

The values of the parameters that are used for our tests are h = δ/
∣

∣

∣

1
fε

∣

∣

∣

∞

,

which is the biggest admissible value of h for which Eq. (18) holds, ε = 0.20,
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meaning that greylevel I is truncated at the maximal value 0.98, and ζ = 10−8.

4.2.2 Daniel and Durou’s Method

The method of resolution of SFS described in [62] uses functional F5(p, q)
given in Eq. (15). A straightforward discretization of this functional gives the
following “energy”:

E(G) = δ2
∑

(i,j)∈D

[r(pi,j , qi,j)− Ii,j]
2 + λi

∑

(i,j)∈D

[(pi,j+1 − pi,j)− (qi+1,j − qi,j)]
2

+λs

∑

(i,j)∈D

[

(pi+1,j − pi,j)
2 + (pi,j+1 − pi,j)

2 + (qi+1,j − qi,j)
2 + (qi,j+1 − qi,j)

2
]

,

(19)
where G is the array containing the 2N values (pi,j, qi,j), for (i, j) ∈ D, which
are the unknowns of the discrete problem. It has been proved in [60] that this
energy is quasi-independent of δ.

The use of gradient descent combined with “line search” was suggested in
[62]: at each step k, a positive value dk which is a minimizer (at least, a local

minimizer) of function φk(d) = E
(

Gk − d ∇E(Gk)
)

is found, assuming that

φk(d) can be approximated by a parabola (quadratic approximation). The
iteration is then defined by Gk+1 = Gk − dk ∇E(Gk), and is stopped when
either the Euclidean norm |∇E(Gk)| or dk is less than a threshold.

The algorithm corresponding to Daniel and Durou’s method [62], designated
in the following by DD, is:

fix λi, λs, β and γ

k ← 0 and fix starting vector G0

repeat

compute ∇E(Gk)

find a local minimizer dk of φk(d) = E
(

Gk − d ∇E(Gk)
)

Gk+1 ← Gk − dk ∇E(Gk)

k ← k + 1

until |∇E(Gk)| < β
√

2N or dk < γ
√

2N

Vector G0 contains the values (pi,j, qi,j)(i,j)∈D of a “starting shape”, which

in our tests is the Gaussian curve u(x, y) = 2 e−(x2+y2). The values of the
parameters that are used for our tests are λi = 10, λs = 50, β = 1, and
γ = 10−7. For DD, as well as for FS, the optimal configuration will be obtained
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in the limit. Of course, a stopping criterion has to be chosen. The thresholds
on |∇E(Gk)| and on dk are proportional to

√
2N because G is a vector in

R
2N . Of course, bigger values of the thresholds would reduce the CPU time,

but they would also provide worse results.

This algorithm provides an estimate of G, but subsequently, a residual prob-
lem, called “integration”, consists in computing from this estimate either the
N values (ui,j)(i,j)∈D, if no Dirichlet boundary condition is imposed, or the
Nin = card(Din) values (ui,j)(i,j)∈Din

otherwise. Some tests [62] have shown
that Wu and Li’s method [96] combined with that put forward by Horn and
Brooks in [60] give good results. Wu and Li’s method computes the height
along diagonals and is very rapid. The result is then used as an initial shape
for Horn and Brooks’ method which is iterative. Of course, this computation
is taken into account in the CPU time.

4.2.3 Tsai and Shah’s Method

Tsai and Shah make a development of the reflectance function to the first
order at each point in the image [87], unlike the other linear methods. The
basic idea of the method is to approximate pi,j and qi,j by finite backward
differences, which gives from (1) the following system of equations:

r
(

ui,j − ui−1,j

δ
,
ui,j − ui,j−1

δ

)

= Ii,j for (i, j) ∈ D. (20)

Surprisingly, Tsai and Shah take δ = 1 in (20). Indeed, the tests have shown
that using the exact value of δ causes numerical instabilities, so we did as
Tsai and Shah did. Developping to the first order in ui,j , and denoting ucur

i,j

the current estimate of height ui,j and unew
i,j a refinement, system (20) becomes:

rcur
i,j + (unew

i,j − ucur
i,j )

[

(∂r/∂p)cur
i,j + (∂r/∂q)cur

i,j

]

= Ii,j for (i, j) ∈ D, (21)

where f cur
i,j means, whatever the function f :

f cur
i,j = f(ucur

i,j − ucur
i−1,j , u

cur
i,j − ucur

i,j−1). (22)

It might seem that system (21) expresses the Newton-Raphson method, in
the case of a unidimensional non-linear equation, but this is not true, because
ui−1,j and ui,j−1 are modified at each step, as well as ui,j . Thus, (21) is the
following variant of the Newton-Raphson method, for which no general proof
of convergence exists:

unew
i,j = ucur

i,j −
rcur
i,j − Ii,j

(∂r/∂p)cur
i,j + (∂r/∂q)cur

i,j

for (i, j) ∈ D. (23)
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Because there is no guarantee that the denominator in (23) will not vanish,
Tsai and Shah put forward the following modification of system (23):

unew
i,j = ucur

i,j −Kcur
i,j

(

rcur
i,j − Ii,j

)

for (i, j) ∈ D, (24)

where Kcur
i,j has to approximate the inverse of this denominator when it is

non-zero, and must be zero otherwise. This leads to the following algorithm
[87], called TS in the course of this article:

fix W and kmax

for (i, j) ∈ D do

u0
i,j ← 0 and S0

i,j ← 1

for k ← 0 · · · kmax do

for (i, j) ∈ D do

Kk
i,j ←

Sk
i,j

[

(∂r/∂p)k
i,j + (∂r/∂q)k

i,j

]

W + Sk
i,j

[

(∂r/∂p)k
i,j + (∂r/∂q)k

i,j

]2

uk+1
i,j ← uk

i,j −Kk
i,j

(

rk
i,j − Ii,j

)

Sk+1
i,j ←

{

1−Kk
i,j

[

(∂r/∂p)k
i,j + (∂r/∂q)k

i,j

]}

Sk
i,j

Following Tsai and Shah, we take W = 0.01. The stopping criterion consists
in fixing the value of kmax, while keeping in mind that an iteration exists for
which the configuration is optimal. Our tests have led us to consider that
the 5th iteration works well, even if in [87], kmax = 2 is recommended as a
good choice. Finally, let us mention that, even if the scene is lit from the
observer’s direction, it is necessary to model r by an oblique source ω =
(0,−1/

√
2, 1/
√

2). There is no obvious explanation for this last observation.

It might seem that this method does not require any boundary condition.
This is not true, since Eq. (20) is unusable for a pixel (i, j) ∈ D such that
(i−1, j) /∈ D or (i, j−1) /∈ D. Tsai and Shah recommend choosing uk

i−1,j = uk
i,j

if (i− 1, j) /∈ D, and uk
i,j−1 = uk

i,j if (i, j − 1) /∈ D, which is equivalent to im-
posing pi,j = 0 and qi,j = 0, respectively, i.e., boundary conditions of the
Neumann type. On the other hand, no Dirichlet boundary condition is im-
posed, which is an advantage, since no such information is usually available
on real images. Nevertheless, the counterpart is that system (21) is an ill-posed
problem in the sense of Hadamard, even with Neumann boundary conditions:
it is easy to verify that a solution is only determined up to a constant. Indeed,
the tests have shown a global drift, depending on step k. In order to numeri-
cally compare the computed shape with the ground truth, this drift must be
corrected in a final step.
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5 Methodology

In this section, we describe the panel of images selected for the tests, and the
measures by which to numerically compare the performances of the methods.

5.1 Panel of Images Selected for the Tests

The choice of images for the tests is a serious difficulty. Of course, it seems
logical to choose images that conform to the basic assumptions of SFS. As
noted in [1], this is an easy task for synthetic images, but much more difficult
for real images, even if a process by Daniel and Durou [97] creates real images
verifying almost all the assumptions of SFS. For our tests, we decided to select
three synthetic and four real images.

5.1.1 Synthetic Images

The three synthetic images are computed from known shapes. We compute
all the synthetic images on the same domain [−6.4, 6.4]2 of R

2 projected on
a regular square mesh of 256× 256 pixels, meaning that the size of the mesh
is δ = 12.8/256 = 0.05. Then, p and q are evaluated by differentiation and,
finally, I is computed through Eq. (3), depending on the value of ω. We first
use ω

0 = (0, 0, 1).

The first shape represents a vase lying on a flat background, called “synthetic
vase” (SV in the following). It is defined by:











uSV(x, y) =
√

P (x)2 − y2 for (x, y) ∈ ΩSV,

uSV(x, y) = 0 elsewhere,
(25)

where x = x/12.8, P (x) = −138.24 x6 + 92.16 x5 + 84.48 x4 − 48.64 x3 −
17.60 x2 +6.40 x+3.20 and ΩSV = {(x, y) ∈ [−6.4, 6.4]×R, P (x)2 ≥ y2}. This
shape is shown in Fig. 3-a. The corresponding synthetic image is represented
in Fig. 3-b. Finally, the reconstruction domain ΩSV is represented in Fig. 3-c.

The second shape represents a Canadian tent (CT in the following) lying on
a flat background. It is defined by:











uCT(x, y) = min {−2 |x|+ 10.24,−|y|+ 5.12} for (x, y) ∈ ΩCT,

uCT(x, y) = 0 elsewhere,
(26)
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where ΩCT = [−5.12, 5.12]2. This shape, the corresponding image and the
reconstruction domain ΩCT are represented in Fig. 4.

The third shape represents a digital elevation model (DEM in the following).
It is defined by:

uDEM(x, y) = 3 (1− x)2 exp
(

−x
2 − (y + 1)2

)

− 10 (x/5− x
3 − y

5
)

exp
(

−x2 − y2
)

− 1/3 exp
(

−(x + 1)2 − y2
)

,
(27)

where (x, y) = (x, y)/1.6. For DEM, we use the reconstruction domain ΩDEM

which contains all the pixels x in [−6.4, 6.4]2, except those near the edges
such that I(x) ≥ 254/255 (by analogy with SV and CT, these points consti-
tute a flat background). This shape, the corresponding image and ΩDEM are
represented in Fig. 5.

(a) (b) (c)

Fig. 3. SV: (a) shape, (b) image and (c) ΩSV.

(a) (b) (c)

Fig. 4. CT: (a) shape, (b) image and (c) ΩCT.

5.1.2 Real Images

As the four real images selected for the tests are also of size 256 × 256, we
interpret the corresponding scenes as if δ were equal to 0.05, that is to say, as
if the scenes were of size 12.8× 12.8.
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(a) (b) (c)

Fig. 5. DEM: (a) shape, (b) image and (c) ΩDEM.

The first real image, represented in Fig. 6-a, is that of a vase, called “real
vase” (RV in the following). The reconstruction domain ΩRV, represented in
Fig. 6-b, is constituted by the pixels situated on the vase. A problem is then to
obtain the corresponding shape. Since the vase is radially symmetrical, this can
be done by assuming that the symmetry axis is parallel to the image plane.
Using this assumption, we can subsequently detect the occluding boundary
and deduce the complete shape by rotation around the symmetry axis (cf.
Fig. 6-c).

The second real image, represented in Fig. 7-a, is that of the moulding of an
elk’s head (called “Elk” in the following). This image was obtained through
Daniel and Durou’s process already mentioned [97]. Through mechanical metrol-
ogy 2 , we could obtain the set of 3D points plotted in Fig. 7-b. A number
of these 3D points, whose height is zero, lie on the boundary of the elk’s
head. This allows us to determine the reconstruction domain ΩElk which is
represented in Fig. 7-c: here again, the pixels outside ΩElk constitute a flat
background. It can be noted that the 3D points of Fig. 7-b are not regu-
larly arranged, but they will allow us to compare the computed shapes with
the ground truth. It can also be noted that their density is rather low and,
therefore, estimating p and q using finite differences would be senseless in this
case.

Finally, two other classical real images used in [1] are represented in Figs. 8-a
and 8-b: they are called “Pepper” and “Lena” in the following. No ground
truth is available for these images and their common reconstruction domain
ΩPepper = ΩLena contains all the pixels.

2 We would like to thank Michel Labarrère, metrologist at the Département

de Génie Mécanique, École Nationale Supérieure d’Ingénieurs de Constructions
Aéronautiques, Toulouse, France.
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(a) (b) (c)

Fig. 6. RV: (a) image, (b) ΩRV and (c) estimated shape.
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(a) (b) (c)

Fig. 7. Elk: (a) image, (b) measured shape and (c) ΩElk.

(a) (b)

Fig. 8. (a) Pepper and (b) Lena.

5.1.3 Discussion

Synthetic images are particularly useful because it is impossible that there be
no solution (“impossible images”, see e.g. [98,99]). Moreover, the reconstructed
and real shapes can be compared. On the other hand, the ground truth is
usually not available for real images. From this point of view, our work clearly
complements the survey by Zhang et al., since we provide the ground truth
for two real images: RV and Elk.

It must be noted that other images than the seven described in the previous

24



section will be used in the tests: in Section 6.8, different sizes of SV are used,
implying that δ will take other values than 0.05, in order to test the robustness
of the methods with respect to low image resolution; in Section 6.9, three
values of ω other than ω

0 = (0, 0, 1) are used to compute SV, in order to test
the robustness of the methods faced with a wrong estimate of ω.

Finally, let us note that SV is the same image 3 as the one displayed in Fig. 5-a
of [1] (Eq. (25) seems quite different from the equation given in [1], just because
another coordinate system is used). Thus, four of the images selected for our
tests are used in [1]: SV, RV, Pepper and Lena. Amongst the test images used
in [1], only “Mozart” is not selected: it is replaced by DEM, which is in fact the
function peaks of Matlab. As for “Mozart”, DEM is smooth, has the simple
boundary condition u = 0, and can be considered as a “hard benchmark” (see
e.g. [77]). On the other hand, it is a little more convenient to deal with DEM
than with Mozart, because the ground truth of DEM is analytically available,
unlike that of Mozart. Since we wanted to choose images having different
peculiarities, we complemented these five test images with two other ones: CT
is an example of a non-smooth surface with u = 0 boundary condition (note
that I is discontinuous inside ΩCT); Elk is a real image which theoretically
verifies all the assumptions of SFS, unlike Pepper and Lena, and whose shape
is more complicated than that of RV.

5.2 Evaluation of the Performances of Shape-from-Shading Methods

The most natural criterion for the evaluation of a shape reconstruction is
of course to measure the difference between reconstructed shape ũ and real
shape u. An interesting alternative is to compare input image I with estimate
image Ĩ computed from the reconstructed shape, particularly for Pepper and
Lena, whose shapes are not available. Finally, when (p, q) are known for the
real shape, it seems interesting to compare them with their estimates (p̃, q̃)
or, even better, to compare normal n with its estimate ñ, because these two
vectors are normed and their comparison is equivalent to the measure of an
angle in R

3. Even for DD, which computes (p, q) before u, we will consider
that ũ is computed first, in order to be consistent with the other methods
(a similar observation is made in [1]). As will be described now, ñ and Ĩ are
computed in a way which is the same for all the methods. After that, we will
detail the panel of error estimators by which to compare the methods.

3 This image was first provided in [100].
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5.2.1 Estimation of the Normals and of the Greylevels

Once surface ũ has been computed, we usually adopt an estimate ñ of the
normal which is coherent with the computation of the greylevel. As can be
seen in Fig. 9, for each pixel xi,j , we consider the four triangles T 1

i,j , T 2
i,j , T 3

i,j

and T 4
i,j having xi,j in common. For each triangle, the numerical solution ũ is

known at its three vertices, so by linear interpolation we can estimate p̃i,j and
q̃i,j. For example, on T 1

i,j = {xi,j,xi−1,j ,xi,j+1}, the following estimates hold:















p̃1
i,j =

ũi,j − ũi−1,j

δ
,

q̃1
i,j =

ũi,j+1 − ũi,j

δ
,

(28)

and this gives ñ1
i,j using (2). It is possible to obtain three other estimates ñ2

i,j,

ñ3
i,j and ñ4

i,j of the normal, which correspond to the three other triangles T 2
i,j ,

T 3
i,j and T 4

i,j . Four related estimates Ĩ1
i,j, Ĩ2

i,j, Ĩ3
i,j and Ĩ4

i,j of the greylevel are

given by the four scalar products between ω and the four normals ñ1
i,j , ñ2

i,j,

ñ3
i,j and ñ4

i,j . The greylevel estimate at pixel xi,j is done in the following way:

Ĩi,j = min {Ĩ1
i,j, Ĩ

2
i,j , Ĩ

3
i,j , Ĩ

4
i,j}. (29)

Subsequently, we chose as estimate ñi,j the normal which corresponds to the
lowest greylevel. In [45], the greylevel estimate is defined as the average of
Ĩ1
i,j, Ĩ2

i,j , Ĩ3
i,j and Ĩ4

i,j : the computed images are very similar to those obtained
using (29), but it is more difficult to find an estimate of the normal which is
coherent with that of the greylevel.

T 2
i,j T 1

i,j

T 4
i,jT 3

i,j

xi−1,j

xi,j

xi+1,j

xi,j+1xi,j−1

Fig. 9. Triangles used for the estimates of the greylevel and of the normal.

5.2.2 Panel of Error Estimators

We compare the methods in accordance with three error estimators. Weighted
L1 and L2 errors and L∞ error are defined as follows, for every known f and
computable f̃ :
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|∆f |1 =
1

nb

∑

x∈Ω

∣

∣

∣f̃(x)− f(x)
∣

∣

∣,

|∆f |2 =

[

1

nb

∑

x∈Ω

∣

∣

∣f̃(x)− f(x)
∣

∣

∣

2
]1/2

,

|∆f |
∞

= max
x∈Ω

{
∣

∣

∣f̃(x)− f(x)
∣

∣

∣

}

.

(30)

These estimators are commonly called, respectively: the mean absolute devia-
tion error, the root mean square error and the maximal absolute deviation er-
ror. On the one hand, let us make it clear that |ũ(x)− u(x)| and

∣

∣

∣Ĩ(x)− I(x)
∣

∣

∣

are absolute values, whereas |ñ(x)− n(x)| is the Euclidean norm of a vector in
R

3. On the other hand, nb denotes the number of points x ∈ Ω which are used
to compute these three estimators. In most of the cases, f is known at each
pixel, thus all the pixels xi,j ∈ Ω are used and nb = N . For Elk, u is known
on a non-regular grid, so that nb = 1104 only, whereas ΩElk contains 15325
pixels. Finally, u is unknown for Pepper and Lena, and n is unknown for Elk,
Pepper and Lena. Thus, we will measure the accuracy of the reconstructed
shapes using nine numerical values for SV, CT, DEM and RV (|∆u|1, |∆u|2,
|∆u|

∞
, |∆n|1, |∆n|2, |∆n|

∞
, |∆I|1, |∆I|2, |∆I|

∞
), six numerical values for

Elk (|∆u|1, |∆u|2, |∆u|
∞

, |∆I|1, |∆I|2, |∆I|
∞

) and three numerical values for
Pepper and Lena (|∆I|1, |∆I|2, |∆I|

∞
). Note that the three errors on u are

not bounded, while the three errors on n are bounded by 2 and the three errors
on I are bounded by 1. In comparison, the survey made in [1] provided only
three numerical values for the synthetic images (the mean absolute deviation
error on u and on (p, q), and the standard deviation on u), and no value for
the real images, because the greylevels were not estimated from the computed
shapes. Finally, let us mention that a histogram of the percentage depth error
is used as error estimator in [7].

6 Tests

This section is devoted to the tests and to their analysis. For each test, the
CPU time of the reconstruction is displayed in the caption in seconds 4 . Beside
each computed shape, the corresponding estimated image is shown. Moreover,
for each test, the numerical estimates of the results are displayed in a table
which contains the errors |∆u|1, |∆u|2 and |∆u|

∞
on the computed shape, the

errors |∆n|1, |∆n|2 and |∆n|
∞

on the estimated normals, and the errors |∆I|1,
|∆I|2 and |∆I|

∞
on the estimated greylevels. For Elk, Pepper and Lena, only

some of these errors are available. Furthermore, we test the robustness of the
algorithms by implementing them on reduced images. Finally, we discuss their
robustness with respect to a perturbation in the direction of the light source.

4 All the tests are done on a P4 2.4 GHz.
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6.1 Choice of a Boundary Condition

Three different ways of imposing constraints on the boundary can be used:
no Dirichlet boundary condition (BC0); the homogeneous Dirichlet boundary
condition (6) i.e., u = 0 on ∂Ω (BC1); the second Dirichlet boundary condition
(7) i.e., u = g on ∂Ω (BC2). On the one hand, FS can be tested only with BC1

and BC2. On the other hand, TS is tested only with BC0: our attempts to
impose BC1 or BC2 onto TS failed, since the computed shapes were of worse
quality. Finally, DD can be tested with any these three types of boundary
conditions.

The tests which are reported in this section do not use all the possible Dirichlet
boundary conditions. In all cases, TS is tested with BC0 only. If g = 0 i.e., for
CT, DEM and Elk, then FS and DD are tested with BC1 only. If g 6= 0 and is
unknown i.e., for Pepper and Lena, then FS is tested with BC1 and DD with
BC0. If g 6= 0 but is known i.e., for SV and RV, then FS is tested either with
BC1 and with BC2, and DD is tested either with BC0 and with BC2. Every
time FS or DD are tested with BC2, they are marked with a ∗ (FS∗ or DD∗),
meaning that such knowledge is rarely available.

It must also be noted that the shapes which are reconstructed without bound-
ary condition (BC0) are modified a posteriori : a global shift is applied to the
computed shape inside Ω, which is determined in such a way that |∆u|2 is
minimized, when the ground truth is known. Fortunately, this shift does not
affect the errors on the estimated normals and on the estimated greylevels.

6.2 Test 1: SV

The starting point is the synthetic image of a vase shown in Fig. 3-b. Two
boundary conditions are considered for FS: BC1 (cf. Fig. 10-left) and BC2 (cf.
Fig. 13-left). Since gSV is a continuous function vanishing on the left and on
the right hand sides of the vase, but not at the top and at the bottom, BC1 is
clearly wrong. The qualitative effect of boundary conditions is clearly visible
in the shapes obtained by this method. FS does not introduce any smoothing,
thus the small kinks on the boundary (which is approximated by square cells)
produce several lines of discontinuity for ñ inside ΩSV. Moreover, the wrong
boundary condition u = 0 produces a wrong shape due to the concave/convex
ambiguity in the model (cf. Fig. 10-left). Two situations are also considered
for DD: BC0 (cf. Fig. 11-left) and BC2 (cf. Fig. 14-left). Both solutions are
smooth, due to the regularization term which is present in the functional, and
do not seem to be affected by the concave/convex ambiguity. Finally, TS does
not need any Dirichlet boundary condition. The computed shape with TS (cf.
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Fig. 12-left) is qualitatively better than that obtained by FS with BC1, thanks
to discontinuity at the top and at the bottom of the vase i.e., where BC1 is
clearly wrong. Let us recall that the computed shapes obtained by TS and
DD are shifted a posteriori inside ΩSV, since a global drift occurs during the
computation. This phenomenon is mentioned neither in [87] nor in [1] for TS,
but is necessarily compensated for in both these papers, since otherwise our
results would differ from theirs.

The reconstruction of the image on the basis of the shape uses the methodology
described in Section 5.2.1. The estimation of I is quite satisfactory for all the
methods. Table 1 confirms this statement, since the errors on I have the same
order of magnitude. Conversely, Table 1 shows that FS∗ and DD∗ are the most
accurate in reconstructing u. Table 1 also shows the errors in the estimation
of the normals: it can be seen that all the methods have the same order of
magnitude. Finally, TS is much faster (by a factor of 50) with respect to DD
and FS.

Fig. 10. FS on SV: 2.14 s.

Fig. 11. DD on SV: 3.30 s.

6.3 Test 2: CT

The second test we discuss is related to a synthetic image representing a
Canadian tent with two different slopes (cf. Fig. 4-b). The important difference
in comparison with the first test consists in the sharp edges of the surface
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Fig. 12. TS on SV: 0.03 s.

Fig. 13. FS∗ on SV: 1.08 s.

Fig. 14. DD∗ on SV: 2.63 s.

Table 1
Errors on SV (ω = ω

0).

|∆u|1 |∆u|2 |∆u|
∞
|∆n|1 |∆n|2 |∆n|

∞
|∆I|1 |∆I|2 |∆I|

∞

FS 0.80 1.00 1.93 0.49 0.63 1.95 0.01 0.01 0.17

DD 0.29 0.38 1.61 0.21 0.28 1.99 0.05 0.08 0.62

TS 0.53 0.62 1.63 0.24 0.30 1.08 0.07 0.10 0.37

FS∗ 0.23 0.25 0.48 0.14 0.23 1.35 0.01 0.06 0.78

DD∗ 0.19 0.23 0.43 0.11 0.14 0.58 0.03 0.04 0.26
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and the corresponding discontinuities in the input image. As can be seen in
Figs. 15-left, 16-left and 17-left, the best result is obtained by FS, due to its
capacity to follow the jumps in the gradient of u. DD provides a very smooth
surface with no kinks and TS computes a quite flat surface. The qualitative
behaviour of the three methods is numerically confirmed in Table 2. On the
other hand, TS CPU time is much shorter than the two others.

Fig. 15. FS on CT: 1.62 s.

Fig. 16. DD on CT: 3.77 s.

Fig. 17. TS on CT: 0.04 s.

6.4 Test 3: RV

Consider the real image of a vase given in Fig. 6-a. As in Test 1 (SV), we
consider two boundary conditions for FS and DD. It can be seen from Figs. 18-
left, 19-left, 20-left, 21-left and 22-left that the results show behaviour in the
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Table 2
Errors on CT.

|∆u|1 |∆u|2 |∆u|
∞
|∆n|1 |∆n|2 |∆n|

∞
|∆I|1 |∆I|2 |∆I|

∞

FS 0.03 0.04 0.20 0.03 0.11 1.41 0.01 0.01 0.08

DD 0.57 0.74 1.89 0.26 0.32 1.29 0.08 0.10 0.51

TS 1.19 1.40 3.49 0.83 0.84 1.71 0.36 0.38 0.69

three methods which is similar to Test 1, except FS∗ (cf. Fig. 21-left) which
causes a small inversion at the top of the vase, due to the concave/convex
ambiguity. Since all errors are of the same order of magnitude as those in
Test 1 (compare Table 3 with Table 1), and considering that RV is a noisy
version of SV, this shows that the three methods are stable in the presence of
noise in the image. However, TS is qualitatively affected by the noise, since
the computed shape and the estimated image displayed in Fig. 20 look grainy.
It can be noted that DD∗ (cf. Fig. 22-left) provides a surface which seems to
be the most accurate reconstruction, and comparison of the estimated images
indicates a better performance of FS: Table 3 confirms both these statements.
Also in this case, CPU times show that TS is much faster than DD and FS.

Fig. 18. FS on RV: 0.75 s.

Fig. 19. DD on RV: 2.53 s.

32



Fig. 20. TS on RV: 0.02 s.

Fig. 21. FS∗ on RV: 0.78 s.

Fig. 22. DD∗ on RV: 1.80 s.

Table 3
Errors on RV.

|∆u|1 |∆u|2 |∆u|
∞
|∆n|1 |∆n|2 |∆n|

∞
|∆I|1 |∆I|2 |∆I|

∞

FS 0.78 0.84 1.83 0.37 0.46 1.67 0.01 0.01 0.08

DD 0.39 0.52 2.00 0.24 0.33 1.98 0.03 0.06 0.51

TS 0.30 0.41 1.61 0.32 0.45 1.87 0.10 0.15 0.72

FS∗ 0.24 0.31 0.86 0.26 0.32 1.74 0.01 0.04 0.52

DD∗ 0.17 0.20 0.45 0.15 0.20 1.16 0.05 0.07 0.52
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6.5 Test 4: DEM

This test uses the image of a DEM (cf. Fig. 5-b). It is first noted that all the
reconstructed shapes are qualitatively wrong (cf. Figs. 23-left, 24-left and 25-
left): FS computes the maximal solution, which does not coincide with the real
surface; DD computes one of the admissible minimum energy configurations;
TS shape excessively ondulates, since each singular point is interpreted as
a local maximum. In any case, we can observe in Table 4 that the order of
magnitude of the errors on the shapes and on the normals is the same for
the three methods. As can be seen in Figs. 23-right, 24-right and 25-right,
the estimated image is qualitatively much better using FS than the two other
methods. Table 4 numerically confirms this statement.

Fig. 23. FS on DEM: 0.73 s.

Fig. 24. DD on DEM: 1.69 s.

Fig. 25. TS on DEM: 0.03 s.
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Table 4
Errors on DEM.

|∆u|1 |∆u|2 |∆u|
∞
|∆n|1 |∆n|2 |∆n|

∞
|∆I|1 |∆I|2 |∆I|

∞

FS 0.52 0.87 3.14 0.49 0.68 1.79 0.01 0.01 0.06

DD 0.59 0.88 2.51 0.52 0.65 1.59 0.06 0.08 0.31

TS 0.64 0.94 2.93 0.67 0.81 1.77 0.12 0.17 0.67

6.6 Test 5: Elk

This test deals with a real greylevel image representing the moulding of an
elk’s head (cf. Fig. 7-a) which was used in [62] as a test problem. In this test,
FS and TS seem to produce more realistic shapes than DD (cf. Figs. 26-left,
27-left and 28-left), but this is not numerically confirmed. In Table 5, it can be
noted that FS produces slightly better results on I compared to DD and TS.
This is confirmed from the computed images shown in Figs. 26-right, 27-right
and 28-right. Once again, TS shows a faster CPU time, and DD is slower than
FS.

Fig. 26. FS on Elk: 0.42 s.

Fig. 27. DD on Elk: 1.25 s.
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Fig. 28. TS on Elk: 0.01 s.

Table 5
Errors on Elk.

|∆u|1 |∆u|2 |∆u|
∞
|∆I|1 |∆I|2 |∆I|

∞

FS 0.21 0.30 1.00 0.02 0.03 0.18

DD 0.32 0.43 1.44 0.10 0.14 0.53

TS 0.35 0.42 1.20 0.28 0.33 0.89

6.7 Tests 6 and 7: Pepper and Lena

These two tests deal with images which clearly do not conform to the basic
assumptions of SFS, but are considered therefore as classical benchmarks. For
both these images, we have no additional information for the ground truth, so
only computed images will be numerically compared. Whereas the computed
shapes seem to be very far from the real ones, it appears that the estimated
images are not so bad, at least for FS, even if a saturation phenomenon can
be observed on both sides of Fig. 29-right. The images provided by DD (cf.
Figs. 30-right and 33-right) are blurred, due to the smoothness term, whereas
those provided by TS (cf. Figs. 31-right and 34-right) are noisy and excessively
emphasize the contours. This ranking is numerically confirmed in Table 6.

Fig. 29. FS on Pepper: 5.98 s.

36



Fig. 30. DD on Pepper: 7.62 s.

Fig. 31. TS on Pepper: 0.05 s.

Fig. 32. FS on Lena: 6.15 s.

Fig. 33. DD on Lena: 7.93 s.

6.8 Test 8: Reduced Images of SV

Next, we test the robustness of the algorithms by implementing them on re-
duced square images of SV, whose size varies between 16 and 256. Some of the
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Fig. 34. TS on Lena: 0.05 s.

Table 6
Errors on Pepper (columns on the left) and on Lena (columns on the right).

|∆I|1 |∆I|2 |∆I|
∞

|∆I|1 |∆I|2 |∆I|
∞

FS 0.08 0.24 1.00 0.04 0.07 0.77

DD 0.10 0.14 0.70 0.12 0.16 0.74

TS 0.27 0.36 1.00 0.25 0.31 0.95

numerical results are shown in Figs 35, 36 and 37: |∆u|1, |∆n|1 and |∆I|1 are
plotted as a function of the image size. It can be observed that the accuracy
of the methods on the full-size images is on the whole confirmed on the low
resolution images. With very few exceptions (|∆u|1 for DD and DD∗; |∆n|1
for FS), all curves are decreasing. Surprisingly, some of the curves relating to
FS and FS∗ oscillate.
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Fig. 35. Tests on reduced images of SV: |∆u|1 in function of the image size.
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Fig. 36. Tests on reduced images of SV: |∆n|1 in function of the image size.
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Fig. 37. Tests on reduced images of SV: |∆I|1 in function of the image size.

6.9 Test 9: Error on the Lighting Direction

Finally, we also investigate the stability of the three methods with respect to
perturbations in the light source direction. We consider three images of the
synthetic vase (cf. Fig. 38) that are obtained using three different non-frontal
light source directions, viz.:



























ω
1 = (0, 0.087, 0.996),

ω
2 = (0, 0.174, 0.985),

ω
3 = (−0.123, 0.123, 0.985).

(31)

Note that the shadows in the background are not taken into account, but
this is not a problem since the background is outside ΩSV. These images are
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(a) (b) (c)

Fig. 38. SV: images with (a) ω = ω
1, (b) ω = ω

2 and (c) ω = ω
3.

processed as if the light source were frontal (except with TS, for the reason
which has already been mentioned in section 4.2.3).

Since the numerical results show that the behaviour of the three methods is
similar for the three light source directions, we limit ourselves to commenting
on the results relating to ω

1 (cf. Table 7) as a representative example. All
errors have the same order of magnitude when ω = ω

1 as in the case of frontal
lighting (compare Table 7 with Table 1). Nevertheless, it must be noted that
the error increase due to this perturbation on ω is (proportionally) higher
when the reconstruction is more accurate: TS is less affected than FS and
DD; FS is less affected than FS∗.

Table 7
Errors on SV (ω = ω

1).

|∆u|1 |∆u|2 |∆u|
∞
|∆n|1 |∆n|2 |∆n|

∞
|∆I|1 |∆I|2 |∆I|

∞

FS 0.88 1.20 13.47 0.53 0.68 1.99 0.01 0.01 0.19

DD 0.33 0.45 1.99 0.23 0.31 2.00 0.05 0.08 0.68

TS 0.55 0.65 1.66 0.26 0.33 1.97 0.07 0.10 0.49

FS∗ 0.39 0.47 1.09 0.28 0.40 1.49 0.01 0.07 0.90

DD∗ 0.22 0.28 0.62 0.15 0.18 0.67 0.05 0.06 0.32

6.10 Summary

We finish this section by summing up our observations.

Convergence. Convergence properties are often crucial in the choice of a method.
Let us note that FS and DD always converge to a solution of the SFS problem,
whereas convergence is not guaranteed by TS. In fact, increasing the number
of iterations in TS generally does not improve the solution in terms of any
of our error indicators. It should also be noted that DD will converge in gen-
eral to a local minimum. The search for an overall minimum would require
much more computational effort as it would require switching to stochastic
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algorithms. The FS method always converges to the maximal solution which,
in general, will not coincide with the real surface. One can try to obtain other
solutions by reflection, once the maximal solution is computed, and/or by
adding information such as the height at singular points.

Boundary Conditions. In real images, it is sometimes possible to have an a

priori knowledge on the surface, such as the height on the boundary. It is
interesting to note that this information can easily be included in FS and DD.
Of course, a wrong a priori knowledge on the height on the boundary of the
reconstruction domain affects the accuracy of the reconstruction.

Accuracy. DD produces accurate results for smooth surfaces, whereas its ac-
curacy decreases when it is applied to non-differentiable surfaces. In the same
way, TS gives its best results on smooth surfaces although its performance
decreases for non-differentiable surfaces and for smooth surfaces that exhibit
several maxima and minima (as in Test 4). Both these methods have good
accuracy in the reconstruction of the normals. Finally, FS seems to be well
adapted to a variety of different situations which include smooth and non-
smooth surfaces. Its accuracy on the reconstruction of the surface is good,
provided the surface corresponds to the maximal solution. A weak point of FS
seems to be the absence of smoothing in the surfaces, which in some cases pro-
duces larger errors in the reconstruction of the normals. Moreover, FS always
requires a Dirichlet boundary condition to be imposed, even if it is wrong.

Stability. The three methods appear to be stable in the presence of a pertur-
bation in the light source direction. Moreover, their behaviour is not affected
by a change in the image resolution. Only TS seems to be affected by the
presence of noise in the image (in [1], a Gaussian smoothing is applied to the
results of TS).

CPU Time. TS is the fastest method in all the tests since the algorithm is
stopped after 5 iterations, where the other methods go on until convergence.
For the tests reported in this section, FS requires between 446 and 1879 it-
erations, and DD requires between 93 and 274 iterations, but these numbers
strongly depend on the accuracy which is requested.

7 Conclusion

We hope that these comparisons of three methods of resolution, which are
prototypes in their classes, will help researchers and practitioners to make
their choices when dealing with SFS problems. The analysis contained in this
paper could give rise to several interesting developments and improvements,
such as the extension of the SFS model to more realistic situations, including
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for example non-frontal lighting or perspective projection.

Of course, we also plan to increase little by little the number of methods of
resolution and of benchmarks available on our web site. The portable platform
contains at the moment about 2600 lines of C-ANSI code, which is quite a lot
of work, but implementing a method of resolution, just using the description
given in a paper, can be much trickier than it might appear. Therefore, we
hope that many other researchers will make available their own codes and
images.
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