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Abstract
This paper aims at developing a new numerical coupled approach to compute solutions of a compressible
immiscible three-phase flow model with stiff source terms. The targeted applications involve flows with fast
transient and shock waves. Thus, a well-posed model with respect to the initial conditions that embarks an
entropy inequality is considered. A preliminary work on the underlying relaxation process of the model is
conducted. Then the new numerical scheme is presented and numerically tested.

Introduction
This work tackles the simulation of three-phase flows with immiscible phases. More precisely, it focuses on
three-phase flows with a fast transient regime. Such flows can arise in some nuclear safety scenario studies.
In these cases, the considered flows are usually initialized with a huge disequilibrium between phases and
this disequilibrium has a significant role in the dynamics of the flow throughout time. Actually, we know
that the simulation of a three-phase flow with the assumption of instantaneous return to equilibrium between
phases, such as the one conducted in [6], is unable to compute a value of the total pressure close to the one
measured in [32]. Thus, it motivates the development of numerical methods that can compute solutions of
three-phase flow model in full disequilibrium. The methodology developed in the sequel is an extension of
the one proposed in [29] in the framework of immiscible compressible two-phase flow model belonging to the
class of [1] (we refer the readers to references [13, 2, 21, 19, 23, 18, 14] for the two-phase flow framework).

More precisely, the present work concerns some innovative numerical strategy in order to handle numerical
approximations of solutions of the immiscible three-phase flow model introduced in [25], extended to an un-
determined number of phase in [24], and partially investigated in [6]. The latter model aims at computing
velocities, temperatures, pressures and statistical fractions of an eleven-equation model. The mass, momen-
tum and energy balance equations are written for each phase, and they are complemented by two PDEs
corresponding to the governing equations of statistical fractions. Obviously, EOS must be introduced within
each phase, and closure laws must be defined in order to account for interfacial transfers between phases.
In practice, since shock patterns arise in the considered flows, the model must be such that it is well posed
as an initial value problem. In addition, jump conditions must be uniquely defined. This is not totally
obvious due to the presence of first-order non-conservative terms in the closed set of PDEs. Retaining the
latter constraints, in order to have a suitable model for the considered flows, we end up with the following
specifications for the three-phase flow model:

(i) Shock relations are well defined (C1),
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(ii) An entropy inequality holds for smooth solutions of the whole model (C2),

(iii) Fast transients may be computed in a meaningful way (C3).

Actually, as recalled in section 2, the governing set of PDEs first requires a relevant definition of the interfacial
velocity Vi, and of interfacial pressures Πk,l. We briefly recall now the modeling strategy introduced in [25],
which is grounded on the one introduced for the two-phase flow framework in [10]. First of all, the following
form of the interfacial velocity Vi is assumed, as a convex combination of phasic velocities Uk:

VipW q “
ÿ

k

βkpW qUk (1)

(where W stands for the state variable and the βk are positive functions that remains to be prescribed),
which is a priori meaningful since it is Galilean invariant when:

ÿ

k

βkpW q “ 1. This form is also expected

from a phenomenological point of view. Then, the entropy inequality governing the entropy of the mixture
(C2) enables to exhibit a unique set of interfacial pressures Πk,l, which only depend on the βkpW q (see
appendix G in [25]). This in turn allows to propose a class of admissible source terms SpW q (depending on
the local state variable W ), in order to comply with the entropy inequality (C2). The latter source terms
require physically relevant relaxation time scales, to be found in the two-phase flow literature.

Eventually, it only remains to propose a suitable form of functions βkpW q in order to comply with condition
(C1). This is achieved in practice by enforcing the linearly degenerate structure to the field associated with
eigenvalue λ “ Vi. It turns out that, as a result, the third condition (C3) will be guaranteed, assuming a

weak condition on the parameter Mk “
Uk ´ VipW q

ck
, that is:

|Mk| ‰ 1. (2)

Thus, the paper is organized as follows. The full model , including all closure laws, is first recalled in section
2, together with its main properties. Then, focus is given in section 3 on the true relaxation process associ-
ated with source terms. Afterwards, section 4 will detail the numerical approach which relies on a two-step
explicit/implicit method, where the convective part of the model is estimated first, using an explicit scheme,
while the second step takes all source terms into account in an linear-implicit way. The explicit strategy in
step 1 enables to define a time step which in some sense guarantees an optimal accuracy of fast waves. The
implicit algorithm proposed in step 2 is derived from the analysis conducted in section 3, and its properties
are given. The last section provides results of some numerical experiments, including some numerical study
of convergence with respect to the mesh size.

1 The immiscible three-phase flow model [25]
We consider an immiscible, compressible, non-equilibrium, three-phase flow model. In the application section
4, phase 1 will correspond to a liquid metal, phase 2 to liquid water and phase 3 to water vapour. First, as
the model is assumed to be immiscible, we have the structural constraint:

α1 ` α2 ` α3 “ 1 . (3)

where @k P J1, 3K , αk Ps0, 1r denote the statistical fractions of each phase. Moreover, since the model is in
full disequilibrium, each phase k P J1, 3K is given a velocity Uk, a density ρk, a partial density mk “ αkρk, a
pressure Pk and a specific entropy sk. The total energies are then defined as:

Ek “ ρkpϵkpPk, ρkq ` U2
k {2q, (4)

where ϵkpPk, ρkq denotes the internal energy of each phase k. The internal energy of phase k is bind to
pressure Pk and density ρk through an Equation of State (EoS). The state variable W writes as:

W “ pα2, α3,m1,m1U1, α1E1,m2,m2U2, α2E2,m3,m3U3, α3E3q⊺ . (5)
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Then, the model reads (see [25]):
$
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’

’

’

’

’

%

Bαk

Bt
` VIpW q ¨ ∇αk “ Sα

k pW q ,

Bmk

Bt
` ∇ ¨ pmkUkq “ Sm

k pW q ,

BmkUk

Bt
` ∇ ¨ pmkUk b Uk ` αkPkI q `

3
ÿ

l“1,l‰k

ΠklpW q∇αl “ SU
k pW q ,

BαkEk

Bt
` ∇ ¨ pαkUkpEk ` Pkqq ´

3
ÿ

l“1,l‰k

ΠklpW q
Bαl

Bt
“ SE

k pW q ,

(6)

where I is the identity matrix. Moreover, VI and Πkl respectively stand for the interfacial velocity and the
interfacial pressures. Those interfacial terms, alongside source terms Sα

k pW q, Sm
k pW q, SU

k pW q and SE
k pW q,

have to be specified in order to close the model. To do so, the total entropy ηpW q paired with its entropy-flux
FηpW q, are introduced:

"

η “ m1s1pP1, ρ1q ` m2s2pP2, ρ2q ` m3s3pP3, ρ3q ,
Fη “ m1U1s1pP1, ρ1q ` m2U2s2pP2, ρ2q ` m3U3s3pP3, ρ3q .

(7)

Definitions of the phasic temperature Tk, the phasic Gibbs free energy µk, the phasic enthalpy hk and the
phasic celerity ck are also recalled:

1

Tk
“

BPk
pskpPk, ρkqq|ρk

BPk
pϵkpPk, ρkqq|ρk

(8)

µk “ hk ´ TkSk (9)

hk “ ϵkpPk, ρkq `
Pk

ρk
(10)

c2k BPk
pskpPk, ρkqq|ρk

` Bρk
pskpPk, ρkqq|Pk

“ 0 (11)

The strategy for closing the model is to ensure that it respects the following mathematical properties: hy-
perbolicity of the convective part (i.e. supposing Sα

k “ Sm
k “ SU

k “ SE
k “ 0.), uniqueness of jump relations

and compliance to an entropy inequality for the smooth solutions of the model. To do so, we first choose the
interfacial velocity VI as:

VI “ U1 , (12)

which leads to the following unique interfacial pressure definition, owing to the entropy inequality (see
Appendix G in [25]):

"

Π12 “ Π21 “ Π23 “ P2 ,
Π13 “ Π31 “ Π32 “ P3.

(13)

Before closing the source terms, let us recall some properties of the convective part of the model in a one
dimensional framework.

Reminding that system (6) is invariant under frame rotation, we introduce a unit vector n⃗ in R3 and define
xn “ x ¨ n n for k P J1, 3K:

wk “ Uk ¨ n (14)
fη “ Fη ¨ n (15)

Getting rid of transverse variations and considering null source terms, we end up with the following system
in the one dimensional framework:

$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

Bαk

Bt
` w1Bxnαk “ 0 ,

Bmk

Bt
` Bxn

pmkwkq “ 0 ,

Bmkwk

Bt
` Bxnpmk w2

k ` αkPkq `

3
ÿ

l“1,l‰k

ΠklpW qBxnαl “ 0 ,

BαkEk

Bt
` Bxn

pαkwkpEk ` Pkqq ´

3
ÿ

l“1,l‰k

ΠklpW q
Bαl

Bt
“ 0 .

(16)
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Then, according to [25, 26], this sub-system has the following property:

Property 1 (Convective part of the three-phase flow model in a 1D framework) :

If @k P J1, 3K, αk stay in s0, 1r and |wk ´ w1| ‰ ck, then:

• System (16) is symmetrizable and its associated eigenvalues are:

λ1,2,3pW,nq “ w1 , λ4pW,nq “ w2 , λ5pW,nq “ w3 ,
λ6,7pW,nq “ w1 ˘ c1 , λ8,9pW,nq “ w2 ˘ c2 , λ10,11pW,nq “ w3 ˘ c3 .

(17)

• Fields associated with λk pk “ 6´11q are Genuinely Non Linear (GNL). Other fields are Linearly De-
generate (LD). Riemann invariants within each wave can be found in [25] Appendix B and Appendix
E.

• Jump relations associated with system (16) are unique (see [25] Appendix C).

• Smooth solutions of (16) satisfy:
Btη ` Bxnfη “ 0 (18)

˝

Property 1 can be extended to a three-dimensional framework, see [25] and [6].

Then, coming back to the three-dimensional framework and therefore system (6), source terms have to be
closed. The strategy for closing those terms is to select a form so that smooth solutions of system (6) comply
with the entropy inequality:

Btη ` ∇ ¨ Fη ě 0. (19)

We define Vkl and Hkl as:

Vkl “
Uk ` Ul

2
, (20)

Hkl “
Uk ¨ Ul

2
. (21)

It may be checked that the following closure laws for drag effects, mass transfer, heat transfer and pressure
relaxation:

@k P J1, 3K:

Sα
k “

3
ÿ

l“1,l‰k

KklpW qpPk ´ Plq , (22)

Sm
k “

3
ÿ

l“1,l‰k

ΛklpW q

ˆ

µl

Tl
´

µk

Tk

˙

, (23)

SU
k “

3
ÿ

l“1,l‰k

dklpW qpUl ´ Ukq `

3
ÿ

l“1,l‰k

VklΛklpW q

ˆ

µl

Tl
´

µk

Tk

˙

, (24)

SE
k “

3
ÿ

l“1,l‰k

qklpW qpTl ´ Tkq `

3
ÿ

l“1,l‰k

Vkl ¨ pUl ´ UkqdklpW q `

3
ÿ

l“1,l‰k

HklΛklpW q

ˆ

µl

Tl
´

µk

Tk

˙

, (25)

comply with inequality (19). These closures are the straightforward counterpart of two-phase closure laws.
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The positive functions KklpW q, ΛklpW q, dklpW q and qklpW q are defined as:

KklpW q “
αkαl

P0τPklpW q
, (26)

ΛklpW q “
mkml

pmk ` mlqΓ0τmkl pW q
, (27)

dklpW q “
mkml

pmk ` mlqτUklpW q
, (28)

qklpW q “
mkmlCvkCvl

pmkCvk ` mlCvlqτ
T
klpW q

. (29)

Quantities CVk
denote the specific heat capacities at constant volume. Π0 is a positive reference pressure, Γ0

is a positive reference fraction of
µ

T
.

For each phasic connection k ´ l, τPklpW q, τmkl pW q, τTklpW q and τUklpW q are the symmetric strictly positive
relaxation time scales related to the return to equilibrium of the associated thermodynamic quantity between
phase k and l. Closure laws for the relaxation time scales can be found in the two-phase flow literature, see
among others [17, 7] for the pressure, [33] for the velocity, [43] for the temperature and [4] for mass transfer.

No assumption about these strictly positive time scales is imposed, either when studying the overall relax-
ation process, or when constructing the numerical scheme for processing the source terms.

The previous closing strategy is detailed in [25] and has been used for other multiphase flow models, see
among others [35], [21], [19], [10], [31], [28], [42] for two-phase and three-phase flow models.

We focus in the following section on the expected inner relaxation process.

2 Relaxation process in the model
This part aims at studying the expected inner relaxation process inside the model associated with the source
terms (22), (23), (24) and (25). First, as phase 1 is in this paper supposed to be a liquid metal, no phase
change with phase 2 (liquid water) and 3 (water vapour) can occur physically, which is equivalent to take:

Λ12pW q “ Λ13pW q “ 0 . (30)

For clarity, we set:
@k P J1, 3K, gk “

µk

Tk
(31)

Then, we suppose the following:

@k P J1, 3K , @Ψ P tαk, Pk, Uk,mkUk, αkEku , ∇Ψ “ 0 , (32)

and we set:
@pk, lq P J1, 3K2 , @Φk P tUk, Pk, Tk, gku ,∆Φkl “ Φk ´ Φl. (33)

Then, owing to (32) and (30) system (6) reduces to an ODE system:
$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

Bαk

Bt
“

3
ÿ

l“1,l‰k

KklpW q∆Pkl ,

Bmk

Bt
“ ´

3
ÿ

l“1,l‰k

ΛklpW q∆gkl ,

BmkUk

Bt
“ ´

3
ÿ

l“1,l‰k

dklpW q∆Ukl ´

3
ÿ

l“1,l‰k

VklΛklpW q∆gkl ,

BαkEk

Bt
´

3
ÿ

l“1,l‰k

ΠklpW q
Bαl

Bt
“ ´

3
ÿ

l“1,l‰k

qklpW q∆Tkl ´

3
ÿ

l“1,l‰k

VkldklpW q∆Ukl ´

3
ÿ

l“1,l‰k

HklΛklpW q∆gkl .

(34)
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Considering hypothesis (30), and using the definition of Vkl, of Hkl, of the sound speed ck and of the
Gibbs free energy µk, then, for each phase k P J1, 3K, equations of evolution of velocity Uk, pressure Pk,
temperature Tk and fraction gk can be derived from system (34). Therefore, governing equations of the
gaps: ∆U12,∆U13,∆P12,∆P13,∆T12,∆T13,∆g23 can be obtained. Those equations can be rewritten as one
equation of evolution of the quantity:

∆r “ p∆U12,∆U13,∆P12,∆P13,∆T12,∆T13,∆g23q⊺ P R7 . (35)

The equation of evolution associated with ∆r reads as:

Bt p∆rq “ ´RrelaxpW q∆r , (36)

where the non symmetric matrix Rrelax in M7pRq takes the form:

Rrelax “

ˆ

RUU 0
RU Rthermo

˙

, (37)

where RUU P M2pRq, Rthermo P M5pRq and RU P M5,2pRq.

All coefficients of Rrelax can be found in Appendix 2.

The velocity relaxation process has a peculiar role in the global relaxation process. A similar result has been
found in the framework of a two-phase flow model, see [29].

Alongside equation (36), when considering hypothesis (30) and (32), the following conservation laws can be
deduced from system (34):

Bt pm1q “ 0 (38)
Bt pm2 ` m3q “ 0 (39)
Bt pm1U1 ` m2U2 ` m3U3q “ 0 (40)
Bt pα1E1 ` α2E2 ` α3E3q “ 0 (41)

Hence, we have four stationary constraints (38), (39), (40), (41), plus seven unsteady equations embedded in
(36).

From equation (36), effective relaxation conditions can be obtained for model (6).

Property 2 (Necessary conditions for effective relaxation of the three-phase flow model):

• The velocity relaxation process occurs when:

trpRUU q ą 0 , (42)
detpRUU q ą 0 . (43)

• We note, for i P J1, 5K, λi the real or complex conjugate eigenvalues of Rthermo. If the thermodynamic
relaxation process is effective, then we have:

Σ1 “ trpRthermoq ą 0 , (44)

Σ2 “
ÿ

iăj

λiλj ą 0 , (45)

Σ3 “
ÿ

iăjăk

λiλjλk ą 0 , (46)

Σ4 “
ÿ

iăjăkăl

λiλjλkλl ą 0 , (47)

Σ5 “ detpRthermoq ą 0 , (48)

˝
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Proof. The proof reads as follows:

• First item of Property 2:

i) if the velocity relaxation occurs, then the real parts of the two eigenvalues l1 and l2 of matrix RUU

are strictly positive. Then, the two conditions (42) and (43) are easily verified.
ii) Moreover, if conditions (42) and (43) are verified, it is trivial that both real parts of l1 and l2 are

positive.

Besides, if mass transfer between phase 2 and 3 is neglected, i.e. Λ23 “ 0, conditions (42) and (43)
always stand true, since dkl ą 0 and trpRUU q and detpRUU q read:

trpRUU q “
1

m1
pd12 ` d13q `

1

m2
pd12 ` d23q `

1

m3
pd13 ` d23q ą 0

detpRUU q “

„

1

m1m2
`

1

m1m3
`

1

m2m3

ȷ

pd12d13 ` d12d23 ` d13d23q ą 0

• If the thermodynamic relaxation process is effective, then the real part of the five eigenvalues of Rthermo,
λi, i P J1, 5K is positive. The five coefficients Σ1, Σ2, Σ3, Σ4 and Σ5 write:

Σ1 “ λ1 ` λ2 ` λ3 ` λ4 ` λ5 ,

Σ2 “ λ1λ2 ` λ1λ3 ` λ1λ4 ` λ1λ5 ` λ2λ3 ` λ2λ4 ` λ2λ5 ` λ3λ4 ` λ3λ5 ` λ4λ5 ,

Σ3 “ λ1λ2λ3 ` λ1λ2λ4 ` λ1λ2λ5 ` λ1λ3λ4 ` λ1λ3λ5 ` λ1λ4λ5 ` λ2λ3λ4 ` λ2λ3λ5 ` λ2λ4λ5 ` λ3λ4λ5 ,

Σ4 “ λ2λ3λ4λ5 ` λ1λ3λ4λ5 ` λ1λ2λ4λ5 ` λ1λ2λ3λ5 ` λ1λ2λ3λ4 ,

Σ5 “ λ1λ2λ3λ4λ5 .

As Rthermo lies in M5pRq, three cases can occur:

Case 1: All of the eigenvalues of Rthermo are real. Then, if all eigenvalues of Rthermo are positive, all
coefficients Σn, n P J1, 5K are trivially positive.

Case 2: One eigenvalue of Rthermo is real (let’s call it λ1) and the other four are complex and form two
pairs of complex conjugate (λ3 “ λ2 and λ5 “ λ4). Thus, coefficients Σn, n P J1, 5K write as:

Σ1 “ λ1 ` 2Repλ2q ` 2Repλ4q , (49)

Σ2 “ 2λ1Repλ2q ` 2λ1Repλ4q ` 4Repλ2qRepλ4q ` |λ2|2 ` |λ4|2 , (50)

Σ3 “ λ1

`

|λ2|2 ` |λ4|2
˘

` 4λ1Repλ2qRepλ4q ` 2|λ2|2Repλ4q ` 2|λ4|2Repλ2q , (51)

Σ4 “ 2λ1

`

Repλ4q|λ2|2 ` Repλ2q|λ4|2
˘

` |λ2|2|λ4|2 , (52)

Σ5 “ λ1|λ2|2|λ4|2 . (53)

If all the real parts of the eigenvalues of Rthermo are strictly positive, one can easily check from
the previous notations that:

@n P J1, 5K,Σn ą 0 (54)

Case 3: Three eigenvalues of Rthermo are real: λ1, λ2 and λ3. The remaining two are complex conjugate
λ5 “ λ4. Thus, coefficients Σn, n P J1, 5K write:

Σ1 “ λ1 ` λ2 ` λ3 ` 2Repλ4q , (55)

Σ2 “ pλ1λ2 ` λ1λ3 ` λ2λ3q ` 2 pλ1 ` λ2 ` λ3qRepλ4q ` |λ4|2 , (56)

Σ3 “ λ1λ2λ3 ` 2 pλ1λ2 ` λ1λ3 ` λ2λ3qRepλ4q ` pλ1 ` λ2 ` λ3q |λ4|2 , (57)

Σ4 “ 2λ1λ2λ3Repλ4q ` pλ1λ2 ` λ1λ3 ` λ2λ3q |λ4|2 , (58)

Σ5 “ λ1λ2λ3|λ4|2 . (59)

If all the real parts of the eigenvalues of Rthermo are strictly positive, we can once again easily
check from the previous notations that:

@n P J1, 5K,Σn ą 0 (60)
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Remark 2:

i) Necessary conditions of effective relaxation (44), (45), (46), (47), (48) cannot be proved to always stand
true for any EoS. They have therefore to be numerically tested. The counterpart of Property 2 has
been exhibited in the framework of an immiscible two-phase flow model in [29]. In the latter reference,
a detailed analysis of relaxation conditions is added when restricting to a mixture of stiffened gases
EoS.

ii) The inner relaxation process has also been studied in [30], considering the hybrid two-phase flow model
[31].

3 Numerical scheme
This parts aims at building a numerical strategy for computing approximate solutions of system (6). The
overall strategy is close to the one detailed in [6]. However, the scheme proposed in the sequel differs in its
treatment of the source terms.

First, let’s recall the global numerical approach presented in [6] for the current model, but also used in
[27, 12], among others, for a two-phase flow framework. This strategy consists in two steps:

• Compute an approximate solution of the following subsystem associated with the convective part of
the model:

$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

Bαk

Bt
` VIpW q ¨ ∇αk “ 0 ,

Bmk

Bt
` ∇ ¨ pmkUkq “ 0 ,

BmkUk

Bt
` ∇ ¨ pmkUk b Uk ` αkPkI q `

3
ÿ

l“1,l‰k

ΠklpW q∇αl “ 0 ,

BαkEk

Bt
` ∇ ¨ pαkEkUk ` αkPkUkq ´

3
ÿ

l“1,l‰k

ΠklpW q
Bαl

Bt
“ 0 ,

(61)

using an explicit Riemman solver adapted for non-conservative products. This first step fully deter-
mines the time step ∆t. Details of this step can be found in [6].

• Then, solve with a linear-implicit scheme on a time step ∆t, the stiff system (34). It is the counterpart
of (6) without the convective terms. In [6], this step is conducted with a fractional step approach, which
decouples all relaxation effects for velocity, pressure, temperature, Gibbs free energy. The new approach
proposed here follows the same strategy as the one in [29] in the framework of an immiscible two-phase
flow model [1].

To begin with, as in [29], we take advantage of the block triangular structure of Rrelax. Indeed, as the
velocity relaxation is less coupled with the other relaxation effects, we choose to treat it beforehand with the
same method as the one presented in [6] and recalled in Appendix 3.

In the sequel, in order to ease notations, the instant right after the velocity relaxation will be referred as tn.

Then, (34) becomes:
$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

Bαk

Bt
“

3
ÿ

l“1,l‰k

KklpW q∆Pkl ,

Bmk

Bt
“ ´

3
ÿ

l“1,l‰k

ΛklpW q∆gkl ,

BmkUk

Bt
“ ´

3
ÿ

l“1,l‰k

VklΛklpW q∆gkl ,

BαkEk

Bt
´

3
ÿ

l“1,l‰k

ΠklpW q
Bαl

Bt
“ ´

3
ÿ

l“1,l‰k

qklpW q∆Tkl ´

3
ÿ

l“1,l‰k

HklΛklpW q∆gkl .

(62)
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We also have the conservation law of the sum of the total energies:

Bt

3
ÿ

k“1

αkEk “ 0 (63)

From system (62), one can obtain:

mkBt

ˆ

U2
k

2

˙

“ ´Uk

ÿ

l‰k

pVkl ´ UkqΛklpW q∆gkl . (64)

Thus, using (20), we have:

Bt

ˆ

1

2
mkU

2
k

˙

“ ´
ÿ

l‰k

HklΛklpW q∆gkl . (65)

Therefore, from (62), we get:

Bt pmkϵkq ´

3
ÿ

l“1,l‰k

ΠklpW q
Bαl

Bt
“ ´

3
ÿ

l“1,l‰k

qklpW q∆Tkl . (66)

Then, a conservation law for the sum of the internal energies ϵk weighted by the partial densities mk can be
deduced and reads:

Bt

˜

3
ÿ

k“1

mkϵk

¸

“ 0 . (67)

We also recall that the immiscible constraint (3) always stands true and can be seen as a stationary constraint:

Bt pα1 ` α2 ` α3q “ 0 . (68)

Next, as in the previous part, an evolution equation of the quantity:

∆thermo “ p∆P12,∆P13,∆T12,∆T13,∆g23q⊺ , (69)

is constructed from (62):
Bt p∆thermoq “ ´Rthermo∆thermo , (70)

where Rthermo is the sub-matrix of Rrelax P M5pRq arising in (37). We recall that coefficients of matrix
Rrelax are given in Appendix 2. Alongside (70) and still considering (67) and (3), the following can also
be obtained from (62):

Bt pm1q “ 0 (71)
Bt pm2 ` m3q “ 0 (72)
Bt pm1U1q “ 0 (73)
Bt pm2U2 ` m3U3q “ 0 (74)

To summarize, we end up with eleven unknowns, six steady constraints (63), (67), (71), (72), (73), (74) and
the set of ODEs (70) Eventually, the new algorithm writes as:

Algorithm: (Coupled P-T-g algorithm)

Step 1: Estimate the evolution of ∆thermo through (70) by using an Euler implicit scheme with Rthermo frozen
at time tn:

∆n`1
thermo “ pI ` ∆tRn

thermoq
´1

∆n
thermo. (75)

Step 2: Setting: M̃n “ mn
2 ` mn

3 , compute the partial densities at time tn`1:
$

’

’

’

&

’

’

’

%

mn`1
1 “ mn

1

mn`1
2 “

M̃n

1 `
pM̃n´mn

2 q

mn
2

expp
∆gn`1

23

τmn
23 Γ0

∆tq
ą 0

mn`1
3 “ M̃n ´ mn`1

2

(76)

Thus complying with the steady constraints (71), (72).
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Step 3: Write:

Pn`1
2 “ Pn`1

1 ´ ∆Pn`1
12 , (77)

Pn`1
3 “ Pn`1

1 ´ ∆Pn`1
13 , (78)

Tn`1
2 “ Tn`1

1 ´ ∆Tn`1
12 , (79)

Tn`1
3 “ Tn`1

1 ´ ∆Tn`1
13 , (80)

(81)

and note, with help of (67):

ξn :“
3

ÿ

k“1

pmkϵkqn “

3
ÿ

k“1

pmkϵkqn`1. (82)

Then, find Pn`1
1 and Tn`1

1 in the admissible range, solutions of the implicit non-linear system com-
posed of the discrete counterpart of (67):

mn`1
1 ϵ1pPn`1

1 , Tn`1
1 q ` mn`1

2 ϵ2pPn`1
2 , Tn`1

2 q ` mn`1
3 ϵ3pPn`1

3 , Tn`1
3 q “ ξn , (83)

and the discrete counterpart of (3):

mn`1
1

ρ1pPn`1
1 , Tn`1

1 q
`

mn`1
2

ρ2pPn`1
2 , Tn`1

2 q
`

mn`1
3

ρ3pPn`1
3 , Tn`1

3 q
“ 1 . (84)

Step 4: Update local variables Pn`1
2 , Pn`1

3 , Tn`1
2 , Tn`1

3 , αn`1
1 , αn`1

2 , αn`1
3 :

Pn`1
2 “ Pn`1

1 ´ ∆Pn`1
12 , (85)

Pn`1
3 “ Pn`1

1 ´ ∆Pn`1
13 , (86)

Tn`1
2 “ Tn`1

1 ´ ∆Tn`1
12 , (87)

Tn`1
3 “ Tn`1

1 ´ ∆Tn`1
13 , (88)

αn`1
1 “

mn`1
1

ρ1pPn`1
1 , Tn`1

1 q
, (89)

αn`1
2 “

mn`1
2

ρ2pPn`1
2 , Tn`1

2 q
, (90)

αn`1
3 “ 1 ´ αn`1

1 ´ αn`1
2 “

mn`1
3

ρ3pPn`1
3 , Tn`1

3 q
. (91)

Step 5: Then, setting: Γ23 “ Λ23∆g23, compute Un`1
2 and Un`1

3 solutions of:
$

’

&

’

%

pm2U2qn`1 ´ pm2U2qn “ ∆t
Γn`1
23

2
pUn`1

2 ` Un`1
3 q ,

pm3U3qn`1 ´ pm3U3qn “ ´∆t
Γn`1
23

2
pUn`1

2 ` Un`1
3 q ,

(92)

Step 6: Update the total energies as:
$

’

’

&

’

’

%

pα2E2qn`1 “ mn`1
2 ϵ2pPn`1

2 , Tn`1
2 q `

1

2
mn`1

2 pUn`1
2 q2 ,

pα3E3qn`1 “ mn`1
3 ϵ3pPn`1

3 , Tn`1
3 q `

1

2
mn`1

3 pUn`1
3 q2 ,

pα1E1qn`1 “ pα1E1qn ` pα2E2qn ` pα3E3qn ´ pα2E2qn`1 ´ pα3E3qn`1 ,

(93)

using conservation law (63).

˝

Property 3(The Coupled P-T-g algorithm):
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• If the discrete relaxation process is effective over time, then the principal minors Σi , i P J1, 5K of
matrix Rthermo are positive at each instant and at every point.

• For a mixture of three perfect gas (EoS), solutions of (83) and (84) exist and are unique inside their
definition domain. Moreover, (84) ensures that, for k P J1, 3K, αk stays in s0, 1r.

˝

The proof is similar to the one given in [29]. We briefly recall the main guidelines:

Proof.

• The first item is the discrete counterpart of Property 2. Indeed, if the thermodynamic relaxation is
effective at time tn, then the real parts of the eigenvalues of Rn

thermo are positive and therefore, (75)
ensures a contraction of ∆thermo.

• Consider a mixture of three perfect gases, k P t1, 3u:

Pk “ ρkpγk ´ 1qϵk , (94)
CvkTk “ ϵk . (95)

Thus equation (83) degenerates into:

mn`1
1 Cv1T

n`1
1 ` mn`1

2 Cv2pTn`1
1 ´ ∆Tn`1

12 q ` mn`1
3 Cv2pTn`1

1 ´ ∆Tn`1
13 q “ ξn , (96)

which can be solved directly and gives a positive Tn`1
1 .

Then, a classical function analysis of (84) shows that there exists a unique solution of Pn`1
1 which

lays inside its definition domain.

Remark: The first item of Property 3 can be seen as a way to numerically check if the relaxation process
is effective or not in a test case at any time and everywhere. Indeed, coefficients Σi, for i P J1, 5K correspond
to the coefficients of the characteristic polynomial of Rthermo:

P5pλq “ λ5 ´ Σ1λ
4 ` Σ2λ

3 ´ Σ3λ
2 ` Σ4λ ´ Σ5 , (97)

and thus can be identified to the principal minors of Rthermo. Those quantities Σi i P J1, 5K can be
calculated directly from Rthermo. In practice, we use Maxima [37], a computer algebra system to compute
Σi , i P J1, 5K.

4 Numerical Results:
This part can be broken down into two main subsections. The first one aims at testing only the new
algorithm presented above for treating the thermodynamic part of the source terms. On the other hand,
the second part is dedicated at confronting the new algorithm, coupled with the velocity relaxation
algorithm recalled in Appendix 3, and the convective solver taken from [6], to an experimental test case of
vapour explosion called KROTOS 44 [32]. Numerical results of this test case will also be compared to [6],
where a similar numerical simulation is conducted.

4.1 The homogeneous case
In this subsection, we consider a flow, such that:

@k P J1, 3K, Uk “ 0 , (98)
@k P J1, 3K, @Ψk P tαk, Pk, Tk, αkEku, ∇Ψ “ 0. (99)

It corresponds to a zero-dimensional flow where only the thermodynamic relaxation process takes place.
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Then we choose:
$

’

’

&

’

’

%

P0 “ α0
1α

0
2

ˆ

ρ01pc01q2

α0
1

`
ρ02pc02q2

α0
2

˙

` α0
1α

0
3

ˆ

ρ01pc01q2

α0
1

`
ρ03pc03q2

α0
3

˙

` α0
2α

0
3

ˆ

ρ02pc02q2

α0
2

`
ρ03pc03q2

α0
3

˙

Γ0 “

ˇ

ˇ

ˇ

ˇ

m0
3pγ2Cv2 `

ϵ20
T 0
2

p2 `
ϵ20

Cv2T
0
2

qq ` m0
2pγ3Cv3 `

ϵ30
T 0
3

p2 `
ϵ30

Cv3T
0
3

qq

ˇ

ˇ

ˇ

ˇ

(100)

All relaxation time scales are supposed to be constant in this sub-section. Moreover, they are taken to be
equal on each phasic link:

@Ψ P P, T : τΨ12 “ τΨ13 “ τΨ23 “ τΨ , (101)

and
τm23 “ τm. (102)

Their values, the EoS coefficients within each phase and the initial conditions are given in Appendix 1.
Two test cases are computed. The only differences between case A and case B are the values of the
relaxation time scales.

Figures 1, 2, 3 and 4 show that the effective relaxation time scale of the global system is significantly
larger than the biggest relaxation time scale among τP , τT , τm, which is 10´2s here. A similar behaviour
has already been pointed out for a two-phase flow model in [29] and a detailed analysis is proposed in
Appendix A of [34] for a two-phase flow model without mass transfer. Moreover, even for a coarse time
step, the method captures rather well the behaviour of the solution for both cases. Figures 1 and 3 show
the impact of the choice of the pressure relaxation time scale on the behaviour of the solution. Up to the
author, it advocates to avoid making strong assumptions on the relaxation time scales, when aiming at a
fair representation of the transient regime. We emphasize that test case A cannot be computed using the
fractional step algorithm presented in [6].
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Figure 1: Pressure evolution for case A (τP “ 10´5s, τT “ 10´3s and τm “ 10´2s) computed with two
different time stepping: ∆t “ 10´8s and ∆t “ 10´3s (dashed lines).
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Figure 2: Temperature evolution for case A (τP “ 10´5s, τT “ 10´3s and τm “ 10´2s) computed with two
different time stepping: ∆t “ 10´8s and ∆t “ 10´3s (dashed lines).
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Figure 3: Pressure evolution for case B (τP “ 10´8s, τT “ 10´3s and τm “ 10´2s) computed with two
different time stepping: ∆t “ 10´8s and ∆t “ 10´3s (dashed lines).
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Figure 4: Temperature evolution for case B (τP “ 10´8s, τT “ 10´3s and τm “ 10´2s) computed with two
different time stepping: ∆t “ 10´8s and ∆t “ 10´3s (dashed lines).

Eventually, a convergence test is presented in Figure 5. As no analytical solution of system (62) can be
exhibited, the solution is compared to a refined computation, with a time step dtcv “ 10´10s for a
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Figure 5: Convergence curve on the pressure P1 in case A.

simulation of 10s. The error of a quantity κ, Eκpdt, t “ ttransientq is thus defined as:

Eκpdt, t “ ttransientq “
|κdtpt “ ttransientq ´ κdtcv pt “ ttransientq|

κdtcv pt “ ttransientq
, (103)

with κdtpt “ ttransientq the value of κ at time t “ ttransient computed with the numerical scheme presented
in section 3 using a time step dt. Figure 5 shows that a convergence rate close to 1 is retrieved.
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4.2 Application to KROTOS 44 set up [32]
This section aims at simulating a KROTOS 44 type set up. The set up consists in a one dimension shock
tube in water where droplets of liquid corium (phase 1) interact with liquid water (phase 2) and water
vapour (phase 3), as shown in Figure 6.

Figure 6: Scheme of the KROTOS-like shock tube

First, at time t “ 0, velocities are supposed to be null:

@x P r0.0, 3.75s, @k P J1, 3K, Ukpx, t “ 0q “ 0 (104)

Moreover, at time t “ 0, pressures are initialized in the high pressure chamber, see (6), as:

@x P r0.0, 2.0s, @k P J1, 3K, Pkpx, t “ 0q “ 150 bar (105)

whereas in the low pressure chamber, they are set as:

@x P r2.0, 3.75s, @k P J1, 3K, Pkpx, t “ 0q “ 1 bar (106)

Introducing ϵlim “ 10´6, the initial conditions read:

Abscissa interval (m) α2 α3 T1 (K) T2 (K) T3 (K)

High pressure: x P r0.0, 2.0s 1 ´ 2ϵlim ϵlim 1000 1000 1000

Pure liquid: x Ps2.0, 2.15s 1 ´ 2ϵlim ϵlim 363 363 363

Interaction: x Ps2.15, 2.85s 0.884 0.09 2500 363 1000

Plug: x Ps2.85, 3.23s 0.835 - ϵlim 0.165 363 363 363

Cover gas: x Ps3.23, 3.75s ϵlim 1 ´ 2ϵlim 363 363 700

Besides, four numerical probes are set up:

• S1 is placed at the beginning of the pure liquid zone: x “ 2.05m,

• S2 is located at the beginning of the interaction zone: x “ 2.20m,

• S3 is situated at one third of the interaction zone: x “ 2.40m,

• S4 is positioned at two third of the interaction zone: x “ 2.60m.

16



Before going further on, as in [29], we need to introduce an evolution equation of the interfacial area A1 for
liquid corium droplets:

A1 “
6α1

D1
(107)

where D1 stands for the diameter of the corium droplets, which is initialized along the tube at time t “ 0
as: D1 “ 15mm. Indeed, as shown physically in [20] and numerically in [9, 6, 29], taking into account
droplet atomization is crucial in order to predict well the energy transfer between phases and therefore to
have numerical solutions close to the experimental data. The equation of evolution of the interfacial area
(see Appendix 4) and its numerical treatment are taken from [5].

We now need to specify for pk, lq P J1, 3K , l ą k the form of the relaxation time scales τUkl , τ
P
kl , τ

T
kl and τmkl .

On each phasic connection, their form is:

• Velocity relaxation time scales:

1

τU12
“

1

τU21
“

0.75Cdpm1 ` m2q}U1 ´ U2}

ρ1D1
; (108)

1

τU13
“

1

τU31
“

0.75Cdpm1 ` m3q}U1 ´ U3}

ρ1D1
; (109)

1

τU23
“

1

τU32
“

0.75Cdpm2 ` m3q}U2 ´ U3}

ρ3D3
. (110)

This expression of τUkl is derived from the Stokes formula [33]. Cdkl “ 24{Rekl is the drag coefficient.
The Reynolds number Rekl is defined as:

Re12 “
ρ2D1}U1 ´ U2}

µ2
(111)

Re13 “
ρ3D1}U1 ´ U3}

µ3
(112)

Re23 “
ρ2D3}U2 ´ U3}

µ2
(113)

D1 and D3 are the diameter of the corium droplets and the vapour droplets respectively. The corium
one is obtained through an interfacial area equation whereas the liquid vapour one is supposed
constant: D3 “ 15mm.

• Pressure relaxation time scales:

1

P0τP12
“

1

P0τP21
“

3

4πµ2
; (114)

1

P0τP13
“

1

P0τP31
“

3

4πµ3
; (115)

1

P0τP23
“

1

P0τP32
“

3

4πµ2
. (116)

(117)

where µ2 “ 2.82 .10´4 kgm´1s´1 and µ3 “ 1.8 .10´5 kgm´1s´1 are the dynamic viscosity of
respectively the liquid water and liquid vapour at 1 bar and 293K. It is the limit of the closure law
proposed in [17] for small diameter droplets.
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• Temperature relaxation time scales:

1

τT12
“

1

τT21
“

6α1Nu1λ1pm1Cv1 ` m2Cv2q

m1Cv1m2Cv2D
2
1

; (118)

1

τT13
“

1

τT31
“

6α1Nu1λ1pm1Cv1 ` m3Cv3
q

m1Cv1m3Cv3D
2
1

; (119)

1

τT23
“

1

τT32
“

6α3Nu3λ3pm2Cv2 ` m3Cv3
q

m2Cv2m3Cv3D
2
3

. (120)

(121)

where Nu1 “ 10, Nu3 “ 10 are the Nusselt number of the corium and the water vapour respectively
and λ1 “ 230 pWm´1K´1q and λ2 “ 0.6 pWm´1K´1q are the thermal conductivity of the corium
and liquid vapour respectively. This form is taken from [41, 40].

• Gibbs potential relaxation time scale τm23 is supposed to be constant:

τm23 “ τm “ 10´5s . (122)

Coefficient Γ0 is here taken as:

Γ0 “ max
xPs2.15,3.75r

ˆ
ˇ

ˇ

ˇ

ˇ

m0
3pγ2Cv2 `

ϵ20
T 0
2

p2 `
ϵ20

Cv2T
0
2

qq ` m0
2pγ3Cv3 `

ϵ30
T 0
3

p2 `
ϵ30

Cv3T
0
3

qq

ˇ

ˇ

ˇ

ˇ

pxq

˙

. (123)
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Figure 7: Evolution of the total pressure on station 2 (red lines) and 3 (black lines) for two meshes including
respectively 1000 cells and 10 000 cells.

As we can see on Figure 7, the total pressure Pmix “

3
ÿ

k“1

αkPk peaks at station 3 at 60, 9 MPa, which is

close to the measured total pressure interval in [32] (50 MPa to 60 MPa). A similar test case has been
computed in [6] but as the relaxation is supposed to be instantaneous for both pressure and velocity, the
pressure peak was far lower than the one computed here. We note that, oscillations come up at the
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beginning of the simulation, especially at station 3. Those oscillations occur as eigenvalues of the relaxation
matrix Rthermo become complex conjugate. The coarse mesh can hardly capture the structure after the
shock. The difference on the total pressure plateau between the two refined meshes (respectively 10 000
cells and 20 000 cells) is about 2% for station 3 and 1% for station 2.

Eventually, as shown in Figure 8, the droplet break-up is active throughout the simulation.
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Figure 8: Evolution of the difference We ´ Wec at station 3 with a mesh including 10 000 cells
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5 Conclusion:
When tackling vapour explosion applications, we may conclude that the algorithms presented in this article,
in order to account for source terms, enable us to obtain convergent approximations of solutions of the
three-phase flow model [25, 24], when the mesh is refined. We recall here that the former algorithms
detailed in reference [6] lead to a failure of the computer code, in a similar framework.

Obviously, the temptation is now great to extend the relaxation schemes developed in [11] for the
convective effect of the two-phase flow model [1] (respectively for a barotropic three-phase flow in [44]), to
the immiscible three-phase flow models with energy [25]. The reader is referred to [11] for a comparison of
the capabilities of schemes introduced in [45] and [46], when focusing on the two-phase flow model [1].

Moreover, more complex/realistic EoS might be considered in the second step on the algorithm, instead of
the simple SGG EoS considered herein. In that case, it would however remain to prove that existence and
uniqueness of the discrete solution of step 2 (in the admissible state space) would hold true.

Eventually, the authors emphasize again that in this work, no strong assumption on the relaxation time
scales underlies the model (such as in [16, 36, 15] for the two-phase flow framework), or the treatment of
the source terms (as in [39, 22, 38] for the two-phase flow framework). However, beyond this, it urges the
question of the accurate modeling of those relaxation time scales, and more generally the question of the
modeling of the source terms. Actually, few closure laws for the two-phase flow framework exist in the
literature, see for example [43, 33, 4, 17, 7]. Furthermore, we know that those time scales have a key role on
the transient of the flow, see Figures 1, 3 and Appendix A in [34]. Therefore, a detailed parametric study
on those relaxation time scales could lead to a better understanding of the inner relaxation process.
Moreover, other source terms than the ones used in this paper have been proposed in the literature, and an
attempt to compare some of them in the two-phase flow framework has been conducted in Chapter 2 of [8].
An extension of this study to the three-phase flow framework still remains to be achieved.
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Appendix 1: Numerical parameters

Phase 1 Phase 2 Phase 3
Cv 1.2872948262582229e+01 1.452904592629688e+03 4.441148752333071e+03
γ 2.2838590974110350e+01 1.614924811807376e+00 1.085507894797296e+00
Π̂ 1.8847923625716622e+09 3.563521398523755e+08 0.0
ϵ0 -1.3316200000000000e+05 0.0 0.0
s0 0.0 0.0 -4.769786773517021e+04

Table 1: EoS coefficients for all of the conducted simulations

P1pt “ 0q 1.0 bar

P2pt “ 0q 1.0 bar

P3pt “ 0q 1.0 bar

T1pt “ 0q 2500.0 K

T2pt “ 0q 363.0 K

T3pt “ 0q 1000.0 K

α1pt “ 0q 0.026

α2pt “ 0q 0.884

α3pt “ 0q 0.09

Table 2: Initial conditions for the homogeneous cases

Case A Case B

τP 1.0e-5 s 1.0e-8 s

τT 1.0e-3 s 1.0e-3 s

τm 1.0e-2 s 1.0e-2 s

Table 3: Numerical parameters for Case A and Case B in the homogeneous case.
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Appendix 2: Coefficients of the relaxation matrix
First, we define Rrelax as:

RrelaxpW q “

¨

˚

˚

˝

RUU pW q 0 0 0
RPU pW q RPP pW q RPT pW q rPgpW q

RTU pW q RTP pW q RTT pW q rTgpW q

rgU pW q⊺ rgP pW q⊺ rgT pW q⊺ rgpW q

˛

‹

‹

‚

. (124)

Matrices RUU pW q, RPU pW q, RPP , RPT pW q, RTU pW q, RTP pW q, RTT pW q are in M2pRq, whereas rPgpW q,
rTgpW q, rgU pW q, rgP pW q, rgT are in R2 and rg is a scalar. Coefficients of RUU pW qpW q write as follows:

rUU11
“

1

m1
d12 `

1

m2

ˆ

d12 ` d23 ´
Λ23

2
∆g23

˙

,

rUU12 “
1

m1
d13 ´

1

m2

ˆ

d23 ´
Λ23

2
∆g23

˙

,

rUU21
“

1

m1
d12 ´

1

m3

ˆ

d23 `
Λ23

2
∆g23

˙

,

rUU22
“

1

m1
d13 `

1

m3

ˆ

d13 ` d23 `
Λ23

2
∆g23

˙

.

(125)

Writing θk “ mk
Bϵk
BTk

ˇ

ˇ

ˇ

ˇ

ρk

, and:

F21 “ K12ρ
2
1

Bϵ1
Bρ1

ˇ

ˇ

ˇ

ˇ

T1

´ P2K12 ` p∆P12 ´ ∆P13qK23 ,

F31 “ K13ρ
2
1

Bϵ1
Bρ1

ˇ

ˇ

ˇ

ˇ

T1

´ P3K13 ´ p∆P12 ´ ∆P13qK23 ,

F22 “ ´pK12 ` K23qρ22
Bϵ2
Bρ2

ˇ

ˇ

ˇ

ˇ

T2

` P2pK23 ` K12q ,

F32 “ K23ρ
2
2

Bϵ2
Bρ2

ˇ

ˇ

ˇ

ˇ

T2

´ P2K23 ,

F23 “ K23ρ
2
3

Bϵ3
Bρ3

ˇ

ˇ

ˇ

ˇ

T3

´ P3K23 ,

F33 “ ´pK13 ` K23qρ23
Bϵ3
Bρ3

ˇ

ˇ

ˇ

ˇ

T3

` P3pK23 ` K13q .

Moreover, setting σk “ mk
Bϵk
BPk

ˇ

ˇ

ˇ

ˇ

ρk

, and:

G21 “ ´K12pρ1c1q2
Bϵ1
BP1

ˇ

ˇ

ˇ

ˇ

ρ1

` ∆P12K12 ` p∆P12 ´ ∆P13qK23 ,

G31 “ ´K13pρ1c1q2
Bϵ1
BP1

ˇ

ˇ

ˇ

ˇ

ρ1

` ∆P13K13 ´ p∆P12 ´ ∆P13qK23 ,

G22 “ pK12 ` K23qpρ2c2q2
Bϵ2
BP2

ˇ

ˇ

ˇ

ˇ

ρ2

,

G32 “ ´K23pρ2c2q2
Bϵ2
BP2

ˇ

ˇ

ˇ

ˇ

ρ2

,

G23 “ ´K23pρ3c3q2
Bϵ3
BP3

ˇ

ˇ

ˇ

ˇ

ρ3

,

G33 “ pK13 ` K23qpρ3c3q2
Bϵ3
BP3

ˇ

ˇ

ˇ

ˇ

ρ3

.
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Coefficients of the sub-matrices of RrelaxpW q read:

• RTU pW q “

rTU11
“ ∆U12

ˆ

d12 ` d23
2θ2

´
d12
2θ1

˙

´
d23
2θ2

∆U13 , (126)

rTU12 “ ∆U13

ˆ

d23
2θ2

´
d13
2θ1

˙

´
d23
2θ2

∆U12 , (127)

rTU21
“ ∆U12

ˆ

d23
2θ3

´
d12
2θ1

˙

´
d23
2θ3

∆U13 , (128)

rTU22
“ ∆U13

ˆ

d13 ` d23
2θ3

´
d13
2θ1

˙

´
d23
2θ3

∆U12 . (129)

(130)

• RTP pW q “

rTP11
“ ´

F21

θ1
`

F22

θ2
, (131)

rTP12
“ ´

F31

θ1
`

F32

θ2
, (132)

rTP21
“ ´

F21

θ1
`

F23

θ3
, (133)

rTP22
“ ´

F31

θ1
`

F33

θ3
. (134)

(135)

• RTT pW q “

rTT11
“

q12
θ1

`
q12 ` q23

θ2
, (136)

rTT12 “
q13
θ1

´
q23
θ2

, (137)

rTT21
“ ´

q23
θ3

`
q12
θ1

, (138)

rTT22
“

q13
θ1

`
q13 ` q23

θ3
. (139)

(140)

• rTgpW q “

rTg1 “
Λ23

θ2

˜

ϵ2 ` ρ2
Bϵ2
Bρ2

ˇ

ˇ

ˇ

ˇ

T2

¸

, (141)

rTg2 “ ´
Λ23

θ3

˜

ϵ3 ` ρ3
Bϵ3
Bρ3

ˇ

ˇ

ˇ

ˇ

T3

¸

. (142)

(143)

• RPU pW q “

25



rPU11
“ ∆U12

ˆ

d12 ` d23
2σ2

´
d12
2σ1

˙

´
d23
2σ2

∆U13 , (144)

rPU12
“ ∆U13

ˆ

d23
2σ2

´
d13
2σ1

˙

´
d23
2σ2

∆U12 , (145)

rPU21
“ ∆U12

ˆ

d23
2σ3

´
d12
2σ1

˙

´
d23
2σ3

∆U13 , (146)

rPU22 “ ∆U13

ˆ

d13 ` d23
2σ3

´
d13
2σ1

˙

´
d23
2σ3

∆U12 . (147)

(148)

• RPP pW q “

rPP11 “
1

m1

˜

pρ1c1q2K12 ` p
Bϵ1
BP1

ˇ

ˇ

ˇ

ˇ

ρ1

q´1pK23∆P13 ´ pK12 ` K23q∆P12q

¸

`
1

m2
pρ2c2q2pK12 ` K23q , (149)

rPP12
“

1

m1

˜

K13pρ1c1q2 ` p
Bϵ1
BP1

ˇ

ˇ

ˇ

ˇ

ρ1

q´1pK23∆P12 ´ pK23 ` K13q∆P13q

¸

´
1

m2
K23pρ2c2q2 , (150)

rPP21
“

1

m1

˜

pρ1c1q2K12 ` p
Bϵ1
BP1

ˇ

ˇ

ˇ

ˇ

ρ1

q´1pK23∆P13 ´ pK12 ` K23q∆P12q

¸

´
1

m3
K23pρ3c3q2 , (151)

rPP22 “
1

m1

˜

K13pρ1c1q2 ` p
Bϵ1
BP1

ˇ

ˇ

ˇ

ˇ

ρ1

q´1pK23∆P12 ´ pK23 ` K13q∆P13q

¸

`
1

m3
pK13 ` K23qpρ3c3q2 . (152)

(153)

• RPT pW q “

rPT11
“

q12
σ1

`
q12 ` q23

σ2
, (154)

rPT12 “
q13
σ1

´
q23
σ2

, (155)

rPT21
“ ´

q23
σ3

`
q12
σ1

, (156)

rPT22
“

q13
σ1

`
q13 ` q23

σ3
. (157)

(158)

• rPgpW q “

rPg1 “
Λ23

σ2

˜

ϵ2 `
P2

ρ2
´ ρ2c

2
2

Bϵ2
BP2

ˇ

ˇ

ˇ

ˇ

ρ2

¸

, (159)

rPg2 “ ´
Λ23

σ3

˜

ϵ3 `
P3

ρ3
´ ρ3c

2
3

Bϵ3
BP3

ˇ

ˇ

ˇ

ˇ

ρ3

¸

. (160)

(161)

• rgU pW q “

rgU1 “ ´
1

2ρ2T2

ˆ

1

σ2
´

ρ2h2

θ2

˙

rd12∆U12 ` d23p∆U12 ´ ∆U13qs `
d23

2ρ3T3

ˆ

1

σ3
´

ρ3h3

θ3

˙

r∆U12 ´ ∆U13s ,

(162)

rgU2 “ ´
d23

2ρ2T2

ˆ

1

σ2
´

ρ2h2

θ2

˙

p∆U12 ´ ∆U13q `
1

2ρ3T3

ˆ

1

σ3

ρ3h3

θ3

˙

rd13∆U13 ` d23p∆U13 ´ ∆U12qs . (163)

(164)
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• rgP pW q “

rgP1
“ ´

1

ρ2T2

ˆ

G22

σ2
´

ρ2h2F22

θ2T2

˙

`
1

ρ3T3

ˆ

G23

σ3
´

ρ3h3F23

θ3T3

˙

, (165)

rgP2
“ ´

1

ρ2T2

ˆ

G32

σ2
´

ρ2h2F32

θ2T2

˙

`
1

ρ3T3

ˆ

G33

σ3
´

ρ3h3F33

θ3T3

˙

. (166)

(167)

• rgT pW q “

rgT1
“ ´

1

ρ2T2

ˆ

1

σ2
´

ρ2h2

θ2T2

˙

pq12 ` q23q ´
q23
ρ3T3

ˆ

1

σ3
´

ρ3h3

θ3 ´ T3

˙

, (168)

rgT2 “
q23
ρ2T2

ˆ

1

σ2
´

ρ2h2

θ2T2

˙

`
1

ρ3T3

ˆ

1

σ3
´

ρ3h3

θ3T3

˙

pq13 ` q23q . (169)

(170)

• rgpW q “

´ Λ23r
1

ρ2T2

˜

h2

σ2
´

ρ2c
2
2

σ2

Bϵ2
BP2

ˇ

ˇ

ˇ

ˇ

ρ2

´
ρ2h2

θ2T2

˜

ϵ2 ` ρ2
Bϵ2
Bρ2

ˇ

ˇ

ˇ

ˇ

T2

¸¸

`
1

ρ3T3

˜

h3

σ3
´

ρ3c
2
3

σ3

Bϵ3
BP3

ˇ

ˇ

ˇ

ˇ

ρ3

´
ρ3h3

θ3T3

˜

ϵ3 ` ρ3
Bϵ3
Bρ3

ˇ

ˇ

ˇ

ˇ

T3

¸¸

s

(171)

Appendix 3: Velocity relaxation algorithm
The sub-system that characterizes this step can be written as follows:

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

Btαk “ 0
Btmk “ 0

Bt pmkUkq “ ´

3
ÿ

l“1,l‰k

dklpW q∆Ukl

Bt pαkEkq “ ´

3
ÿ

l“1,l‰k

VklpW q ¨ dklpW q∆Ukl

(172)

From (172), one can obtain the following equation:

Bt∆U “ ´R̂UU∆U, (173)

with R̂UU P M2pRq that corresponds to the matrix RUU of (125) with ∆g23 “ 0;

The algorithm used for computing approximate solutions for the velocity relaxation step is identical to
Algorithm 3.3.1.2 presented in [6]. It consists, on each cell of the mesh, in five steps:

• Step 1: Initialize the vector of velocity differences at time tn´ (right after the convective step):
∆Un´ “ p∆Un´

12 ,∆Un´
13 q⊺ and matrix R̂UU at time tn´.

• Step 2: Compute ∆Un such as:
´

I ` ∆tnR̂UU pWn´q

¯

∆Un “ ∆Un´ , (174)

with I the identity matrix in M2pRq.
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• Step 3: Compute Un
1 using the total momentum conservation:

Un
1 “

ř3
k“1 pmkUkq

n´
` mn´

2 ∆Un
12 ` mn´

3 ∆Un
13

pm1 ` m2 ` m3q
n´

. (175)

• Step 4: Update Un
2 and Un

3 as:

Un
2 “ Un

1 ´ ∆Un
12 ; Un

3 “ Un
1 ´ ∆Un

13 . (176)

• Step 5: Update the total energy by integrating the evolution equation of the total energy of system
(172):

pαkEkq
n

“ pαkEkq
n´

´ ∆t
3

ÿ

l“1,l‰k

dkl pWn´q

2

´

pUn
k q

2
´ pUn

l q
2
¯

(177)

Appendix 4: Interfacial area
The definition of an interfacial area A1 for the phase 1 (corium) is needed in order to capture the behaviour
of the solution [20, 3, 9]:

A1 “
6α1

D1
(178)

Its equation of evolution is supposed to be:

BA1

Bt
` ∇pA1U1q “ gpA1,W q; (179)

with, see [5, 41]:

gpA1,W q “ C0
A 2

1

6α1
p
ρ1
ρ2

q1{2}U1 ´ U2}fpWeq; (180)

where the coefficient C0 “ 0.245 and We the Weber number is defined as follows:

We “
ρ1}U1 ´ U2}2D1

σ1
(181)

with σ1 “ 73 .10´3pN.m´1q a reference surface tension [40] . Moreover f(We) is defined as:

fpWeq “ 1 , if We ą Wec ; fpWeq “ 0 otherwise (182)

where Wec “ 12 is called the critical Weber number.

Adding this new equation does not change the structure and properties of the global system (6) according
to [5]. Hence, it is chosen for the simulation. The numerical scheme used to simulate (179) is detailed in [5].
It consists of an explicit implicit step method, splitting the convective part and the source term part. Those
two steps will respectively be inserted inside the explicit simulation step of the convective part of system (6)
and the implicit simulation of the source terms of the same system.
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