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Abstract

We present a fully Bayesian framework for identifying spatially varying elastic parameters and
their covariance properties using noisy displacement observations obtained with DIC or DVC tri-
als. Our method is a generalization of identification procedures such as FEMU or I-DIC to
materials with spatially varying properties and stochastic mesostructures. The identified vari-
ables can be used to generate new samples with similar covariance properties. We formulate the
approach as a hierarchical Bayesian PDE-constrained inverse problem and MAP estimates are
obtained through gradient based optimization. We resort to an adjoint based formulation and
leverage automatic differentiation to derive the parameter sensitivities. We show how modelling
unknown parameters with Gaussian Random Fields leads to a natural Bayesian regularization
and develop the use of Whittle-Matérn priors. Hyperparameter estimation is discussed, and
we propose an empirical Bayes approach to avoid numerical shortcomings related to a standard
hierarchical model. A set of numerical examples is presented to assess the performance of the
proposed method, based on synthetic data generated through Matérn Random fields. In par-
ticular, we show how data noise is naturally modelled by the Bayesian formulation and impacts
spatial covariance of identified parameters.

1 Introduction
Full field identification procedures from in-situ observations such as Digital Image Correlation

(DIC), stereo-DIC, or Digital Volume Correlation (DVC) have widely been developed in the past
decades to calibrate constitutive laws of a wide range of materials. Examples of such identification
procedures include the Finite Elements Updating Method (FEMU), Integrated DIC (I-DIC) [Leclerc
et al., 2009] or Mechanical Image Correlation (MIC) [Réthoré, 2010]. In these methods, a digital twin
of a mechanical trial is developed, and the simulation to experiment gap is iteratively minimized by
an optimization algorithm [Avril et al., 2008]. Usually, the parameters of interest are a set of scalar
variables from a complex and non-linear constitutive law [Réthoré, 2010, Leclerc et al., 2009, Neggers
et al., 2017]. Typically, the identified parameters are assumed to be constant across the specimen
of interest, which is suitable to study homogeneous materials, or heterogeneous materials which me-
chanical properties present no significant variability at the macroscopic scale. In this work, we aim at
extending those identification procedures to materials with a significant spatial variability of mechan-
ical properties or with stochastic micro- or mesostructures. For instance, discontinuous composites
include a large range of materials with such properties, including compression moulded Discontinuous
Long Fiber composites (DLFs) with prepreg based Sheet Moulding Compounds (SMCs) or thermo-
plastic Tow Based Discontinuous Composites (TBDCs), and injection moulded short fiber composites.
In these materials, a strong spatial variability is observed due to random fiber bundle layout, and
fiber realignment during moulding [Martulli et al., 2019], which are of great importance for modelling
such materials [Alves et al., 2023]. Other examples include concrete, where strength has been shown
to be spatially variable [Geyer et al., 2023], or functionally graded materials [Watanabe et al., 2008],
where mechanical parameters are purposely continuously varying across a given specimen. Although
the authors aim at applying the present developments to DLF composites, this paper remains purely
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numerical and material agnostic, and application to a specific material is deferred to subsequent works.

Extending identification procedures to spatially varying parameters introduces numerous numerical
challenges to overcome. First, a proper spatial discretization of the parameters of interests is intro-
duced, resulting in a high number of variables to optimize. In typical FEMU or I-DIC methods, the
simulation to experiment gap is minimized with a quasi-Newton algorithm, and the gradient vector
is usually approximated with finite differences, and requires solving multiple linear systems for each
evaluation of the objective function. With a fine spatial discretization for the variable to optimize,
this process becomes numerically intractable, and in this paper we leverage an adjoint based approach
to compute the gradient vector efficiently, independently of the number of variables to optimize. Sec-
ondly, parameter identification from displacement observations is known to be an ill-posed inverse
problem, and requires spatial regularization to avoid local minima of the objective function and to
avoid overfitting observation noise. The use of spatial regularization, such as the well known Tikhonov
regularizer family, introduces so-called regularization parameters that are often cumbersome to select,
although some selection methods exist, such as those based on the Morozov principle [Nair, 2009],
or the L-curve approach [Hansen, 1992]. The present framework is formulated as a Bayesian inverse
problem, meaning that both parameters of interest and observation noise are modelled as random
variables, and we derive Maximum A Posteriori (MAP) estimates for parameter identification. We
use Gaussian priors to model the sought parameters and leverage covariance matrices derived from
Matérn class kernels, which have the advantage of having statistically and geometrically interpretable
parameters, namely the prior variance and length scale. More specifically, we use stationary Whittle-
Matérn priors, which have been shown to be very numerically efficient to implement by following the
SPDE approach [Lindgren et al., 2011], which leads to a sparse approximation of the precision matrix
on unstructured grids. For hyperparameter selection, we propose a Bayesian approach by introducing
a hierarchical model, which is in turn approximated following a Parametric Empirical Bayes (PEB)
approach. Three choices of estimators are investigated for hyperparameter update, namely a maxi-
mum likelihood estimator, a maximum a posteriori estimator, and an empirical estimator based on
variogram regression. We discuss the numerical issues and shortcomings of each approach and link
numerical results to the existing literature. In particular, we show that a maximum likelihood update
strategy alongside a Whittle-Matérn prior leads to an unstable numerical scheme, and propose a nu-
merically robust alternative. We assess the performance of the PEB approach on synthetic samples
and show the impact of data noise on estimated parameters and hyperparameters.
Although identification from surface (DIC) and volume (DVC) measurements typically constitute sep-
arate fields of research, we abstract the underlying method used to obtain displacement fields from
image correlation, and treat noisy surface or volume displacement fields as input to our framework,
that is presented hereafter to handle both types of measurements.
For implementation, we leverage automatic differentiation to derive the adjoint operator automati-
cally and independently of the chosen stiffness model and show examples of parameter identification
on synthetic data with a selected set of stiffness models. In the present paper, we develop the pro-
posed method in a stiffness model agnostic way. However, for simplicity, we assume that the stiffness
model is linear, though it could be adapted to non-linear constitutive laws with minor modifications
only.

2 Related Works and Main Contributions
Following the developments of Digital Image Correlation (see, e.g., Sutton et al. [2009] for details
about common image correlation techniques), many kinds of parameters identification methods were
developed, among which we distinguish non-integrated procedures, such as FEMU, in which the
simulation to experiment gap is formulated in terms of a displacement misfit, and integrated proce-
dures, such as I-DIC, in which an image residual is considered to perform the identification, removing
the need to obtain correlated displacement fields beforehand. Many other methods exist, and for a
comprehensive review, we refer to [Avril et al., 2008]. Although the differences between all of these
methods are not important for the present paper, it was shown that data noise can impact the iden-
tification results significantly, especially on setups with a low signal-to-noise ratio [Ruybalid et al.].
An interesting variation is the regularized FEMU (FEMU-R) method, in which the displacement gap
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is weighted by a displacement noise correlation matrix [Leclerc et al., 2009, Réthoré, 2010], leading to
the same data fidelity term as typically used in MAP estimates, hinting towards a Bayesian approach,
although it was never formulated as such. In the aforementioned works, the cost function is commonly
minimized by the means of a quasi-Newton algorithm with a Gauss-Newton approximation for the
hessian, and the gradient vector is usually approximated by finite differences.
The adjoint method has been used to solve inverse problems in linear elasticity, in a context unrelated
to DIC or DVC, in e.g. [Seidl et al., 2019], to identify a piecewise constant shear modulus, and also
resorts to total variation (TV) regularization to enforce piecewise constant solutions. In [Bonnet and
Constantinescu, 2005], the adjoint method is briefly presented to identify an unknown Poisson ratio
distribution, however the questions of regularization and data noise are not investigated thoroughly.
Also, in these last references, the spatial covariance structure of the unknown parameter fields are
not investigated.
The use of Gaussian random fields for modelling spatial data has been developed and applied to a
wide range of data, including soil properties [Ricketts et al., 2023], concrete failure parameters [Hai
and Lyu, 2023], or even laminate composite tensile modulus [Sriramula and Chryssanthopoulos, 2009].
In such cases, random fields models can be used to generate new realisations of the underlying spatial
process, and are a good alternative to Monte-Carlo simulations that can be cumbersome. For this
purpose, a proper selection of covariance parameters is key, as it can highly influence the simulation
results.
In the Bayesian inversion literature, identification of a spatially varying unknown parameter is a
common problem, and the use of so-called Bayesian priors enforce statistical information about the
solution. For a review of common methods and algorithms, we refer to [Dashti and Stuart, 2015]. A
specific challenge arising when the unknown is discretized on an unstructured mesh, which is common
when dealing with PDE-constrained inverse problems, is that evaluating the prior term typically in-
volves assembling a dense matrix, which has a quadratic complexity in time and memory and is often
intractable in large scale problems. This was partially solved in [Lindgren et al., 2011] by proposing a
sparse approximation of precision matrices arising from some cases of Matérn class correlation kernels.
In later works [Roininen et al., 2014], such priors were used to identify unknown PDE parameters
through MAP estimates. In more recent works [Roininen et al., 2019], the case where Matérn prior
hyperparameters are spatially varying was studied, and a hierarchical model based on Cauchy hyper-
priors was proposed to estimate these hyperparameters through Markov Chain Monte Carlo (MCMC)
sampling. However, papers tackling approximation of Bayesian priors on unstructured meshes are
largely unrelated to parameter estimation from DIC or DVC measurements.
In the present paper, we bridge the gap between all the previously mentioned topics to construct a
comprehensive framework to model spatially varying elastic properties with Gaussian random fields,
and perform parameter and hyperparameter identification from DIC and DVC measurements:

• We extend the FEMU method to a fully Bayesian formulation that takes into account all sources
of measurement noise,

• An optimization strategy based on the adjoint method and automatic differentiation is presented
to derive maximum a posteriori estimates,

• We leverage Whittle-Matérn priors to model the covariance structure of unknown parameters
and obtain an efficient discretization scheme,

• A hierarchical model is presented for hyperparameter estimation, and a numerical method based
on the PEB approach is presented and thoroughly discussed.

• The results can be used to generate new realisations of the spatially varying parameter, with
estimated covariance parameters.

3 Notations
Throughout this article, and unless specified otherwise, zeroth, first, second and fourth order tensors
and tensor valued functions are denoted by a, a, a and a respectively. The simple and double
contraction are written · and : respectively, and we employ the Einstein notation to express them in
a Cartesian basis:

a · b = aibj , a : b = aijbij , a : b = aijklbkl.
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If x is a continuous random variable, we note D(x) the density of x. If x follows a normal or uniform
law, we respectively note x ∼ N (x0, σ2

x) where x0 is the mean and σ2
x the variance, and x ∼ U(I)

where I ⊂ R is a bounded interval.
If U and V are two Banach spaces, and F : U → V is a differentiable function, the Gateaux derivative
of F at point x ∈ U along the direction δx ∈ U is denoted by dF (x; δx). If U1, ..., Un are Banach
spaces, and G : U1 × ...× Un → V is differentiable function, we note ∂iG(x1, ..., xn; δxi) its Gateaux
derivative with the respect to its i-th variable, defined as

∂iG(x1, ..., xn; δxi) = lim
h→0

G(x1, ..., xi + hδxi, ..., xn)−G(x1, ..., xn)
h

.

If U1, U2 are of finite dimension, bilinear forms a : U1 × U2 → R are identified with their matrix
representations, denoted with a bold upper case letter A, and linear forms a : U1 → R with their
vector representation, by a bold lower case letter a. Given bases for U1 and U2, a ∈ Rdim(U1)

and A ∈ Rdim(U1)×dim(U2). Given an open and bounded domain Ω ⊂ Rn, ∂Ω = Ω \ Ω denotes
the boundary of Ω, and we introduce the common Hilbert and Sobolev spaces used in variational
analysis, namely L∞(Ω) the space of bounded functions over Ω, L2(Ω) the space of square integrable
functions over Ω and H1(Ω).

4 Stiffness Modelling with Gaussian Random Fields
Throughout this paper, we consider on open and bounded domain Ω ⊂ R3 representing a specimen
made of an abstract material with spatially varying elastic properties, in the sense that the stiffness
tensor C(x) is spatially varying. We also assume that the stiffness tensor field can be parameterized
with a set of Np scalar valued parameter fields (p1(x), ..., pNp(x)) ∈ D ⊂ RNp (e.g. isotropy, transverse
isotropy, etc.), where D is called the parameter space. The mapping (p1, ..., pNp

) 7→ C(p1, ..., pNp
)

is hereafter referred to as the stiffness model, and is assumed to be well-defined, in the sense that
C(D) is a set containing tensors that satisfy the usual symmetry assumptions in linear elasticity. We
further assume that spatial variations are due to some unknown spatial random process, and model
the stiffness parameters as Gaussian random fields:

∀1 ≤ i ≤ Np, pi ∼ N (p0i , ci), (1)

where p0i is known and ci is an unknown covariance function. By combining the stiffness model with
a specified covariance model for the stiffness parameters, it is possible to sample realizations of a
synthetic specimen that accounts for spatial variability and randomness of the underlying material.
The goal of this paper is to infer estimates for stiffness parameters and covariance models from dis-
placement measurements only. The inferred model can then be used to generate numerous specimens
for simulations. The method is formulated as a Bayesian inverse problem. Section 5 presents how
the inverse problem is formulated and derives MAP estimates for the unknown stiffness parameters
and covariance hyperparameters, calibration of the covariance model is detailed in section 6, section
8 presents how the adjoint method is used to solve the inverse problem, and section 9 illustrates the
proposed method with two numerical examples.

5 Problem Description and Bayesian Modelling
In this section, we present the steps to extend the FEMU method to identify a spatially varying
material parameter, with a fully Bayesian approach. The developments presented throughout this
paper can be adapted to the I-DIC method in the same way, and for completeness, details are given
in appendix A.

5.1 PDE Modelling and Discretization
We consider the spatial domain Ω to represent a trial specimen subject to an (unknown) boundary
displacement uD over ΩD ⊂ ∂Ω, modelling some mechanical trial. We also consider an observation
zone Ωobs ⊂ Ω modelling a domain where in-situ imaging is performed. For DIC, Ωobs ⊂ ∂Ω
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direction

Figure 1: The two considered specimen: a thin dog bone geometry for uniaxial tensile test, and a
thick biaxial geometry.

represents the specimen surface captured by the camera, as for DVC, Ωobs represents a volume
subregion imaged through, e.g., x-ray tomography. We represent in figure 1 and 11 two specimen
geometries where the different regions are annotated, illustrating both surface and volume observation
zones. We model the results of image correlation by a set of pointwise, noisy displacement observations

uobs =
(
uobs(x1), ..., u

obs(xNobs)
)
, (2)

uobs(xi) = u(xi) + ξ, 1 ≤ i ≤ Nobs, (3)

where Nobs is the number of pointwise observations, and uobs is a vector of size 3 × Nobs. Here, u
denotes the true displacement field, and ξ some observation noise. The observed macroscopic force
F obs ∈ R models the measured force F , typically by a force sensor, that is also corrupt by some noise
η, such that

F obs = F + η. (4)

Without loss of generality, we assume that there is only a single force sensor. In other cases (e.g.
biaxial traction), F should be taken as vector valued. Let yobs and ϵ be vectors of size 3×Nobs + 1
collecting all measured values and noise values respectively:

yobs =
(
uobs(x1), ..., u

obs(xNobs), F obs) , (5)

ϵ =
(
ξ(x1), ..., ξ(xNobs), η

)
. (6)

We assume that yobs depends on a scalar valued material parameter field p, defined on some Hilbert
space V , through some non-linear operator A defined on V as

yobs = A(p) + ϵ. (7)

Before going into the Bayesian formulation details, we introduce a digital twin of the experiment,
which is modelled as the static equilibrium boundary value problem over Ωobs

Find u ∈ H1(Ωobs) such that

∇ · σ = 0 over Ωobs, (8)

σ = C(p) : ε, (9)

ε =
∇u+ (∇u)T

2
, (10)

u = uobs
D over ∂Ωobs

D , (11)
σ · n = 0 over ∂Ωobs

N , (12)
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where u is the displacement field, ε and σ are respectively the strain and stress tensor fields, C(p) ∈
L∞(Ωobs) is the stiffness tensor, and uobs

D is a prescribed displacement boundary condition over
∂Ωobs

D ⊂ ∂Ωobs, and n is a outward boundary normal unit vector. Here, we emphasize on the fact
that C(p) is not assumed to be constant over Ωobs. To keep notations concise, and without loss of
generality, the stiffness model is assumed to depend on a single parameter p, and is assumed to be
differentiable. The stiffness model is typically material specific, and to remain as general as possible,
no further assumption is made in this section. The considered constitutive relation (9) is linear as
we’re only interested in identification of elastic properties, and extensions to other cases are out of
scope of this paper. The measured force is then modelled as the average stress over the traction
direction, which can be expressed as a volume integral as

F =
|∂Ωobs

D |
|Ωobs|

∫
Ωobs

nF · σ(u(p)) · nF dx, (13)

where

|∂Ωobs
D | =

∫
∂Ωobs

D

dS, (14)

|Ωobs| =
∫
Ωobs

dx, (15)

and nF is a unit vector aligned with the loading direction. As usual, we introduce the following
Sobolev function spaces

H1
D(Ωobs) =

{
v ∈ H1(Ωobs)

∣∣ v|∂Ωobs
D

= uD

}
, (16)

H1
0 (Ω

obs) =
{
v ∈ H1(Ωobs)

∣∣ v|∂Ωobs
D

= 0
}
, (17)

and reformulate equations 8-11 in their weak form:
Find u ∈ H1

D(Ωobs) and v ∈ H1
0 (Ω

obs) such that

a(u, v) = l(v), (18)

a(u, v) =

∫
Ω

ε(u) : C(p) : ε(v) dx, (19)

l(v) = 0. (20)

The computational domain Ω is discretized using a standard finite element mesh, which we enforce to
be conforming with the boundary of the observation zone ∂Ωobs. We consider a mesh of Ωobs made
of NT cells (Tk)0≤k<NT

, and introduce the first-order polynomial discretization space,

V (Ωobs) =
{
u ∈ C0(Ωobs)

∣∣ ∀0 ≤ k < NT , u|Tk
∈ P 1

}
, (21)

where P 1 denotes the space of first order polynomials. To keep notations simple, the P 1 discretization
space for vector valued functions is noted V (Ωobs). We introduce finite elements bases for V (Ωobs)
and V (Ωobs):

V (Ωobs) = span (φ0, ..., φNV
) , (22)

V (Ωobs) = span
(
φ
0
, ..., φ

NV

)
. (23)

With these notations, the simulated displacement and unknown parameter are discretized in V (Ωobs)
and V (Ωobs) respectively:

u =

NV∑
k=0

ukφk
, p =

NV∑
k=0

pkφk. (24)

We note u =
(
u0, ..., uNV

)
and p = (p0, ..., pNV

). For simplicity, we assume that observation points
coincide with mesh nodes, i.e. degrees of freedom coordinates of space V (Ωobs) are x1, ..., xNobs , such
that the notation uobs −u makes sense. With regard to the previously introduced operator, we pose
y = (u0, ..., uNV

, F ) = A(p).
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5.2 Bayesian Formulation
In a Bayesian inference setting, the problem of parameter identification is to estimate p given obser-
vations yobs. Following the Bayesian approach, we model both p and ϵ as random variables. First,
we assume that the observation noise ξ and η are Gaussian:

ξ ∼ N (0,Σu), (25)

η ∼ N (0, σ2
F ), (26)

and we note

ϵ ∼ N (0,Σy), (27)

where Σu is the displacement noise covariance matrix, σ2
F is the measured force uncertainty variance,

and Σy is the global noise covariance matrix, defined blockwise as

Σy =

(
Σu 0
0 σ2

F

)
. (28)

We assume Σy to be fully known, and its exact expression depends on the experimental setup and
to the algorithm used to perform the correlation. For instance, when performing global DIC, the
displacement noise is not a white noise, but instead is spatially correlated, and closed form expressions
can be obtained in some cases. We give details and point to the relevant literature in appendix B.
Following the Bayesian approach, we are interested in the posterior distribution of parameter p, given
observations yobs, which, using the Bayes theorem, can be expressed as follows:

D(p|yobs) ∝ D(yobs|p)D(p), (29)

where D(yobs|p) is the likelihood, and D(p) is the prior density, which remains to be specified. The
posterior density can be sampled from using a Markov chain Monte Carlo (MCMC) algorithm, which
is useful to perform uncertainty quantification. However, in the present paper we are only interested
in point estimates of the unknown parameter, which are usually obtained by the means of a Maximum
A Posteriori (MAP) estimator, which maximises the posterior density, and can be computed by the
following optimization problem

pMAP = argmin
p

− logD(yobs|p)− logD(p). (30)

Using assumptions (7) and (27), the likelihood can be expressed as

D(yobs|p) ∝ exp

[
−1

2
(yobs − y)TΣ−1

y (yobs − y)
]
. (31)

As explained in the introduction, in order to model spatial variability of elastic properties, we model
p as a stationary Gaussian random field, which translates to a multivariate Gaussian prior on p:

p ∼ N (p0,Σp(µ)), (32)

where the mean p0 is assumed to be known, Σp is the prior covariance matrix, and µ is a set of
covariance parameters, referred to as hyperparameters for the rest of this paper. In this section, µ is
assumed to be known. Formula (30) now writes

pMAP = argmin
p

1

2
(yobs − y)TΣ−1

y (yobs − y) + 1

2
(p− p0)TΣ−1

p (p− p0). (33)

This formulation for the MAP estimate leads to a scalar valued function J to minimize. For the
subsequent explanations, we split J into three terms:

J(p) = Ju(p) + JF (p) + Jp(p), (34)

Ju(p) =
1

2
(uobs − u)TΣ−1

u (uobs − u), (35)

JF (p) =
(F − F obs)2

2σ2
F

, (36)

Jp(p) =
1

2
(p− p0)TΣ−1

p (p− p0). (37)

Using a gradient based optimization algorithm to minimize J is not straightforward for two reasons:
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1. The prior precision matrix Σ−1
p is dense and thus intractable on larger meshes,

2. Computing ∇J involves computing du
dp and a finite difference approximation (which is the

common approach in the FEMU literature) is intractable on larger meshes.

We address both points in sections 6.1 and 8.1 respectively.

5.3 Parametric Empirical Bayes Formulation
In this section, we no longer assume the hyperparameters µ = (µk)0≤k<Nµ

to be known and propose
a Bayesian approach for hyperparameter estimation. More precisely, we model µ as a random vector,
and formulate a log-normal hyperprior on each component of µ:

∀ 0 ≤ i < Nµ, logµi ∼ N
(
τ0i , σ

2
τi

)
. (38)

The choice of the log-normal hyperprior is due to the fact that covariance hyperparameters are often
positive. In the rest of this section, we pose τ = (logµk)i≤k<Nµ

. The posterior distribution (29) is
then updated as follows:

D(p, τ |yobs) ∝ D(yobs|p)D(p|τ )D(τ ). (39)

The expression for the prior D(p|τ ) in (37) must be updated to take into account the normalization
term that depends on µ:

Jp(p) =
1

2
(p− p0)TΣ−1

p (p− p0)− 1

2
log detΣ−1

p +
NV

2
log(2π). (40)

In the resulting hierarchical Bayesian formulation, the posterior distribution can be approximated with
MCMC sampling (e.g. Gibbs sampling, see section 11.3 of [Bishop, 2006]). As we are only interested
in the MAP estimate of the unknown parameter, like in section 5.2, it is natural to approximate the
hierarchical model with a Parametric Empirical Bayes approach (PEB), where the hyperparameters
are iteratively updated from the parameter MAP estimator, following the Bayes formula at the
hypermodel level:

D(τ |pMAP) ∝ D(pMAP|τ )D(τ ). (41)

The formulated hypermodel 38 suggests updating the hyperparameters with a MAP estimator τMAP
of τ :

τMAP = argmin
τ

Jp(pMAP, τ ) + Jτ (τ ), (42)

where Jτ (τ ) is a new term corresponding to the log-normal hyperprior:

Jτ (τ ) =

Nµ−1∑
i=0

(τi − τ0i )2

2στi
. (43)

The resulting formulation in quite inconvenient as we now have 2Nµ hyper-hyperparameters to specify,
which are typically also unknown. A common way to tackle this issue is to specify an improper
hyperprior as opposed to a log-normal distribution like in equation (38):

∀ 0 ≤ i < Nµ, logµi ∼ U(R), (44)

which leads to Jτ (τ ) = 0. From an empirical Bayes point of view, this is equivalent to updating the
hyperparameters with a maximum likelihood (ML) estimator as opposed to a MAP estimator:

τML = argmin
τ

Jp(pMAP, τ ). (45)

In section 6.2, we show the numerical shortcomings of using the ML estimator for updating the
hyperparameters, and in particular we explain why the resulting optimization problem is unstable
when the Matérn covariance is used for prior modelling. To address this issue, we propose in section
6.2 an alternative updating scheme, where the hyperparameter are iteratively identified through
variogram regression, another variation of the PEB approach.
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6 Spatial Covariance Modelling Through Whittle-Matérn Pri-
ors

In the previous section, a multivariate normal prior was formulated on p, however a covariance model
remains to be specified. In this section, we present and discuss the use of the Matérn covariance
model.

6.1 Covariance Precision Discretization
Our choice is motivated by the requirement to obtain an efficient discretization on unstructured grids.
In this regard, the Matérn covariance is a suitable choice, as it can lead to a sparse approximation of
the precision matrix [Lindgren et al., 2011]. More precisely, the Matérn covariance is defined as

M(r;σ2, ℓ, ν) =
σ221−ν

Γ (ν)

(r
ℓ

)ν
Kν

(r
ℓ

)
, (46)

where σ2 is the marginal variance, ℓ is the length scale and ν is the smoothness parameter. With
regard to the notations introduced in section 5.2, µ = (σ2, ℓ, ν) is the hyperparameter vector. We
also introduce the correlation length ρ = ℓ

√
8ν, which is the distance at which the correlations are

near 0.1 [Lindgren et al., 2011]. It was shown in [Lindgren et al., 2011, Roininen et al., 2014] that
Gaussian random fields with Matérn covariance are the solutions of the following stochastic PDE:

(Id−ℓ2∆2)(ν+d/2)/2x = σ

√
ℓd

β
W, (47)

where

β =
Γ (ν)

2dπd/2Γ (ν + d/2)
, (48)

and d = 2, 3 is the spatial dimension. We also pose α = ν + d/2. For a broad overview of the
different applications related to this link between the Matérn covariance and the SPDE (47), we
refer to [Lindgren et al., 2022]. When considering an unstructured mesh discretization, the precision
matrix of x can have a sparse approximation. We refer to [Lindgren et al., 2011] for a proof. More
precisely, let x = (xi)0≤i<NV

be the degrees of freedom of a solution of equation (47) discretized
in V (Ωobs), and let Qx(α, ℓ) be the precision matrix of x. We introduce the usual FEM mass and
stiffness matrices for a scalar valued P 1 discretization:

M =

(∫
Ωobs

φiφj dx
)

0≤i,j<NV

, (49)

K =

(∫
Ωobs
∇φi · ∇φj dx

)
0≤i,j<NV

. (50)

We have the following sparse approximations:

Qx(1, ℓ) =
β

σ2ℓd
(M + ℓ2K), (51)

Qx(2, ℓ) =
β

σ2ℓd
(M + ℓ2K)M−1(M + ℓ2K), (52)

∀n ∈ N, n ≥ 3, Qx(n, ℓ) = (M + ℓ2K)M−1Qx(n− 2, ℓ)M−1(M + ℓ2K). (53)

Formulas (51)-(53) correspond to ν = 0, 1, 2, ... for d = 2 and ν = 0.5, 1.5, 2.5, ... for d = 3. For other
values α > 0 that are not integers, more recent papers give another approximation of Qx(α, ℓ) based
on, e.g., a truncated Taylor expansion of the underlying pseudodifferential operator or a quadrature of
its Brochner integral, and we refer to, e.g. [Bolin et al., 2018, Roininen et al., 2018] for details. Note
that formulas (51)-(52) are slightly different to those in [Lindgren et al., 2011], as the base SPDE (47)
was taken from [Roininen et al., 2014] which defines different SPDE coefficients. In equation (47),
the marginal variance and length scale of x are controlled by separate hyperparameters, as opposed
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to the range parameter in [Lindgren et al., 2011] which affects both the correlation length and the
marginal variance. In (52)-(53), the inverse of the mass matrix can be approximated by the inverse
of its lumped approximation, defined as

∀0 ≤ i < NV , M̃ii =

NV −1∑
j=0

Mij , (54)

∀i ̸= j, M̃ij = 0. (55)

In regard to the previous Bayesian formulation for the material parameter p, fixing α ≥ 2 to an
integer value leads to a sparse expression for the prior (37), that can be implemented efficiently. For
instance, with α = 2, we can plug (52) into the MAP estimate expression (37), resulting in a so-called
Whittle-Matérn prior:

Jp(p) =
β

2σ2ℓ2
(p− p0)T (M + ℓ2K)M̃−1(M + ℓ2K)(p− p0). (56)

6.2 Whittle-Matérn Hyperparameters Estimation
As discussed in section 5.3, hyperparameter estimation using the PEB method essentially consists

in iteratively estimating µ = (σ2, ℓ, ν) from parameter estimates pMAP. In this section, we discuss
several issues related to the use of the Matérn covariance, and in particular, the use of a sparse
approximation with a fixed smoothness parameter ν.

First, given the sparse approximationQx ofΣ−1
p in formulas (51)-(53), the mapping ν 7→ Qx(α(ν), ℓ)

is not defined for all ν > 0, and thus not differentiable. A gradient based optimization procedure for
computing µMAP is thus not possible. A possible workaround would be to set α = 2 and estimate
only (σ2, ℓ). Surprisingly, many authors employ this solution, claiming that the data does not contain
much information about ν, which is often poorly identified [Diggle and Ribiero, 2007, Bose et al.,
2018]. However, this claim is questionable, and for a detailed discussion on this matter, we refer to
[Oliveira and Han, 2022].

More precisely, fixing ν to an arbitrary leads to estimability issues of σ2 and ℓ: there does not
exist an estimator for the pair (σ2, ℓ) that is weakly consistent under infill asymptotics, i.e. when
considering a sequence of increasing number of pointwise observations ((pk)0≤k<n)n≥1, and a sequence
of estimators (µ̂n)n≥1, µ̂k = (σ̂2

k, ℓ̂k), then µ̂n does not converge when n→∞. This result is proven
in [Zhang, 2004] and thoroughly discussed in [Zhang, 2004, Tang et al., 2021]. Another result of
[Zhang, 2004] is that the so-called microergodic parameter c = σ2/ℓ is consistently estimable. In the
light of these results, in the hierarchical Bayesian model of section 5.3, when setting ν to an arbitrary
value, and considering an improper hyperprior for (σ2, ℓ), the minimization problem for the maximum
likelihood estimator µML used in the PEB hyperparameters update is unstable, in the sense that µML
does not converge when the computational mesh is refined, and that the result of the optimization
process is highly sensitive to initialization values due to ridges in the likelihood profile (see, e.g., figure
1 of [Lalchand et al., 2022]). In order to stabilize the hierarchical model, a proper hyperprior (or a
fixed value), e.g. a log-normal hyperprior as presented in equation (38), must be set on either σ2

or ℓ, which results in a hybrid approach between ML and MAP estimator for PEB hyperparameter
updating, where is referred to as hybrid-MAP for the rest of this paper.

Another shortcoming of this approach is that, assuming σ2 is known, ν set to an arbitrary value and
ℓ estimated using an improper hyperprior, then there is no guarantee that the resulting correlation
length ρ matches the statistics of the underlying random process. To illustrate this problem, let’s
consider a set of one dimensional Matérn field realizations fα with fixed hyperparameters σ2

f , ρf
and increasing values for α (i.e. increasing ν and decreasing ℓ = ρf/

√
ν). We wish to identify the

correlation length ρf using a maximum likelihood estimator, computed by using formula (56) with
a smoothness parameter α0 set to an arbitrary value (α0 = 2 in this case). The estimator is then
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computed with

ρML
α =

√
1.5 argmin

ℓ
[− logLℓ(f)] =

β

2σ2ℓ
(fα − f0

α)
T (M + ℓ2K)M̃−1(M + ℓ2K)(fα − f0

α) (57)

− 1

2
log det

[
β

σ2ℓ
(M + ℓ2K)M̃−1(M + ℓ2K)

]
.

We represent in figure 2 realisations f2, f4, f16 and the profile of the objective function − logLℓ(fα)

Figure 2: Realisations of a one dimensional Matérn field f with several smoothness parameters α, and
fixed correlation length ρf = ℓ

√
ν. On the right, the negative log-likelihood profile of each realisation

w.r.t. ℓ for a fixed smoothness parameter α0 = 2 for discretization of the Matérn precision.

with the values of the estimated correlation length. The right correlation length is recovered only for
α = 2, which corresponds to the case where the precision is discretized with the correct smoothness
parameter. For all other cases, the correlation length is overestimated by an order of magnitude. This
simplified example shows that the hybrid-MAP approach highly overestimates the correlation length
when the posterior mean pMAP is smoother than the arbitrarily chosen value set for ν.
In regard to this last issue, we also explore an alternative hyperparameter updating scheme that
uses variogram regression. This idea closely follows the developments of [Brown et al., 2020]. More
precisely, if z = (z(xk))0≤k<Nobs are pointwise observations of an underlying Gaussian process z with
Matérn covariance M(·;σ2, ℓ, ν), then the empirical variogram is defined as

γ̂(r ± δ; z) = 1

2|N (r ± δ)|
∑

(i,j)∈N (r±δ)

|zi − zj |2, (58)

N (r ± δ) =
{
0 ≤ i, j < Nobs : |xi − xj | = r ± δ

}
, (59)

where δ is the separation distance which is used for binning. The Matérn variogram [Brown et al.,
2020] is defined as

γM (r; a0, σ
2, ℓ, ν) =

{
0 if r = 0

a0 + (σ2 − a0)
(
1− 21−ν

Γ (ν)

(
r
ℓ

)ν
Kν

(
r
ℓ

))
if r > 0

, (60)

where the nugget a0 ≥ 0 is the variance value at a distance just greater than 0, and the sill σ2 is
also the marginal variance can be fitted to the empirical variogram γ̂ through various methods, e.g.
weighted least-squares [Cressie, 1985]:

ψopt = argmin
ψ

Jvario(ψ, z) :=
∑
r

|N (r ± δ)|
γM (r;ψ)2

(γ̂(r ± δ; z)− γM (r;ψ))
2
, (61)

where ψ = (a0, σ
2, ℓ, ν). Although the nugget a0 is estimated by variogram fitting, it is not useful

for the considered problem, as it does not appear in the prior expression. A typical fitting method
will yield non-integer values for ν. In order to simplify numerical implementation, it is useful to
approximate it with the nearest integer values (in 2D) or the nearest half-integer (in 3D). In order to
preserve the correlation length, it is then necessary to update the identified length scale accordingly.
More precisely, if ℓopt, νopt are identified hyperparameters, and ⌊ν⌉d, d = 2, 3 denotes the nearest
integer or half-integer, then choosing

ℓ̃opt = ℓopt

√
νopt

⌊ν⌉d
(62)
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will preserve the correlation length. Using the pair (ℓ̃opt, ⌊ν⌉d), it is then possible to use formula (53)
for an efficient prior precision discretization. With the variogram fitting approach, the posterior for
the hierarchical problem is then approximated with an alternate optimization approach described in
algorithm 1.

Algorithm 1: Hyperparameter Identification Procedure.
1 Function IdentifyHyperparameters(σ2

0, ℓ0, yobs, p0, εtol, ηtol):
2 µopt ← (σ2

0 , ℓ0); µ← µopt // Initial hyperparameters guess

3 popt ← p0
4 r ← 2 ∗ εtol
5 while r ≥ εtol do
6 p0 ← popt

7 popt ← IdentifyParameter(yobs,p0, ηtol) // Algorithm 2

8 (a0, σ
2, ℓ, ν)← argmin

ψ
Jvario(ψ,pk) // Variogram regression

9 ℓ̃← ℓ
√
ν/⌊ν⌉d

10 µopt ← (σ2, ℓ̃, ⌊ν⌉d) // Rounding of smoothness parameter

11 r ← |µopt − µ|
12 µ← µopt

13 return µopt

For hyperparameter initialization, the authors of [Brown et al., 2020] recommend fitting the
Matérn variogram on the observed field. However, in the present case, due to the non-linear re-
lation between the stiffness parameter p and the displacement u, the observed displacement field has
a very different spatial correlation structure than the material parameter. We therefore recommend
initializing µ0 to an arbitrary value. Note that with the variogram regression approach, the issues
related to the identifiability of (σ2, ℓ) remain present, as the marginal variance estimated by fitting
the empirical variogram is simply the empirical variance of the observed sample and does not converge
to the true marginal variance of the underlying Gaussian process when refining the computational
mesh. The only difference when compared to the hybrid-MAP approach with the empirical variance
as the hyperprior mean is that the smoothness parameter ν is estimated from the data as opposed
to set to an arbitrary value, and the discrete prior precision matrix is approximated for the nearest
integer (or half integer) value of ν.

7 Comparison with a Classical Regularization Approach
Instead of a Bayesian formulation as developed in section 5.2, a classical regularization approach
could have been used instead. In this case, a similar objective function could be defined:

Jc(p; γR) = (uobs − u)T (uobs − u) + γF (F
obs − F )2 + γR∥p∥2L, (63)

where ∥·∥L is a regularization norm, γF a weight between the two data terms, and γR a regularization
parameter. The weight γF is usually fixed, and a common choice is to set γF = σ2

u/σ
2
F , where σ2

u is
the average pointwise measurement displacement noise variance, so that each data term is weighted
with the corresponding measurement noise. A common choice for ∥ · ∥ is the so-called Tikhonov
regularization which is simply the L2 norm, that writes in a discrete setting:

∥p∥2L2 = pTMp. (64)

However, in order to enforce a smooth solution, a more relevant choice is the H1(Ω) semi-norm:

∥p∥2H1(Ω) =

∫
Ω

(∇p)2 dx, (65)

which takes the following form in a discrete setting:

∥p∥2H1(Ω) = p
TKp. (66)
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Compared to the Bayesian formulation, there is only a single regularization parameter, which must
be tuned. A common approach is to select γR with an approach based on the L-curve, a parametric
curve defined as:

γR 7→ (Jc
data(γR), J

c
reg(γR)), (67)

where

Jc
data(γR) = (uobs − u(pγR

))T (uobs − u(pγR
)) + γF (F

obs − F (pγR
))2, (68)

Jc
reg(γR) = ∥pγR

∥L, (69)

pγR
= argmin

p
Jc(p; γR). (70)

The L-curve represents the tradeoff between the regularized solution norm and the residual norm.
For more background and details, we refer to [Hansen, 1992] (and [Gulliksson, 1998] for application to
nonlinear problems). A common method to select the regularization parameter is to choose the value
that corresponds to the L-curve point of maximum curvature, which yields the value satisfying the
Morozov discrepancy principle [Engl and Grever, 1994]. In practice, the point of maximum curvature
can be obtained graphically, or by the means of more sophisticated algorithms that aim at reducing
the number of L-curve points to construct (see, e.g., [Cultrera and Callegaro, 2020]).

We note that even though an analogy between classical and Bayesian inverse problems can be
formulated [Polson and Sokolov, 2019], the Whittle-Matérn prior formulated in section 6 is not equiv-
alent to a standard Tikhonov regularization. In particular, the single regularization parameter γR
does not allow controlling the amplitude and length scale of the solution separately, as it is the case
with the Matérn covariance parameters (σ2, ρ).

In section 9, we show an example of identified parameter and regularization parameter through
the classical approach. Although it leads to satisfactory results for parameter estimation, we lose
the statistical interpretation of the regularization parameter and the sampling capabilities from the
tuned covariance matrix. This is why the presented framework based on Gaussian random fields
modelling and the Bayesian inverse problem formulation is considered more relevant for modelling
spatially varying material parameters.

8 Numerical Optimization : Adjoint Formulation and Numer-
ical Scheme

In this section, we discuss the numerical approximation of the MAP estimator of the unknown param-
eter defined in section 5. We first present how to efficiently compute the loss function gradient through
the adjoint method, and then discuss the optimization algorithm used to derive MAP estimates.

8.1 Efficient Gradient Computation with the Adjoint Method
In typical parameter identification procedures such as FEMU or I-DIC, the parameter sensitivities
are approximated with a finite difference scheme. This is tractable in the case where there are few
parameters to identify. In the present case, as we introduced a finite elements discretization of the
unknown parameter p, there is a total number of NV degrees of freedom to identify, which scales
with mesh size. In this case a finite differences approximation of ∇J is usually intractable for larger
meshes. The adjoint method introduces a so-called adjoint problem which can be solved using the
finite elements method and provides an efficient way to compute the gradient. The adjoint method
has been used in a wide variety of settings to compute gradients in PDE-constrained optimization
problems [Richter, 2021, Giannakoglou and Papadimitriou, 2008, Asch et al., 2016], however the
method is often presented in a problem specific way and is not always straightforward to adapt to
another problem. For clarity, we derive the equations in the specific case of problem (8)-(11).
Reusing the notations introduced in section 5.1, given a displacement field u ∈ H1

D(Ωobs) and a
stiffness parameter field p ∈ L∞(Ωobs), we define the weak residual as the linear form

v 7→ R(u, v, p) = l(v)− a(u, v, p), (71)
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where we made the dependency with respect to p appear explicitly in the notation. We consider
an arbitrary scalar valued loss function J(u, p) : H1

D(Ωobs) × L∞(Ωobs) → R that is assumed to be
Gateaux differentiable. With these notations, the parameter identification problem can be written as
follows:

(uopt, popt) = argmin
(u,p)∈H1(Ωobs)×L∞(Ωobs)

J(u, p) (72)

such that ∀v ∈ H1
0 (Ω

obs), R(uopt, v, popt) = 0. (73)

The PDE constraint (73) introduces a dependency between u and p and J can thus be seen as a
composed function p 7→ J(u(p), p). We now consider p, δp ∈ L∞(Ωobs) and u ∈ H1

D(Ωobs), and
expand the Gateaux derivative of J and R at point p in the direction δp, using the chain rule:

dJ(u(p), p; δp) = ∂1J(u(p), p; du(p; δp)) + ∂2J(u(p), p; δp), (74)

∀v ∈ H1
0 (Ω

obs), dR(u(p), v, p; δp) = ∂1R(u(p), v, p; du(p; δp)) + ∂3R(u(p), v, p; δp). (75)

Using the constraint (73), we can write dR(u(p), v, p, δp) = 0 for all v ∈ H1
0 (Ω

obs), and then

∂3R(u(p), v, p; δp) = −∂1R(u(p), v, p; du(p; δp)). (76)

Now, let’s consider λ, the unique solution to the variational adjoint problem:
Find λ ∈ H1

0 (Ω
obs) such that

∀δu ∈ H1(Ωobs), ∂1R(u(p), λ, p; δu) = ∂1J(u(p), p; δu). (77)

Combining (77) with δu = du(p; δp) and (76) with v = λ inside (74) yields

dJ(u(p), p; δp) = ∂2J(u(p), p; δp)− ∂3R(u, λ, p; δp). (78)

Typically, both derivatives in (78) can be computed analytically, provided the adjoint solution λ is
available. We also note that in the present case, as the operator (u, v) 7→ a(u, v, p) is bilinear and
self-adjoint, the adjoint equation (77) reduces to

a(δu, λ, p) = ∂1J(u(p), p; δu). (79)

Now, let’s apply the parameter sensitivity formula (78) to the discretized Bayesian formulation
introduced in section 5.2. We recall that the Bayesian loss is composed of three terms J(p) =
Ju(p) + JF (p) + Jp(p). For the third term, computing the gradient is straightforward:

∇Jp(p) = (p− p0)TΣ−1
p . (80)

For ∇Ju and ∇JF , we apply the adjoint method. First, we note A the matrix of operator a in basis
(φ

k
)0≤k<NV

:

A =
(
a(φ

i
, φ

j
)
)
0≤i,j<NV

. (81)

To keep notations simple, we assume that basis functions are ordered in such a way that A can be
written in the following blocked form

A =

[
ADD ADU

ADU AUU

]
, (82)

where D is the set of DOF indices located inside ∂Ωobs
D and U is the set of DOF indices located inside

Ωobs \ ∂Ωobs
D . The linear system satisfied by u given boundary conditions (11) writes

A0u = b, (83)

where

A0 =

[
IDD 0
0 AUU

]
, b =

[
uobs
D

−AUDu
obs
D

]
, (84)
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and uobs
D is a vector collecting degrees of freedom of uobs over ∂Ωpbs

D . Constructing A0 and b is a
common way to apply non-homogeneous Dirichlet boundary conditions to a linear system. As specified
in problem (77), the adjoint solution λ is sought in H1

0 (Ω
obs) and therefore satisfies homogeneous

Dirichlet boundary conditions. The linear system for the discretized adjoint solution λ then writes

A0λ = −badj, (85)

where

badj =

 0D(
∂J

∂u

)
U

 , ∂J
∂u

= −(uobs − u)TΣ−1
u +

∂JF
∂u

. (86)

The expression for the gradient is then derived from (78), provided u and λ have already been
computed:

∇J(p) = ∂J

∂p
− ∂

∂p

(
λTRu

)
(87)

= (p− p0)TΣ−1
p −

∂

∂p

(
λTRu

)
, (88)

where

R =
(
−a(φ

i
, φ

j
, p)
)
0≤i,j<Nv

. (89)

Note that the second term of (88) is not straightforward to compute and depends on the stiffness
model p 7→ C(p). We show in section 8.2 how to leverage automatic differentiation to compute this
term easily.

Remark. In the case where multiple stiffness parameter fields p1, ...,pNp are sought, as derivatives
with respect to pi are not required to construct the adjoint system, only two linear systems must be
solved to compute ∇J(p1, ...,pNp), regardless of the number of stiffness parameters.

8.2 Implementation
The FEMU loss function is minimized with a quasi-Newton method. As opposed to most FEMU
implementations, e.g. [Leclerc et al., 2009, Neggers et al., 2017], the L-BFGS method [Liu and
Nocedal, 1989] is used instead of Gauss-Newton, as the latter requires computing the Jacobian matrix
of the residual vector to approximate the hessian, and in our case storing the full Jacobian has a
memory complexity of O(N2

V ), which can make it intractable for larger meshes. Instead, L-BFGS
requires only the loss gradient, and stores only a few columns of the hessian approximation, which
keeps the overall memory complexity to O(NV ). The iterative optimization procedure for parameter
identification is summarized in algorithm 2, and the global hyperparameter identification procedure
in algorithm 1.

Our implementation of the proposed method is written in Python using free and open source
software only. For finite elements operators assembly, we use the DOLFINx library [Habera et al.,
2020]. Using the FEniCSx ecosystem, both variational problems (18) and (77), as well as the stiffness
model p 7→ C(p) and its gradient can be modelled using the UFL language [Alnæs et al., 2014]. We
provide in figure 3 a simplified version of the code to compute the PDE residual gradient and the gra-
dient of the macroscopic force misfit ∇JF , which are both dependent on the stiffness model and thus
not straightforward to differentiate analytically. Instead, by leveraging the automatic differentiation
capabilities of UFL and FFCX, the required derivatives do not need to be expressed analytically.
As the optimization loop involves solving two linear systems, we leverage the PETSc library [Balay
et al., 2022] for all solves. A stabilized conjugate gradient solver is used alongside an algebraic multi-
grid preconditioner. For hyperparameter estimation, the GSTools library is used [Müller et al., 2022,
Müller and Schüler, 2023], which provides routines for empirical variogram estimation and variogram
fitting.
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Algorithm 2: Parameter Identification Procedure
1 Function IdentifyParameter(yobs, p0, ηtol):
2 p← p0 // Initial stiffness parameter guess

3 while J(p,yobs) > ηtol do
4 Assemble A0, b;
5 Solve A0u = b // Forwad problem

6 Assemble dJ
du and badj;

7 Solve A0λ = badj // Adjoint problem

8 Assemble ∂J
∂p and ∂

∂p

(
λTRu

)
;

9 dJ
dp ←

∂J
∂p −

∂
∂p

(
λTRu

)
;

10 δp← BGFS
(

dJ
dp

)
// L-BFGS update formula

11 p← p+ δp;

12 return p

1 from typing import Callable

2 from ufl import *
3 from dolfinx.fem import Function, form, assemble_vector, assemble_scalar

4

5 def epsilon(u):

6 """strain"""

7 return sym(grad(u))

8

9 def sigma(u, C):

10 """stress"""

11 return inner(C, epsilon(u))

12

13 def dRdp(u_h: Function, lmbda_h: Function, p: Function, stiffness_model: Callable):

14 """

15 Evaluate PDE residual sensitivity

16 u_h: forward problem solution

17 lmbda_h: adjoint problem solution

18 p: current model parameter values

19 stiffness_model: parameter to stiffness mapping in UFL

20 """

21 R = -dot(sigma(epsilon(u_h), stiffness_model(p)), epsilon(lmbda_h)) * dx

22 dRdp = derivative(R, p)

23

24 # call FFCX JIT compiler and generate optimized C code

25 dRdp_form = form(dRdp)

26

27 # assemble DOF array

28 return assemble_vector(dRdp_form)

29

30 def dJFdp(u_h: Function, p: Function, F_obs: float, sigma_F: float, n_F, stiffness_model: Callable):

31 """Evaluate macroscopic force missfit"""

32 F = dot(n_F, dot(sigma(epsilon(u_h), stiffness_model(p)), n_F)) * dx

33 dFdp = derivative(F, p)

34

35 F_eval = assemble_scalar(form(F))

36 dFdp_eval = assemble_vector(form(dFdp))

37

38 return (F_eval - F_obs) / sigma_F**2

Figure 3: Simplified implementation of residual and loss sensitivities using UFL and DOLFINx as-
semblers
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9 Results and Discussion
To showcase our method, we consider two numerical experiments, one modelling standard DIC with
surface observations, and one with volume observations.

9.1 Identification of a Young Modulus from Surface Displacement
The first model problem is posed on the thin dog-bone specimen represented in figure 1. We consider
an isotropic stiffness model, with a spatially varying Young modulus E, and a constant Poisson
ratio νr (we employ the r subscript to avoid confusion with ν that denotes the Matérn smoothness
hyperparameter). The constitutive law 9 writes:

σ =
Eνr

(1 + νr)(1− 2νr)
tr(ε)I

3
+

E

1 + νr
ε. (90)

The considered Young modulus is a realisation of a log-Gaussian random field with a Matérn covari-
ance

p := lnE ∼ N (lnE0,Σ(σ2, ℓ, ν)), (91)

with fixed smoothness parameter ν = 1. A tensile test is simulated on Ω , where the traction direction
is represented by the unit vector nF . A uniform stress boundary condition σ · n = s0nF is applied
on ∂Ωobs

D (in this case, n = nF ), and the surface displacement u is simulated with the finite element
method. The observed DIC displacement is simulated by adding some noise ξ to the simulated
displacement degrees of freedom uobs = u+ ξ. For simplicity, we consider an uncorrelated Gaussian
white noise

ξ ∼ N (0, σ2
uI), (92)

and the measured force is calculated from the simulated stress field with formula (13) and corrupt
with Gaussian white noise η ∼ N (0, σ2

F ). The generated data is represented in figure 4. In order to
study the impact of measurement noise on the identified parameter and hyperparameters, we define
the observed signal-to-noise ratio (SNR) for the displacement and macroscopic force as

SNRdB
u (u, σu) = 20 log10

(
1

Nobsσu

Nobs∑
k=1

mk

)
, (93)

mk =
√

(uobs
3k )2 + (uobs

3k+1)
2 + (uobs

3k+2)
2, (94)

SNRdB
F (F, σF ) = 20 log10

(
F obs

σF

)
. (95)

In the following results, we choose σu and σF such that SNRdB
u ≈ SNRdB

F . For a wide range of noise
levels, we identify the MAP estimate for the posterior density, and the Matérn hyperparameters with
the various PEB approaches presented in section 6.2: the ML estimator approach, the hybrid-MAP
approach and the variogram regression approach. We recall that for the ML estimator and hybrid-
MAP approaches, considering the approximations formulated in section 6.2, the discrete Whittle-
Matérn prior is constructed by fixing the smoothness parameter to ν = 1 (so that α = 2). For the
variogram regression approach, formula (53) is applied, using the identified smoothness parameter
truncated to the nearest integer, as reported in algorithm 1. The MAP estimates EMAP and associated
kinematic fields are showcased in figure 5 for decreasing noise levels. For high SNR values, the
identified Young modulus field approximates very well the true field. For decreasing SNR values,
pMAP appears more smoothed out than the true field. Note that even though the true and simulated
strain fields are represented in figures 4 and 5, no strain data is used for parameter or hyperparameter
estimation. The reason is that the observed strain is computed from the noisy observed displacement
field:

εobs = ∇
(
u+ ξ

)
. (96)
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Figure 4: Generated data for model problem. Simulated displacement (a), simulated strain field (b),
generated Matérn field p = lnE (c), corresponding Young modulus field E = exp(p) (d).

Differentiating noisy data is an ill-posed problem [Knowles and Renka, 2014] that involves some kind
of underlying regularization (e.g. Tikhonov regularization). In typical DIC software, a regularization
parameter is usually set to an arbitrary value in order to compute and visualize the strain field.
Performing covariance estimation from the observed strain fields would yield more information about
that regularization parameter than the covariance properties of the underlying material parameter.
Even in a low noise setting, as the strain field is fully computed from the displacement field, including
strain data in the Bayesian modelling would not be more informative than using the displacement
field only.
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Figure 5: Plots of observed displacement (a), identified displacement (b), identified stiffness parameter
lnE (c), identified strain (d) for decreasing noise levels.

In figure 10, we compare the identified hyperparameters with respect to noise level for the three
proposed PEB updating approaches. For the variogram regression and hybrid-MAP approaches, the
identified marginal variance and correlation length stabilize close to the true values, whereas for
the ML approach, the identified hyperparameters are erroneous even with a high SNR, despite the
identified Young modulus field being close to the other PEB methods. These results can be interpreted
as an illustration of the results of [Zhang, 2004]: when fixing ν (here, ν is set to 1), it is not possible
to differentiate two hyperparameter pairs (σ2

0 , ℓ0) and (σ2
1 , ℓ1) if σ2

0/ℓ0 = σ2
1/ℓ1 with a ML estimator.

In the hybrid-MAP approach, a hyperprior is specified on σ2 only. Numerically, this is equivalent
to estimate the microergodic hyperparameter σ2/ℓ, which is shown to be consistently estimable in
[Zhang, 2004]. Numerically, the instabilities with the ML estimator approach translate to ridges
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in the log-likelihood profile τ 7→ Jp(pMAP, τ ) (see, e.g., figure 1 of [Lalchand et al., 2022]), which
means that the identified hyperparameters are also highly dependent on initialization values. In this
example, as the true smoothness parameter is set to ν = 1, the discretized prior (56) constructed with
α = 2 models the correct smoothness. In that case, given the results of figure 10, the hybrid-MAP
and variogram regression approaches are equivalent.

As an illustration of the classical approach detailed in section 7, the Young modulus field is also
identified through gradient penalty regularization, with a regularization parameter selected from
the constructed L-curve. For a given SNR level, identified parameters for various values of γR are
represented in figure 6, alongside with the associated empirical L-curve. This figure illustrates that
the solution is smoother as the value of γR increases. Figure 7 illustrates selection of γR through the
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Figure 6: Representation of the L-curve for a fixed SNR level, and identified parameters for different
values of γR.

L-curve and associated identified parameter, for two different noise levels. As expected, the magnitude
of regularization is increased when the noise level is increased. We can also compare the identified
parameters of figure 5 and figure 7 to conclude that both the classical and Bayesian approach yield
similar results for parameter identification, and that the main difference between the two approaches
lies in the statistical interpretation of covariance parameters, and the sampling capabilities of the
Bayesian approach.
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Figure 7: Identified classical regularization parameters from two L-curves associated with two different
SNR levels, and Young modulus field with optimal values for γR.

From the identified hyperparameters, Matérn random fields with similar covariance properties can
then be sampled. We illustrate this in figure 8, where new Matérn fields are sampled from the prior
distribution with tuned covariance. The samples were generated using the Python library GSTools
[Müller et al., 2022, Müller and Schüler, 2023]. These samples illustrate the impact of measurement
noise on the spatial statistics of the resulting generative model.
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Figure 8: Identified stiffness parameter field popt = lnEopt and random samples from the prior
distribution with tuned Matérn covariance through the variogram regression approach, for increasing
SNR levels.

A more interesting result is presented in figure 9, where a tensile test was simulated for the
same specimen, using the stiffness tensor distribution resulting from the sampled Matérn fields with
tuned hyperparameters using the variogram regression approach. For each simulation, the boundary
conditions presented at the beginning of section 9.1 were used. The resulting simulated displacement
and strain fields illustrate the expressiveness of the generative model obtained when combining the
tuned covariance model with the selected stiffness model: our method was able to learn the spatial
statistics of kinematic fields that cannot simply be modelled as Gaussian random fields.

1.3e-02

3.2e-02

0.015

0.02

0.025

0.03

-8.9e-01

9.4e-01

-0.5

0

0.5

3.4e+00

4.5e+00

3.6

3.8

4

4.2

4.4

Figure 9: Identified fields and generated fields from the tuned hyperparameters and stiffness model:
log Young modulus (a), tensile displacement (b), tensile strain (c). The identified fields were obtained
using the variogram regression approach with a SNR of 55 dB.

Note. In figure 10, even though the identified parameter field and hyperparameters appear to
stabilize with increasing SNR (for two of the three approaches), there is no proper convergence
due to the ill-posedness nature of the inverse elasticity problem. More precisely, for any fixed set
of hyperparameters µ, when SNRdB → ∞, then σ2

F → 0 and ∥Σ−1
u ∥ → ∞ for any norm, and

consequently the loss function (34) is not well-defined. For very high SNR levels, the prior term of
the loss becomes negligible and J(p) ≈ Ju(p)+JF (p). This is essentially equivalent to a classical noise
free inverse problem without regularization, which is numerically unstable due to the non-invertible
nature of the forward operator A. A Bayesian way to modify the modelling to ensure convergence
with respect to SNR would be to model the ill-posedness of operator A as artificial operator noise
ζA ∼ N (0, σ2

A) and update the likelihood accordingly:

D(yobs|p) ∝ exp

[
−1

2
(yobs − y)T (Σy + σ2

AI)
−1(yobs − y)

]
. (97)
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The added term acts as a classical regularization, and is equivalent to artificially increasing the prior
variance and thus the marginal variance hyperparameter no longer has a statistical interpretation.
The noise free case can also be treated following the classical approach developed in section 7 with γF
set to an arbitrary value. However, this asymptotic noise free case is not very important for actual
DIC parameter identification, as it can only occur in numerical experiments.

9.2 Identification of a Spatial Orientation from Volume Observations
In this second example, we showcase our method on volume displacement observations, modelling a
DVC experiment, in a case where the results for the hybrid-MAP and variogram fitting approaches
differ. We consider the thick dog-bone specimen represented in figure 11, in which the observation
zone is a volume subdomain Ωobs ⊂ R3. The considered stiffness model represents a transversely
isotropic material, where the symmetry plane is orthogonal to the loading direction represented by
the unit vector nF . The local orientation is defined in spherical coordinates (θ, φ) and represents
the direction orthogonal to the symmetry plane in which the material is assumed to be stiffer. The
local orientation is assumed to be spatially varying, which can be seen as a simplified model for
waviness of fibers in a unidirectional composite. The transversely isotropic stiffness tensor is denoted
by Cref(E1, E2, G12, ν12, ν23) where E1, E2, G12, ν12, ν23 are known constants. The stiffness of the
wavy material is defined as

C(θ, φ) = R(θ, φ) : R(θ, φ) : Cref(E1, E2, G12, ν12, ν23) : R(θ, φ) : R(θ, φ), (98)

where R(θ, φ) is a rotation matrix. For the generated data, we give the following closed form for
θtrue and φtrue:

θtrue(x, y, z) = a (cos(x/b) cos(y/b) sin(z/b)− 1/2) , (99)

φtrue(x, y, z) = a (sin(x/b) sin(y/b) cos(y/b)− 1/2) , (100)

where a, b > 0 are fixed values. As with the previous example, the noisy displacement is observed in the
volume subdomain Ωobs, and the unknown discrete stiffness parameters (p0,p1) = (θ,φ) are modelled
by a stationary Gaussian random field with Matérn covariance. The unknown hyperparameters are
assumed to be identical for both stiffness parameters (µ0 = µ1). The generated parameters ϕtrue
and θtrue, and MAP estimates ϕMAP and θMAP are represented in figure 12, where the variogram
regression approach was used for hyperparameter identification. The results show that both MAP
estimates are close to the true parameters, even though the parameters were not initially sampled
from the prior distribution. What’s interesting is that, given the analytical expressions (99)-(100),
ϕtrue and θtrue are of class C∞ and thus cannot be modelled accurately with a rough Matérn covariance
model (with ν = 1/2). As discussed in section 6.2, the hybrid-MAP approach will overestimate the
correlation length by an order of magnitude. This is represented in figure 13, where samples from
the prior distribution are represented. In the first case, the hyperparameters are identified with the
variogram regression approach, and in the other case the hybrid-MAP approach is used. A high
SNR (60 dB) is used in both cases. The results show that the correlation length of the new samples
is highly overestimated when the hybrid-MAP approach is used, whereas the variogram regression
approach leads to the right correlation length. In this case, the variogram regression approach is thus
better suited for hyperparameter identification than the hybrid-MAP approach.

9.3 Discussion
The numerical examples presented in sections 9.1 and 9.2 show that our method is able to estimate

stiffness parameters from noisy surface or volume displacement observations. One of the main advan-
tages of the proposed Bayesian formulation is that it accounts for measurement noise explicitly. The
example shown in section 9.1 shows that the covariance structure of the identified stiffness parame-
ters is highly dependent on the measurement noise level. More precisely, in a low SNR setting, the
variance of the parameter of interest tends to be underestimated, and its correlation length overesti-
mated, which is a common result in the Gaussian process regression literature (see, e.g. section 5.4.1
of Rasmussen [2004]). Unlike the classical regularization approach, the use of Whittle-Matérn priors
models the variance and correlation length of the parameters of interest explicitly, which makes them
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Figure 11: Thick dog-bone geometry for example with volume observations

Figure 12: Generated displacement (a), generated parameters ϕtrue and θtrue (b), and identified
parameters ϕopt and θopt with a 60 dB SNR (c). Hyperparameter selection was performed with the
variogram regression approach.

interpretable with regard to microstructural features. As an ill-posed inverse problem, the Whittle-
Matérn prior also acts as a regularizer, and we have shown the similarities with using a classical
inverse problem formulation using a gradient penalty regularization. The main advantage of our ap-
proach is that formulating a Matérn random field prior on the unknown material parameter leads to
a generative model after hyperparameter tuning: combining the identified correlation length ρ, the
identified marginal variance σ2 with a carefully chosen stiffness model p 7→ C(p) enables modelling a
wide range of random spatial elastic data C(x).

In this paper, we investigated various approaches for hyperparameters estimation, based on a Para-
metric Empirical Bayes approach. The various issues related to estimability of the Matérn covariance
parameter pointed out in section 6.2 are due to several numerical approximations of the underlying
hierarchical Bayesian model, namely iteratively estimating hyperparameters from the data, and the
use of sparse approximation of the precision matrix with fixed smoothness parameters. A possible
extension of this work would be to consider the full hierarchical model instead of the PEB approxi-
mation, and sample from the posterior distribution for p and µ using MCMC sampling. Considering
the recent papers that present numerical methods for a sparse approximation of the Matérn precision
matrix for any ν > 0 (see, e.g. [Roininen et al., 2018, Bolin et al., 2018]), MCMC sampling for
all Matérn hyperparameters could be investigated, although the computational cost would be much
higher than the presented framework. Under the PEB approximation, we’ve shown that the estimator
for hyperparameters must be chosen carefully to avoid numerical instabilities. We’ve discussed the
issues related to the use of a maximum likelihood estimator, and linked the numerical results to the
existing literature. The conclusions of our investigations are that the variogram regression approach
is the best choice for all cases. Using this approach, we were able to identify the parameter of interest
and their covariance structure accurately in both numerical experiments.
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Figure 13: Random samples from the prior distribution with tuned Matérn covariance, for the hybrid-
MAP approach (a) and the variogram regression approach (b).

In this work, we made the assumption that the covariance model structure was stationary. This may
not always be relevant to model materials with non-stationary microstructural features, such as when
edge effects are present. In this case, spatially varying hyperparameters could be considered. Some
preliminary work is presented in [Roininen et al., 2019] where Whittle-Matérn priors with a spatially
varying length scale is considered. The main challenge with this extension is that a correlation
structure for the hyperparameters must be specified and tuned. Another limitation of our work is
that we did not investigate the case where the stiffness model depends on multiple parameters, each
having a different covariance structure. In this case, the number of hyperparameters to identify is
increased, and the estimability of all hyperparameters should be investigated. As this paper was
focused on identification of linear elastic properties, only a single displacement field observation was
required to perform the identification. The Bayesian framework could be extended to time series
observations in order to identify spatially varying parameters from a non-linear constitutive law. In
order to achieve this, the loss function should account for the observed displacement for all time
steps uobs

t , t = 0, ..., Nt, and the forward and adjoint problem solvers should be modified accordingly.
However, the Bayesian modelling would remain unchanged.

10 Conclusion
The literature on numerical methods for materials with spatially varying, and random elastic prop-
erties is scarce, perhaps due to the fact that such materials are used in very specific contexts only.
In this work, a Bayesian extension to parameter identification procedures from noisy displacement
observations was presented, in which the unknown parameter is modelled as a Matérn random field.
Our approach naturally leads to a generative model in which the identified covariance parameters can
be used to sample new realisations from the random field prior, and generate spatially varying elas-
ticity tensor fields. Also, the identified covariance hyperparameters are informative about the spatial
statistics of underlying microstructural features. The numerical aspects of the proposed framework
were presented and discussed. As shown, extending existing procedures to a spatially varying context
involves quite a lot of specific challenges, and spatial covariance properties must be accounted for.
The approach presented in this paper leverages numerical methods from fields of research largely
unrelated to structural mechanics, which we believe to be very relevant for modelling such materi-
als. As explained in the introduction, the authors aim at applying the presented framework to DLF
composites, in which spatial covariance of elastic properties is of major importance, and is going to
be the main topic of upcoming works.
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A Extension to I-DIC
Adapting the I-DIC method to our framework is similar to the development for FEMU. Following
[Leclerc et al., 2009, Réthoré, 2010, Neggers et al., 2017], we introduce the following notations:

• f is the reference image,

• g is the deformed image,

• g̃ is the back transformed image, defined for a given displacement field u as

g̃(x) = g(x+ u(x)),

• N is the number of pixels of all considered images.

In all this section, an image I of shape (w, h) ∈ N2 is represented by a smooth function I : [0;w] ×
[0;h] → [0; 1] where I(x) is defined by the bicubic interpolation of neighbour pixel values. When
written with a bold letter, an image I denotes a w × h vector collecting pixel values.
The I-DIC loss is formulated in terms of a gray level misfit between the back transformed image and
the reference image. In the Bayesian formulation, the gray level noise is assumed to be Gaussian and
spatially uncorrelated. We note σf the variance of the white Gaussian noise affecting the captured
gray level, and as commonly done in, e.g. [Réthoré, 2010], to simplify notations, only the reference
image is assumed to be noisy with a variance 2σ2

f . Let utrue denote the true displacement field that
maps f to g. Then

∀1 ≤ i ≤ N, g(xi + utrue(xi)))− f(xi) ∼ N (0, 2σ2
f ). (101)

The I-DIC loss can be written as the following likelihood:

JI(u(p)) =
1

2σ2
f

N∑
i=1

(g(xi + u(p)(xi))− f(xi))
2
. (102)

Using (102) instead of (35) inside (34), the loss function for the MAP estimate using the I-DIC
approach now writes

JIDIC(p) = JI(p) + JF (p) + Jp(p), (103)

where JF and Jp have the same expressions as for the FEMU method. Before deriving the parameter
sensitivities for the I-DIC loss, it is important to note that the displacement field u present in JI is
not exactly the solution to the forward problem, but the simulated displacement mapped to image
coordinates, as the simulated displacement u is defined on Ω and u is defined on [0;w]× [0;h]. Hence,
we introduce an invertible affine transformation ϕ satisfying ϕ(Ωobs) ⊂ [0;w] × [0;h] that maps the
computational domain to the reference image, and we pose ψ = ϕ−1. Also, after discretization, u
is a displacement image that is not represented using finite elements shape functions. To avoid any
confusion, we hereafter use the following notations:

• u : Ω → R3 is the discrete forward problem solution, expressed in a finite element basis
(φ

0
,...,φ

NV
) as

u =

NV∑
i=0

uiφi
,

• ũ : [0;w]× [0;h]→ R3 is the forward problem solution in image coordinates, defined as

ũ(x) = dψ ◦ u ◦ ψ,
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• U : [[0;w]] × [[0;h]] → R2 is a discrete displacement image, that is linked to ũ through some
image interpolation operator Π such that U(xi) = (Π ◦ ũ)(xi).

Also, in regard to the previously introduced discrete notations, u = (u0, ..., un) denotes the co-
ordinates of u in basis B = (φ

0
, ..., φ

n
), ũ = (ũ0, ..., ũn) denotes the coordinates of u in basis

B̃ = (φ̃
0
, ..., φ̃

n
) where

∀0 ≤ i ≤ NV , φ̃i
= dψ ◦ φ

i
◦ ψ,

and U is a 2 × w × h tensor such that Uikl = U(k, l)i. With these notations, equation (102) now
writes after discretization

JI =
1

2σ2
f

N∑
i=1

(
g
(
xi +

(
Π ◦ dψ ◦ u ◦ ψ(xi)

))
− f(xi)

)2
. (104)

The adjoint variational problem is derived in a same manner as for FEMU, the main difference is
the expression of the source term:

dJIDIC

du
=

dJI
du

+
dJF
du

. (105)

The derivative of JF remains unchanged, and the derivative of JI is expanded using the chain rule

dJI
du

=
1

σ2
f

(g̃ − f) dg̃
dU

dU
dũ

dũ
du

. (106)

In this last expression, each term of the chain rule expansion is explained below:

• dũ
du is a block-diagonal sparse matrix of size (3(NV + 1))2 that is the discrete representation of
dψ in basis B. If we note ψ(x) = A · x+ b, then

dũ
du

=

A 0
. . .

0 A

 , (107)

• dU
dũ is a sparse matrix of size (2N)× (3NV ) that stores the finite element basis values at pixel
coordinates. In terms of interpolation, if U is seen as a vector valued image, then that image
can be interpreted as a structured mesh made of quadrilateral cells, on which can be constructed
a P 1 finite element basis Bpix. That being said, dU

dũ is simply the discrete interpolator from B̃
to Bpix. The matrix entries are given by

dU
dũ

=
(
(φ

k
(xl))i

)
i=0,1

0≤k≤NV

0≤l<N

(108)

where xl denotes pixel coordinates,

• dg̃
dũ is a block-diagonal sparse matrix of size N × 2N whose entries are made of the back-
transformed image gradient∇g̃. There are multiple approaches to compute the discrete gradient
of an image, but in order to remain consistent with the bicubic gray level interpolation, we use
a centred finite difference scheme:

(∇xg̃)(x) = lim
ϵ→0

g̃(x+ ϵex)− g̃(x− ϵex)
2ϵ

, (109)

(∇yg̃)(x) = lim
ϵ→0

g̃(x+ ϵey)− g̃(x− ϵey)
2ϵ

, (110)

where g̃(x ± ϵex) is defined through bicubic interpolation, ex = (1, 0) and ey = (0, 1). From
there,

dg̃
dũ

=

∇g̃(x0) 0
. . .

0 ∇g̃(xN )

 (111)

where
∇g̃(xl) = ((∇xg̃)(xl), (∇yg̃)(xl)) .
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In (111), we note that the back transformed image gradient is also commonly used for implementing
standard DIC, and following the state-of-the-art implementation techniques, it was shown in, e.g.,
[Leclerc et al., 2009, Neggers et al., 2017, Réthoré, 2010], that ∇g̃ can be approximated by ∇f such
that it does not need to be recomputed at each iteration. For application of Dirichlet boundary
conditions, the simplest approach is to use the correlated displacement uobs from a DIC algorithm,
as commonly done in the literature [Leclerc et al., 2009, Neggers et al., 2017].

B Construction of Observation Noise Matrices
In this section, we reuse notations introduced in appendix A, and discuss the expression of the
precision matrix used in the likelihood expression (31). As explained in section 5.2, it largely depends
on the algorithm used to perform the correlation. An interesting case is the FE-DIC approach, in
which the correlation is performed on a finite element mesh instead of a structured grid. For details
about FE-DIC, we refer to [Besnard et al., 2006]. In this case, the displacement precision matrix can
be derived analytically. Considering that the reference image f is corrupt by a Gaussian white noise
with variance 2σ2

f , the noise analysis performed in [Besnard et al., 2006, Réthoré, 2010] shows the
following expression for the displacement precision matrix

Σ−1
u =

1

2σ2
f

NT (∇f)T∇fN (112)

where N is a sparse matrix of size (2N) ×NV containing the evaluation of FEM basis functions at
pixel values. Note that considering the notations of appendix A, N = dU

dũ . For a specific choice
of finite elements, the marginal variance of the displacement noise can be further expanded (see
[Besnard et al., 2006] for the demonstration with quadrilateral elements). In the case of multi-camera
setups, such as in stereo-DIC, the same noise sensitivity analysis can be performed. When using the
FE-stereo-DIC correlation algorithm [Pierré et al., 2016], the derivation of the noise precision can be
found in equation 12 of [Hild and Roux, 2020]. The case of I-DIC is simpler in a multi camera setup
as the gray level noise remains spatially uncorrelated, and the precision matrix can be derived easily
from the gray level uncertainty of each camera.
In some contexts, a closed form expression may not be available, for instance when the DIC algorithm
is unknown (e.g. when using commercial software that hides implementation details). An empirical
approach may be used to construct the precision matrix numerically. First, a set of n correlated
displacements u1, ...,un is obtained by correlating the reference image f with f + ξ where ξ ∼
N (0, 2σ2

f ). The covariance matrix can then be estimated, with

Σu ≈
n∑

k=1

(uk − u0)(uk − u0)T , (113)

u0 =
1

n

n∑
k=1

uk. (114)

The resulting covariance matrix is dense and of rank r ≤ n. If n < NV , Σu is not invertible and thus
cannot be used to compute the precision matrix. A common technique is to employ a ℓ1-penalized
maximum likelihood to obtain an estimator

Q̂ = argmin
Q

tr(ΣuQ)− log detQ+ γ
∑
i ̸=j

S(|Qij |)

 , (115)

where γ is a regularization parameter that favours sparse solutions and S a shrinkage function. For
details, we refer to [Fan et al., 2015].
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