
HAL Id: hal-04587198
https://hal.science/hal-04587198

Preprint submitted on 24 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Byzantine-Tolerant Privacy-Preserving Atomic Register
Vincent Kowalski, Achour Mostéfaoui, Matthieu Perrin, Sinchan Sengupta

To cite this version:
Vincent Kowalski, Achour Mostéfaoui, Matthieu Perrin, Sinchan Sengupta. Byzantine-Tolerant
Privacy-Preserving Atomic Register. 2024. �hal-04587198�

https://hal.science/hal-04587198
https://hal.archives-ouvertes.fr

Byzantine-Tolerant Privacy-Preserving Atomic
Register

Vincent Kowalski, Achour Mostéfaoui, Matthieu Perrin, and Sinchan Sengupta

LS2N, Nantes Université, France.

Abstract. This paper presents the construction of a privacy-preserving
single-writer multi-reader (SWMR) atomic register in a Byzantine-prone
distributed model. Specifically, we consider a closed model, in which one
process can write values in the register, and only a portion of the other
processes are allowed to read the value. The aim is to ensure that pro-
cesses that do not have the requisite reading rights are unable to read
the content of the register, even if they are Byzantine. This makes the
content of the register private. We ensure this privacy by encoding the
value written by the writer, using secret sharing, into multiple shards
and disseminating them among the participating reader processes. The
technical challenge is then organize the coordination between correct
reading processes to achieve Byzantine linearizability, without dissemi-
nating the content of the register. The main contribution of this paper
is a linearizable read-write (R/W) privacy-preserving register for t < n

7
,

where t denotes the number of Byzantine processes and n denotes the
total number of processes in the system.

Keywords: Byzantine · Linearizability · Privacy-protection · Secret-
sharing.

1 Introduction

Context and Motivation Suppose we have a collection of medical data that is
important for diagnosis. This data is personal to an individual and he would
not want it to be shared amongst everyone for security and privacy reasons,
except the doctor or medical personnel treating him. This medical data can
only be changed by the doctor to update the history of the medical condition
of the patient. Connecting this to a technical analogy, we consider a distributed
system, where the data we want to share is placed in a register and participating
processes try to access it. However, only a subset of processes having the requisite
permission to read the data can access its value. For the processes not having the
read permission, the register is opaque and we achieve the much-needed privacy.
There exists a designated process, the writer, who can write in the register.
Additionally, this register should be linearizable, which means intuitively that it
should behave as if it is the only physical copy shared amongst all the processes.

A distributed system can be prone to asynchrony, crashes, and security issues.
A special category of faults exhibited by processes known as Byzantine faults

2 Kowalski et al.

was introduced by Lamport in [8] and [10]. A Byzantine process is allowed to
exhibit any random behavior it wants, not conforming to the specified algorithm.
A malicious trait exhibited by such processes is that it can lie about its state,
and collude with other Byzantine processes to fail the system.

Diving into the field of register constructions, Attiya et al. in [2] showed a reg-
ular SWMR register construction that requires two-thirds of the processes in the
system containing semi-Byzantine clients to be nonfaulty. For shared Read/Write
atomic registers tolerant of Byzantine faults, we have a few notable results. The
work of [9] by Mostéfaoui et al. in 2017, addresses the problem by proposing
a Read/Write atomic memory system tolerant of Byzantine faults, where the
tolerable limit of Byzantine processes is strictly lower than n

3 . This limit was
previously proven as necessary and sufficient in [6], proposed by Imbs et al. in
2014 and in [7]. Although these papers define an optimal limit of acceptable
Byzantine processes in a distributed system for defining an atomic register, the
proposed algorithms do not include a solution to secure the shared values. These
construction techniques are based on replication and do not care about the fact
that the Byzantines have unrestricted access to the content of the register. Man-
aging access rights in such scenarios becomes impossible and so does securing
shared values from a set of secured processes.

The Byzantine-tolerant privacy preservation techniques explored in this work
are independent to cryptographic techniques, such as encrypting the written
data. Therefore, both techniques can stack up to ensure stronger security guaran-
tees. In asynchronous systems with high communication latency, cryptographic
techniques are not always a good option and are often not scalable. The Byzantine-
tolerant register construction works in the weakest trust model with very low
resource constraints, whereas, cryptographic primitives and key management in
cryptographic protocols often place strong assumptions on the computing model.
However, it should be kept in mind that cryptographic techniques can be used
as an additional layer of privacy preservation in Byzantine fault-tolerant privacy
preservation. For instance, cryptographic techniques can be used within Byzan-
tine fault-tolerant systems to secure communication channels or ensure data
integrity. We do not consider the use of digital signatures or cryptographic tech-
niques in the system model because of their high cost as well as hidden/implicit
assumptions such as bounds on message latency which makes them inappropriate
for truly asynchronous systems.

Problem Statement. The paper addresses the problem of constructing a privacy-
preserving R/W register that tolerates Byzantine faults and restricts read access
to a set of secured processes in the system.

Approach. The novelty of the proposed algorithm lies in the combination of two
already existing approaches: secret sharing for privacy protection, and Byzantine-
tolerant synchronization techniques to ensure linearizability.

To guarantee the privacy of shared information, we use Shamir’s Secret Shar-
ing scheme [11]. The scheme provides a mechanism to allow information to be
shared between several trusted entities. This algorithm divides the secret data

Byzantine-Tolerant Privacy-Preserving Atomic Register 3

into several subparts (shards) and then distributes the parts to all processes.
Other information-sharing algorithms exist, but their complexity is higher, no-
tably cryptography which is based on computing power. To do this, a polynomial
P is generated randomly, with P (0) being the secret information to be shared.
The initiator transmits P (x) (where x ∈ [1, .., n]) and n, the number of entities
in the system. To reconstruct the initial information, a reader collects the parts
of a minimum of entities for it to have enough parts of the information to be
able to carry out Lagrange interpolation and thus reform the polynomial and
find the secret P (0). Since collaboration is mandatory to retrieve the secret, an
entity cannot retrieve shared information without collaborating with others. If a
process executes a read while not having read permissions, then it won’t receive
the requisite number of subparts following a request. This guarantees privacy
because the reader won’t be able to find the information shared initially.

To guarantee the linearizability of our R/W register, we use the replica-
tion approach first proposed by Attiya, Bar-Noy and Dolev for crash-prone sys-
tems [1]. Using this same approach, the update of the shards remains consis-
tent. The sharing of information using Shamir’s algorithm and the presence of
Byzantine entities force us to implement additional protections to guarantee the
linearizability of each operation carried out on our register and make it atomic
and resist the Byzantines.

Contributions. The main contribution of this paper is an algorithm to imple-
ment a linearizable R/W privacy-preserving register tolerant to Byzantine faults
satisfying t < n

7 . The main challenge in this work is formally showing the ro-
bustness of the algorithm in fulfilling its security criteria. We propose a novel
specification to define the security guarantee of our algorithm, based on the no-
tions of knowledge and common knowledge [5]. The algorithm is further enriched
with extensive proofs for its termination and correctness.

Organization. The paper is made up of 6 sections. Section 2 presents the com-
puting model. Section 3 specifies the problem of building a shared register re-
specting privacy in its two parts, the consistency part and the privacy part.
Section 4 presents the proposed algorithm that uses replication, and section 5
proves its correctness. Finally, Section 6 concludes the paper.

2 Model

Computing entities. The model is composed of a set of n sequential processes
denoted as p1, p2, ..., pn. Here, each pi is associated with an identifier i that
is known to all processes, and can be used in the code. These processes are
asynchronous which implies that they all go at their own pace. No process can
know the state of another process.

Byzantine Processes. The algorithm tolerates the presence of Byzantine pro-
cesses. A Byzantine process exhibits behaviour that does not correspond to the

4 Kowalski et al.

underlying algorithm it is meant to execute. It may crash, fail to send or receive
messages, send arbitrary messages, and arbitrarily execute code. More generally,
the Byzantine processes are free to produce all kinds of actions that could harm
the smooth running of the algorithm. We assume that t < n

7 is the upper bound
for the number of Byzantine processes. A process that does not exhibit Byzan-
tine behaviour is called a correct process. Let Correct be the set of all correct
processes in the system.

The communication model. The processes communicate by sending and receiv-
ing messages through two-way communication channels. The communication
network is complete: any process pi can send a message to any other process
in the system, including itself. Furthermore, if a process pi receives a message
m from a correct process pj , it implies that pj actually sent m to pi. In other
words, Byzantine processes cannot impersonate correct processes in the send-
ing of messages. In a similar way, Byzantine processes cannot know the content
of messages that are sent by correct processes, to correct processes. The chan-
nels are reliable, which implies that there is no message loss or corruption. The
channels are asynchronous, which implies that the message transmission time is
finite, but not upper bounded. However, if a process pi and a process pk both
send a message to pj , there is no guarantee of the order in which these messages
are received at pj .

FIFO Channels. We add as an additional hypothesis that the communication
channels are FIFO (First In, First Out) between correct processes. This signifies
that if a process pi sends two messages a then b to a process pj , pj will receive
these two messages in the order of their transmission. It is well-known that
FIFO channels can be easily implemented on top of non-FIFO channels by using
sequence number, so this hypothesis is done without adding computability power
to the computing model.

Notation. The acronym BAMPn,t[t <
n
7] designates the Byzantine Asynchronous

Message Passing model where t processes can exhibit Byzantine behaviour and
communication is done by message-passing.

Distributed histories.

Definition 1 (History). The collection of the discrete points in time that make
up the invocation and response events for every operation executed by every pro-
cess in the system is referred to as the History of an execution.

Definition 2 (Configuration). A configuration of a system consists of the
states of all processes and the state of the environment (values of shared variables
and contents of all message channels).

Definition 3 (Indistinguishability). Two configurations C and C ′ are indis-
tinguishable if a process pi is in the same state in both C and C ′, and is denoted
as C ′ ↔i C. We extend this definition to a pair of indistinguishable histories H
and H ′ wrt pi and denote it as H ′ ↔i H.

Byzantine-Tolerant Privacy-Preserving Atomic Register 5

3 Problem Specification

This paper considers the implementation of a privacy-preserving atomic SWMR
register. The data structure is defined by the sequential specification described in
Def. 4. We consider the definition of Byzantine linearizability from Shir Cohen
and Idit Keidar [4], stated in Def. 5. The liveness property is the standard
termination property recalled in Def. 6. Finally, we properly specify the security
property ensuring privacy protection in the following subsection.

Definition 4 (Sequential specification of the R/W register). We con-
sider the classical SWMR register with its sequential specification containing the
following two operations. Firstly, the write operation, which is accessible only
to the writer process. Secondly, the read operation, accessible only to some se-
lect processes that have the reading rights. The set of processes having reading
rights is denoted as canRead. read returns the last written value if such a last
value exists. If no value has been written yet, then the read returns a special
value ⊥ that cannot be written.

Definition 5 (Byzantine linearizability). A history H is linearizable with
respect to an object O if there exists a sequential history H ′ (called a lineariza-
tion of H) such that (1) after removing certain operations from H and by com-
pleting the others by adding corresponding responses, it contains the same calls
and responses as H, (2) if an operation o returns before an operation o′ begins in
H then o appears before o′ in H ′, and (3) H ′ satisfies the sequential specification
of O.
A history H is Byzantine linearizable with respect to an object O if there exists a
history H ′ linearizable with respect to O, such that H ′|correct = H|correct (where
H|correct designates the history where only operations performed by correct pro-
cesses are taken into account). We say that an object is Byzantine linearizable,
or simply linearizable, if all its executions are Byzantine linearizable.

Definition 6 (Termination). Let pi be a correct process.

– Each call to the procedure write() by pi terminates.
– Each call to the procedure read() by pi terminates.

Privacy protection. Processes that do not have read permissions should not be
able to read the content of the register. Additionally, a Byzantine process never
possesses the reading rights to successfully execute the read() operation.

Definition 7 (Guessing). We assume that, once in each execution, some Byzan-
tine process pi can invoke a special atomic event, denoted by Guess(v), to signify
that it has guessed the value v written by the writer pw. To be valid, Guess(v)
has to be indeed the last value written, as defined by Linearizability. Let Hv be
the history H that only contains, on the one hand, the write invocations and
responses from pw, and on the other hand, a read operation by pi, as well as a
matching return(v) event, in the place of the Guess(v) event. We say that “pi
correctly guesses in H”, denoted as Φ(H), the fact that Hv is linearizable.

6 Kowalski et al.

Obviously, it is impossible to ensure that pi never correctly guesses the writ-
ten value, since it may guess at random and succeeds by luck. However, in this
situation, pi does not know that the guessed value is correct. The notion of
knowledge was formally defined by Dwork and Moses in [5]. Following their def-
initions, we define Ki(Φ(H)) as the fact that Φ not only holds in H, but also in
all executions indistinguishable to pi from H.

Definition 8 (Knowledge).

Ki(Φ(H)) ≡ ∀H ′, (H ′ ↔i H) ⇒ Φ(H ′) (1)

We can finally define our security property, as the fact that a Byzantine process
can only know the written value if some readers are Byzantine as well.

Definition 9 (Privacy preservation for READ). The following holds for
every process pi in the system.

∀H : ∀i : canRead ⊂ Correct ⇒ ¬Ki(Φ(H))

4 Privacy Preserving Register Construction

The implementation of the privacy preserving atomic register is broken down
into two constructions: write and read operations. The privacy preservation
of the register is an abstraction of the union of these two operations.

4.1 Overview

On a high level, our proposed algorithm works in the following manner. The
writer process pw begins by creating a polynomial P to hide the information
it wants to write in the register R. Next, pw distributes shards constructed
using P to all the processes in the system. pw waits until enough processes
have received their shards. The shards are distributed in such a manner that
it enables an arbitrary reader process p to find the initial polynomial P and
thereby, find (decrypt) P (0), which is the value written by pw. This scheme of
information hiding using shards is inspired by Shamir’s Secret Sharing [11]. The
processes in the system then communicate with each other to find out if pw has
indeed emitted enough shards to re-construct P . If p has the confirmation of the
required number of shards, then each process emits an ack to signal pw that it is
possible to find the initial information because enough processes have validated
the writing. When a process commits a write, it means that it received the shard
from pw and sent the ack message.

To read the register, p sends a request to all processes to transmit their local
shards. After receiving enough responses from the processes, it performs a search
to reconstruct P . We use a sequence number scheme to maintain the most recent
version of the shards, wherein, only the recent shards would be used to find P .
Finally, p finds P and returns the value of P (0). Alternatively, it returns ⊥ as the

Byzantine-Tolerant Privacy-Preserving Atomic Register 7

initial value of the register if sufficient shards are not emitted by pw. This read
write technique is inspired from the atomic register construction of Mostefaoui
et al. as shown in [9]. Both the read and write operations are inspired from
the asynchronous confirmation mechanism similar to the protocol for reliable
broadcast proposed by [3].

Local variables. Each process pi takes care of local variables indicated by the
index i whose scope is the entire algorithm.

– shardsi[1..]: This is a local array of infinite size containing the list of subparts
(shards) transmitted by the writer, arranged in the order of their reception
at pi. If the writer is correct then, the values stored in this table for pi either
correspond to P (i) following a write, or to ⊥.

– acknoledgedi: An integer representing the number of shards validated (ac-
knowledged) by pi.

– regi[1..n][1..]: This is an array of size n containing arrays of infinite size.
This variable records the validated sub-parts (content in shardj) and is
transmitted by a process pj during the read request. More precisely, ∀j, k,
regi[j][k] initialized to ⊥ contains P (j) of the writing k.

In addition to the above variables, let Zt[X]: the set of polynomials of degree t
and coefficients in Z.

Messages. This algorithm uses 8 different message types:

– Share(shard, sn): Pass the shard from the writer to a process.
– Echo(sn): Informs other processes in the system that a process has received

a shard from the writer.
– Ready(sn): Informs other processes that the current process has received

enough echo(sn) messages to be able to send the message ack(sn).
– Ack(sn): Informs the writer that the value he wrote can be read.
– Collect(rsn): Requests the shards received by each process.
– Supply(v[], rsn): Sends the list of shards received to the reader process.
– Confirm(k): Asks the process if they have at least the value read by the

reader
– Ratify(k): Processes send this message if they have at least the value read.

4.2 The Write Operation

Algorithm 1 illustrates the steps for the WRITE operation by a correct process
pi in the model BAMPn,t[t <

n
7].

The writer pw distributes the Share message to all processes in the system,
including itself. This allows pw to communicate the shard corresponding to ev-
ery process and also the sequence number (denoted sn) of this write. All the
processes are associated to an identifier, and hence, a process pk receives a shard
k corresponding to the value P (k) where P is the polynomial generated by the
writer pw.

8 Kowalski et al.

Fig. 1: Schematic explanation of the writing process illustrating the different phases that compose
the write operation. p(i) denotes the shard being sent out from the writer Bob to the i’th process
while attempting to write the value a to the register.

Fig. 2: The read operation follows the write and is internally composed of four phases of message
collection. The specifications of the values carry the same meaning as in Figure 1.

Upon receipt of the Share message, the processes record the shard received
in their variable shardsi[sn] and emit echo(sn) message in order to inform
all processes of receiving the shard. When a process receives n − t echo(sn)
messages or 5t+ 1 ready(sn) messages, it broadcasts the ready(sn) message.
When a correct process pi receives 6t+ 1 ready(sn) messages, it records sn in
acknoledgedi and sends the ack(sn) message. The writer pw then increments
its sequence number and repeats the above for every write it wishes to perform.
The sequence of actions performed is illustrated in Figure 1.

4.3 The Read Operation

A reading process pi begins by resetting the regi variable. pi then sends col-
lect(rsni) messages, with rsni being the reading counter of pi. This counter en-
sures version control, wherein, there is no conflict between receptions of this mes-
sage from different readings. pi now waits to receive n− t supply(shardsi, rsnr)
messages.

When a process pi receives the collect(rsn) message, it ensures that pr
has read rights before transmitting to it all the shards validated by pi in the
supply(shardsi[0..acknoledgedi], rsn) message. For each supply(shardsi, rsn)
message that pi sends, pr checks that the parameter rsn is equal to its variable

Byzantine-Tolerant Privacy-Preserving Atomic Register 9

Algorithm 1: Implementation of WRITE in the linearizable privacy-
friendly register of the BAMPn,t[t <

n
7] model.

procedure write(v) invoked by pw is
1 let P ∈ Zt[X] : P (0) = v;
2 for j from 1 to n do
3 send share(P (j), snw) to pj ;

4 wait until (pw has received at least n− t messages ack(snw));
5 snw ← snw + 1;

when receive share(shard, sn) from pj :
6 shardsi [sn]← shard;
7 send echo(sn) to all processes;

8 when one of these conditions holds for the first time, for each sn:
9 • pi has received echo(sn) from n− t different processes

10 • pi has received ready(sn) from 5t+ 1 different processes

11 do:
12 send ready(sn) to all processes;

when receive ready(sn) from 6t+ 1 process :
13 acknoledgedi ← sn;
14 send ack(sn) to pw;

rsnr (if this corresponds to its current reading). If so, it saves shardi in its
variable regr[i]. Once pr receives n − t supply messages, it increments rsnr.
Now pr tries to find the polynomial created by pw by the following steps: Let k
be a loop variable which counts down from the largest size among the registers
received by pr till 1. pr tries to find the polynomial created by pw using Lagrange
interpolation with 2t+1 points. If pr does not find a polynomial then it returns
⊥. Otherwise it uses the k for which pr found a polynomial in order to send
the message confirm(k) to all processes. This message allows the reader to
ensure that future readings will read at least value number k. Then it waits to
receive n − 2t ratify(k) messages. When the processes pi receive the message
confirm(k) they wait until their variable acknoledgedi is greater than or equal
to k then they send the message ratify(k) to pr. When pr has received enough
ratify messages, it can finish and returns P (0) to find the initial value written
by pw. Figure 2 diagrammatically illustrates the above notion.

5 Correctness Proofs

We now rigorously show the correctness of our proposed algorithms. All missing
proofs are in the Appendix.

Definition 10 (Validation sequence number). Let sn ∈ N, and pi be a
correct process. We say that pi validates sn when pi sends a message ack(sn)
and shardsi[sn] ̸= ⊥.

10 Kowalski et al.

Algorithm 2: Implementation of READ in the linearizable privacy-
friendly register for the BAMPn,t[t <

n
7] model.

procedure read() invoked by any pi with reading rights is
15 regi[1..n][1..]←

[
[], ..., []

]
;

16 send collect(rsni) to all processes;
17 wait until (pi has received at least n− t messages supply(, rsni));
18 rsni ← rsni + 1;
19 for k from maxj |regi[j]| to 1 do
20 if ∃P ∈ Zt[X] : |{j : P (j) = regi[j][k]}| > 2t then
21 send confirm(k) to all processes;
22 wait until (pi has received n− 2t ratify(k) messages);
23 return P (0);

24 return ⊥;
when receive collect(rsn) from pj with reading rights :

25 send supply(shardsi[0..acknoledgedi], rsn) to pj

when receive supply(v[], rsn) from pj :
26 if rsn = rsni then regi[j]← v;

when receive confirm(k) from pj :
27 wait until (acknoledgedi ≥ k);
28 send ratify(k) to pj ;

Definition 11 (Timestamp). For each operation o, we set a timestamp hd(o)
of o as follows. If o is a write by pw, then hd(o) = snw at the end of line 5. If
o is a reading by pi then hd(o) = k at line 23 or hd(o) = ⊥ at line 24. In other
words, hd(o) is equivalent to the sequence number that is read or written by o.

Lemma 1. If a correct process sends the message ack(sn) then all correct pro-
cesses send the message ack(sn).

Proof. Suppose a correct process pi sends an ack(sn) message at line 14. Hence,
pi received at least 6t+1 messages ready(sn), of which at least 5t+1 were sent
by correct processes. So, all correct ones will receive these messages and emit
a ready(sn) message at line 12. Like n − t ≥ 6t + 1, at least 6t + 1 messages
ready(sn) are sent by correct ones, all correct ones send a message ack(sn) at
line 14. ⊓⊔

Lemma 2 (Write termination). Any call by a correct process to the write(v)
operation terminates.

Proof. Suppose that pw, a correct process calls the write(v) operation and that
it does not terminate. The lines 1-3 and 5 end by definition. So if the execution of
write(v) by pw does not complete, this means that pw has received less than n−t
ack(sn) messages. At line 3, pw will send share(sn) messages to all processes
since it is correct. Which implies that the correct n− t processes will receive the

Byzantine-Tolerant Privacy-Preserving Atomic Register 11

message share(sn) and transmit the message echo(sn) line 7. So at least t+ 1
correct processes will receive n−t echo(sn) messages and will therefore transmit
the ready(sn) message to line 12. So all other correct processes will eventually
pass ready(sn). This implies that at least 1 correct process will receive 6t + 1
ready(sn) messages and it will therefore send the message ack(sn) line 14.
However, lemma 1 tells us that if one correct process sends the ack(sn) message,
then all correct processes will eventually send it. The process pw will therefore
necessarily receive n − t ack(sn) messages and complete its execution of the
write(v) operation. This is in contradiction with the initial assumption, which
implies that the property is true. ⊓⊔

Lemma 3 (End of readings). Every invocation of the read() operation by a
correct process terminates.

Proof. Suppose that a correct process pi invokes the read() operation and does
not terminate. Note that lines 15-16, 18-21 and 23-24 must terminate by defi-
nition. So, if pi’s read() execution does not complete, it is because it has not
received n− t supply(-,rsni) messages at line 17 or n− 2t ratify(k) messages
at line 22. Let us look at the cases separately.
If pi has not received n − t supply(-,rsni) messages then it must be true that
at least one correct process has not received the message collect and has not
not executed the line 25. However, at line 16, pi sent a collect to all processes
and as the channels are secured, each correct process must have received the
message. Subsequently, each correct process must have sent supply messages to
pi and therefore executed line 25, which is a contradiction.
If pi has not received n− 2t ratify messages, after having sent confirm(k) to
all the processes then it must be true that at least one correct process is blocked
at line 27. If pi sent the message confirm(k) at line 21 to all processes then a
particular process must have necessarily received 2t+ 1 message supply as val-
idated by line 20. This implies at least 2t+1 processes have validated k. Hence,
at least one correct process has issued the message ack(k). According to Lemma
1, if a correct process sends the message ack(k) then all correct processes will
send ack(k). Hence, ∀pj , acknoledgedj ≥ k for a correct process pj and pj would
be able to send the message ratify(k). Process pi will eventually receive n− 2t
ratify(k) messages, so pi will not get stuck at line 22.
Both cases are in contradiction with the initial hypothesis and hence our result
follows. ⊓⊔

Theorem 1 (Termination of the algorithm). Any use of the algorithm by
a correct process terminates.

Proof. Lemmas 2 and 3 show us that calls to the read() and write(v) proce-
dures terminate. This implies that the algorithm terminates. ⊓⊔

Theorem 2 (Privacy preservation of READ from Byzantines). The fol-
lowing holds for every process pi and history H admitted by Algorithm 1 and 2.

∀H : ∀i : canRead ⊂ Correct ⇒ ¬Ki(Φ(H)) (2)

12 Kowalski et al.

Fig. 3: The construction of two indistinguishable histories Hv and Hv+1 is shown. These two histories
are indistinguishable for pi.

Proof. Let H be a history admitted by the algorithms, and let pi be a process.
We suppose that canRead ⊂ Correct. Let us prove that ¬Ki(Φ(H)). Recalling
Def. 8, it means that

∃H ′ : H ↔i H
′ ∧ ¬Φ(H ′). (3)

Let v be the value such that the operation Guess(v) exists in H. We build
H ′ by transforming all write(v) operations in H as follows.

– The write(v) invocation is replaced by a write(v + 1) invocation in H ′.
– Let P be the polynomial chosen by pw in H. By the Lagrange Interpolation

theorem, there exists a polynomial P ′ of degree t such that P ′(0) = v+1 and
P ′(j) = P (j) for all Byzantine processes pj . We replace all share(P (j), snw)
messages by messages share(P ′(j), snw), and we adjust the supply mes-
sages, as well as the return values of the read operations according to the
algorithms. Figure 3 illustrates this construction diagrammatically.

Let us prove that H and H ′ are indistinguishable to all Byzantine processes
pj . Only share and supply messages differ in H and H ′; by the definition
of P ′, Byzantine processes receive that same share messages in H and H ′;
and since canRead ⊂ Correct, then Byzantine processes do not receive supply
messages from correct processes in either H or H ′, since their collect messages
are ignored by correct processes at Line 25. Therefore, all Byzantine processes
receive the same messages from correct processes in H and H ′, so H and H ′ are
indistinguishable to all of them. In particular, H and H ′ are indistinguishable to
pi, soKi(Φ(H)) is false. Moreover, the historyH ′ contains an operationGuess(v)
but no operation write(v), so Φ(H ′) is false, which concludes the proof. ⊓⊔

Lemma 4. (Proof in the Appendix) Assume the correct writer. If at least 4t+1
correct processes have validated the sequence number hd(o1) before a read o2
begins, then hd(o2) ≥ hd(o1).

Lemma 5. (Proof in the Appendix) If the writer is correct and at least n− 2t
correct processes sent the message ack(sn), then at least 4t+1 correct processes
committed sn.

Lemma 6 (Write after read). Given 2 correct processes pi and pj, if pj fin-
ishes reading o1 before pi begins writing o2 then hd(o1) < hd(o2).

Byzantine-Tolerant Privacy-Preserving Atomic Register 13

Lemma 7 (Read after write). Let a correct process pi complete a write o1
before a correct process pj begins a read o2 then hd(o2) ≥ hd(o1).

Lemma 8 (Read after read). Let pi be a correct process that completes a
read operation o1 before a correct process pj begins a read operation o2. Then
hd(o1) ≤ hd(o2).

Lemma 9. (Proof in the Appendix) Given a read o1 and a write o2, if hd(o1) =
hd(o2) then o1 will return the argument of o2.

Lemma 10 (Linearizability for the correct writer). Assume the correct
writer. There is a total order < on all writes and reads made by the correct
ones, such that:

– execution of operations in order < respects the sequential specification
– if e ends before e′ begins, then e < e′

Lemma 11 (Linearizability for the Byzantine writer). Let us assume the
Byzantine writer. Any history accepted by the algorithm 1 is Byzantine lineariz-
able for a Read/Write register

Proof. We construct a history H ′ made up of all the readings of H made by
corrects in which we add a writing of the value read before each reading. Hence,
H ′ is linearizable and coincides with H on all readings. ⊓⊔

Theorem 3 (Linearizability). Algorithm 1 implements a register respecting
Byzantine linearizability.

Proof. Lemmas 10 and 11 detail the two cases following the behavior of the
writer. ⊓⊔

6 Conclusion

In this article, we implemented a linearizable SWMR register tolerant of Byzan-
tine faults and preserving privacy. To do this, we used Shamir’s Secret Sharing
algorithm which allowed us not to share the information in its entirety and to
guarantee that a process that does not have reading rights would be unable to
read the register. Our register algorithm can support a maximum of no more
than one-seventh of the total number of Byzantines processes in the system. As
an important contribution to this work, we rigorously prove how our register
construction achieves privacy preservation even when Byzantines mimic read
operations without having access rights.

A few open questions remain for this work. It is pertinent to ask if the bound
of t < n

7 for our algorithm is optimal. Additionally, it would be nice to explore the
possibility and benefits of increasing security by combining several approaches,
such as adding cryptographic techniques when passing shards.

14 Kowalski et al.

References

1. Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. Sharing memory robustly in
message-passing systems. Journal of the ACM (JACM), 42(1):124–142, 1995.

2. Hagit Attiya and Amir Bar-Or. Sharing memory with semi-byzantine clients and
faulty storage servers. In 22nd International Symposium on Reliable Distributed
Systems, 2003. Proceedings., pages 371–378. IEEE, 2003.

3. Gabriel Bracha and Sam Toueg. Asynchronous consensus and broadcast protocols.
Journal of the ACM (JACM), 32(4):824–840, 1985.

4. Shir Cohen and Idit Keidar. Tame the wild with byzantine linearizability: Reliable
broadcast, snapshots, and asset transfer. arXiv preprint arXiv:2102.10597, 2021.

5. Cynthia Dwork and Yoram Moses. Knowledge and common knowledge in a byzan-
tine environment: crash failures. Information and Computation, 88(2):156–186,
1990.

6. Damien Imbs, Sergio Rajsbaum, Michel Raynal, and Julien Stainer. Reliable shared
memory abstraction on top of asynchronous byzantine message-passing systems. In
Structural Information and Communication Complexity: 21st International Collo-
quium, SIROCCO 2014, Takayama, Japan, July 23-25, 2014. Proceedings 21, pages
37–53. Springer, 2014.

7. Damien Imbs, Sergio Rajsbaum, Michel Raynal, and Julien Stainer. Read/write
shared memory abstraction on top of asynchronous byzantine message-passing sys-
tems. Journal of Parallel and Distributed Computing, 93:1–9, 2016.

8. Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals
problem. In Concurrency: the works of leslie lamport, pages 203–226. 2019.

9. Achour Mostéfaoui, Matoula Petrolia, Michel Raynal, and Claude Jard. Atomic
read/write memory in signature-free byzantine asynchronous message-passing sys-
tems. Theory of Computing Systems, 60:677–694, 2017.

10. Marshall Pease, Robert Shostak, and Leslie Lamport. Reaching agreement in the
presence of faults. Journal of the ACM (JACM), 27(2):228–234, 1980.

11. Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613,
1979.

Byzantine-Tolerant Privacy-Preserving Atomic Register 15

7 Appendix

The missing proofs from Section 5 are detailed here.

Lemma 4 Assume the correct writer. If at least 4t+1 correct processes have
validated the sequence number hd(o1) before a read o2 begins, then hd(o2) ≥
hd(o1).

Proof. Assume the correct writer, that at least n − 3t correct processes have
committed the sequence number hd(o1) by the time a process pi begins a read
o2. When pi executes the line 17, it receives n−4tmessages from correct processes
pj of the form supply(vj , rsni) which have already committed hd(o1). Let ΠS

denote the set of these n− 4t processes.
Let us prove that, for all pj ∈ ΠS , we have |vj | ≥ a. Let pj ∈ ΠS . As pj has

already validated hd(o1) (line 14), it executed line 13 previously. To be able to
execute these lines, pj must have received 6t+1 times the message ready(hd(o1))
coming from different processes, including at least 5t+1 correct processes. This
implies that at least 5t+1 correct processes received the message echo(hd(o1))
from n − t different processes where they received the message ready(hd(o1))
of 5t + 1 different process to be able to emit ready(hd(o1)) at line 12. This
implies that at least 4t + 1 correct processes emit the message echo(hd(o1))
line 7. To do this, they had to receive the message echo(hd(o1)) coming from
n − t different processes, including at least n − 2t correct processes. If these
n − 2t correct processes sent echo(hd(o1)) line 7, they necessarily received a
shard from the writer process and therefore they recorded this shard at line 6.
So |vj | ≥ hd(o1) according to the line 25.

When pi executes the line 20, it will be able to find the value of the entry
having the sequence number hd(o1). Indeed, pi has n−5t messages from correct
processes pj of the form supply(vj , rsni) which have already validated hd(o1).
pi must manage to find a polynomial with 2t + 1 given shards. Now, if pi has
n − 5t messages from correct processes, it therefore has at least 2t + 1 because
t < n

7 . The writer being correct, he therefore created a line polynomial 1 then
he sent a value associated with each process using this polynomial in the mes-
sage share(P (j), snw). As shown previously, all pj stored this value and then
transmitted it to pi. When pi finishes its read operation (see lemma 3), it will
return line 23 the value written by the writer process. ⊓⊔

Lemma 5 If the writer is correct and at least n − 2t correct processes sent
the message ack(sn), then at least 4t+ 1 correct processes committed sn.

Proof. Let pi be a correct process which completes a write with sequence number
sn. The process pi therefore received n− t messages ack(sn) line 4. This implies
that all correct processes pj sent the message ack(sn) line 14 and so they stored
sn in the variable acknoledgedj at line refline:incrAcknoledged. In order to be
able to execute these lines, the pj processes had to receive ready(sn) messages
from 6t+1 different processes, of which at least 5t+1 were correct. For a correct

16 Kowalski et al.

process to emit the message ready(sn) line 12, it must have received n− t mes-
sage echo(sn) or 5t+1 messages ready(sn). At a minimum, there are therefore
4t+1 correct processes which emit the message ready(sn) after having received
the messages echo(sn). For a correct process pj to send the message echo(sn)
line 7, it must have received the message share(shard, sn). The process pi being
correct, it will transmit a message share to all the processes in the system at
line 3. So n − t processes sent the message echo(sn) of which at least n − 2t
are correct. All correct processes will be able to send the ready(sn) message.
Correct processes will therefore receive at least 6t+1 message ready(sn). They
will therefore be able to transmit the message ack(sn). Let Q1 be the set of
processes that sent the message echo(sn), and let Q2 be the set of processes
that sent the message ack(sn). We have |Q1| ≥ n− t and |Q2| ≥ n− t. We have:

|Q1 ∩Q2| = |Q1|+ |Q2| − |Q1 ∪Q2|
≥ n− t+ n− t− n (∵ |Q1 ∪Q2| ≤ n)
≥ n− 2t
> 5t (∵ n > 7t)

|Q1 ∩Q2| ≥ 5t+ 1.

In particular, Q1∩Q2 contains at least |Q1∩Q2| − t ≥ 4t+ 1 correct processes
pj which have shardj [sn] ̸= ⊥ and which sent the message ack(sn), i.e. the
definition of validated. ⊓⊔

Lemma 6 (Write after read) Given 2 correct processes pi and pj, if pj
finishes reading o1 before pi begins writing o2 then hd(o1) < hd(o2).

Proof. Consider a correct process pj which performs a read operation o1 and a
correct process pi which performs a write operation o2 such that hd(o1) < hd(o2)
and suppose that pj returns the value associated with the writing o2.

For pj to be able to return this value, at line 20 it must have succeeded in
finding a polynomial with 2t + 1 shards of size greater than or equal to hd(o2)
emitted by correct processes pk. The information contained in regj [k] being
different from ⊥, we have regj [k][hd(o2)] = shardsk [hd(o2)], which was edited
at the line 6 when pk received the message share(shard, hd(o2)) sent by the
writer process at line 3. This therefore implies that the write hd(o2) has started
if o1 returns the value of the write o2 which implies that hd(o1) ≥ hd(o2) by
definition of hd. ⊓⊔

Lemma 7 (Read after write) Let a correct process pi complete a write
o1 before a correct process pj begins a read o2 then hd(o2) ≥ hd(o1).

Proof. Let there be 2 correct processes pi and pj , if pi completes an operation
o1 before pj begins reading o2. For pi to finish writing, it had to wait to receive
n− t messages ack(sn) (line 4) from different processes, including at least n−2t
correct processes. So according to lemma 5, there are at least 4t + 1 correct
processes which validated the sequence number hd(a). So according to lemma 4,
hd(o2) ≥ hd(o1). ⊓⊔

Byzantine-Tolerant Privacy-Preserving Atomic Register 17

Lemma 8 (Read after read) Let pi be a correct process that completes
a read operation o1 before a correct process pj begins a read operation o2. Then
hd(o1) ≤ hd(o2).

Proof. Let there be 2 correct processes pi and pj , if pl completes its read op-
eration o1 which implies that at least 4t + 1 correct processes have validated
the write with hd(o1) according to lemma 5. If now pj begins a read o2, then
it has received shards from at least n − t processes and has determined line 19
that hd(o2) was the most recent validated by the greatest number of people.
According to Lemma 4, n− t processes guarantee at least 3t+ 1 processes have
validated hd(o1). So, by removing t byzantines, we have 3t+ 1− t = 2t+ 1. We
can still find P (0) because at least 2t + 1 shards are necessary. Knowing that
at least 4t + 1 processes have validated the writing o1, we can conclude that
hd(o2) is either equal to hd(o1) or greater and that corresponds to a new written
value. ⊓⊔

Lemma 9 Given a read o1 and a write o2, if hd(o1) = hd(o2) then o1 will
return the argument of o2.

Proof. Let two correct processes pi and pj such that pi performs the write opera-
tion o2 and pj performs the read operation o1. Suppose hd(o1) = hd(o2). Let P1,
the polynomial such that P1(0) is returned line 23 by pi, and P2, the polynomial
chosen by pj at line 1.

There exists at least t + 1 correct processes pk such that P1(k) is equal to
regj [k][hd(o1)] at line 20. The information contained in regj [k] being different
from ⊥, we have regj [k][hd(o1)] = shardsk [hd(o1)], which was edited at line 6
when pk received the message share(shard, hd(o1)) sent by the writer process
at line 3. We therefore have P1(k) = regj [k][hd(o1)] = P2(k).

Finally, there exist at least t+1 different values of k such that P1(k) = P2(k).
By uniqueness of Lagrange interpolation for polynomials of degree at most t, we
have P1 = P2, therefore the value P1(0) returned by reading o1 is equal to the
argument P2(0) of writing o2. ⊓⊔

Lemma 10 Assume the correct writer. There is a total order < on all writes
and reads made by the correct ones, such that:

– execution of operations in order < respects the sequential specification
– if e ends before e′ begins, then e < e′

Proof. Consider an execution of the algorithm 1. We define the binary relation
→ between operations o1 and o2 by: o1 → o2 if, either 1) o1 is finished before
o2 begins (denoted: o1 →1 o2), or 2) hd(o1) < hd(o2) (noted: o1 →2 o2), or 3)
o1 is a write, o2 is a read and hd(o1) ≤ hd(o2) (noted: o1 →3 o2), or 4) o1 = o2
(noted: o1 →4 o2).

Note that if o1 → o2 then hd(o1) ≤ hd(o2) and if moreover o2 is a different
writing from o1, then hd(o1) < hd(o2). This is true by definition for →2 and →3.
For →1, if it is a read followed by a read, it is true by lemma 8. If it is a write
followed by a read, it is true by lemma 7. If it is a read followed by a write, it

18 Kowalski et al.

is true by lemma 6. If it is a write followed by a write then the line 5 and the
definition of hd() are true.

The relation → is reflexive by definition of →4.
Let us prove the transitivity of →. Consider three operations o1, o2

and o3 such that o1 → o2 → o3. Let us prove that o1 → o3. The following cases
must be distinguished.

1. Case o1 →4 o2 or o2 →4 o3: we have o1 = o2 → o3 or o1 → o2 = o3, therefore
o1 → o3.

2. Case o1 →2 o2 or o2 →2 o3: we have hd(o1) < hd(o2) ≤ hd(o3) or hd(o1) ≤
hd(o2) < hd(o3), so o1 →2 o3.

3. Case o1 →1 o2 →1 o3: o1 ends before o2 begins and o2 ends before o3 begins.
So o1 is finished before o3 begins. So, o1 →1 o3.

4. Case o1 →1 o2 →3 o3: o2 is a write. If o1 is a read, we have hd(o1) < hd(o2)
by lemma 6. If o1 is a write then hd(o1) < hd(o2) by line 5. In both cases,
hd(o1) < hd(o3), so o1 →2 o3.

5. Case o1 →3 o2 →1 o3: We have hd(o1) ≤ hd(o2) ≤ hd(o3). If hd(o1) <
hd(o3), then o1 →2 o3. Otherwise hd(o1) = hd(o3). Since o1 is a write (by
definition of →3) o3 cannot be a write because of line 5. So o3 is a reading,
so o1 →3 o3.

6. Case o1 →3 o2 →3 o3: Impossible because o2 would be both read and write.

Let us prove the antisymmetry of →. Let two operations o1 and o2 be
such that o1 → o2 → o1. Let us prove that o1 = o2. The following cases must be
distinguished.

1. Case o1 →4 o2 or o2 →4 o1: we have o1 = o2.
2. Case o1 →2 o2 or o2 →2 o1: we have hd(o1) < hd(o1), which is absurd.
3. Case o1 →1 o2 →1 o1: Paradoxical because o1 would have finished before

having started.
4. Case o1 →1 o2 →3 o1: By definition of →3, o2 is a write and o1 is a read,

and by definition of →1, o1 ends before until o2 begins. According to lemma
6, we have hd(o1) < hd(o2). This contradicts the definition of →3 that
hd(o1) = hd(o2).

5. Case o1 →3 o2 →1 o1: We have o2 →1 o1 →3 o2, which brings us back to the
previous case.

6. Case o1 →3 o2 →3 o1: Impossible because o2 would be both read and write.

The relation → is therefore a partial order relation, which contains real-time,
by definition of →1.

Assume the correct writer process named pw, all reads done by process pk
such that hd(ok0) is equal to ⊥ are placed before the first write o1 such that
∀ok0, ok0 →2 o1. Then, lemma 9 tells us that if a read ok takes place between
the write on and the write on+1 then hd(on) = hd(ok). We therefore obtain the
order on →1 ok and ok →2 on+1. This creates a partial order for us that we can
extend to a total order.

Byzantine-Tolerant Privacy-Preserving Atomic Register 19

The binary relation → can be applied to a total order which respects real
time thanks to →1 and each read returns the initial value if the timestamp is 0 or
the value written by the previous write since sn is updated line 5 jointly with k
line 20 thanks to →2 and →3. The execution considered is therefore linearizable.

⊓⊔

