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INVESTIGATION ON THE STABILITY IN A THICK SPRAY MODEL

Victor Fournet1

Abstract. The aim of this work is to discuss linear stability and instability properties of a thick spray
model. We linearize the equation and we give a criterion on the equilibrium to have linear instability.
We also present numerical illustrations.

Résumé. Le but de cet article est de discuter des propriétés de stabilité et d’instabilité linéaire d’un
modèle de spray épais. Nous linéarisons les équations et nous donnons un critère sur l’équibre pour
avoir instabilité linéaire. Nous présentons aussi des illustrations numériques.

1. Introduction

The aim of this paper is to discuss linear stability properties of a multiphase model that characterizes
suspensions of particles in an underlying gas, commonly referred to as a ”spray” [15]. A typical system describing
such spray can be expressed as follows [1, 6, 32]:


∂tf + v · ∇xf +∇v · (Γf) = 0

∂t(αϱ) +∇x · (αϱu) = 0

∂t(αϱu) +∇x · (αϱu⊗ u) + α∇xp(ϱ) = D⋆

∫
R3(v − u)f, dv.

(1)

In system (1), the first equation is a Vlasov-type equation, describing particle evolution through a distribution
function f = f(t,x,v) ≥ 0 in the phase space T3 × R3 for times t > 0. The second and third equations are
the barotropic compressible Euler equations, governing the evolution of density ϱ = ϱ(t,x) ≥ 0 and velocity
u = u(t,x) ∈ R3 of the fluid for times t > 0 and positions x ∈ T3. This system characterizes the ”thick”
spray regime, where the total volume occupied by particles is significant compared to the fluid volume, leading
to coupling between the fluid and particles.

The volume fraction of the fluid, denoted as α = α(t,x), is a key parameter, related to f through the formula
α(t,x) = 1− 4

3πr
3
p

∫
R3 f(t,x,v) dv. Here, we assume α(t,x) ∈ [0, 1], which differs from the ”thin” spray regime

where this quantity is close to 1 and absent from the equations [4]. The particle radius rp > 0 is a constant,
and the force field Γ = Γ(t,x,v) acting on particles is given by

Γ(t,x,v) = −∇xp(ϱ)−
D⋆
4
3πr

3
p

(v − u).

This force comprises two terms: the term D⋆
4
3πr

3
p
(v − u) represents a drag force exerted on the particles by

the fluid. The feedback of the drag force on the fluid is present in the third equation of (1), denoted as the
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”Brinkman force.” The drag coefficient D⋆ ≥ 0 is typically provided in semi-empirical forms. The term −∇xp(ϱ)
is specific to thick spray. Its presence is consistent with the fact that the system (1) is formally linked to bifluid
equation [16], where there is a common pressure gradient to both phases.

In contrast with the thin spray equations for which there exists a rich litterature on the subject (see [2, 4,
7, 18, 24, 30] and the references therein), the mathematical litterature on thick spray is much more limited and
only a few results are available [6, 30]. Indeed, the presence of both the pressure gradient −∇xp in the Vlasov
equation and of the volume fraction α in the fluid equations make the rigorous study of thick spray equations
challenging. We refer to [9, 17,20] for recent rigorous works on thick sprays.

This model is applicable to diverse physical phenomena at various length scales, including medical aerosols [7,
8], combustion in engines [1], atmospheric aerosols [29], and astrophysics for modeling gas giants and exoplanets
[21].

The friction force is usually considered as a leading effect in fluid-particles flows. However, in this study
we take for mathematical convenience D⋆ = 0 because the linearized equation can then be rewritten using the
framework of Lax and Kato [26, 28] (the reader interested by preliminary results concerning the more physical
case D⋆ > 0 can refer to the last section of [10]). The resulting model is expressed as


∂tf + v · ∇xf −∇xp(ϱ) · ∇vf = 0

∂t(αϱ) +∇x · (αϱu) = 0

∂t(αϱu) +∇x · (αϱu⊗ u) + α∇xp(ϱ) = 0.

(2)

2. Linear stability

2.1. Linearisation of thick spray equations

We consider the following homogeneous solution of (2)
ϱ(t,x) = ϱ0 > 0,

u(t,x) = 0,

f(t,x,v) = f0(v)

where the density n0 =
∫
R3 f0 dv is related to the volume fraction α0 by

1− 4

3
πr3pn0 = α0 ∈ (0, 1). (3)

Following [9], we perform the linearization
ϱ(t,x) = ϱ0 + εϱ1(t,x) +O(ε2)

u(t,x) = εu1(t,x) +O(ε2)

f(t,x,v) = f0(v) + ε
√

f0(v)f1(t,x,v) +O(ε2).

Dropping the quadratic terms and the subscripts, one obtains [9] the following linear thick spray equations with

τ(t,x) = −ϱ1(t,x)/ϱ
2
0 and c0 =

√
p′(ϱ0)

α0ϱ0∂tτ = α0∇x · u+m⋆∇x ·
∫
R3

v
√

f0f dv

α0ϱ0∂tu = α0ϱ
2
0c

2
0∇xτ

∂tf + v · ∇xf + ϱ20c
2
0∇xτ · ∇vf0√

f0
= 0.

(4)
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In the rest of this work, we set the constants to 1.
To study the linear stability of (4), we introduce the following operator

iH =

 0 ∇x· ∇x ·
∫
v
√
f0(v) · dv

∇x 0 0

−∇vf0√
f0

· ∇x 0 −v · ∇x

 (5)

So that (4) rewrites

U ′(t) = iHU(t)

with U = (τ,u, f).

2.2. Spectral analysis

2.2.1. Instabilities of the linear problem

We look for exponentially growing modes of (4), i.e. solutions of the form

f(t, x, v) = α(v)e−iωteikx, τ(t, x) = βe−iωteikx, u(t, x) = γe−iωteikx, (6)

with k ∈ Z, ω ∈ C with ℑm(ω) > 0, α ∈ L∞(R), β and γ ∈ R. Injecting this ansatz into (4), one gets
−iωβ = ikγ + i

∫
kv

√
f0(v)α(v) dv

−iωγ = ikβ

(−iω + ikv)α(v) = −iβ
kf ′

0(v)√
f0(v)

Then one obtains

α(v) =
−βk

−ω + kv

f ′
0(v)√
f0(v)

, γ = −β

ω
k, (7)

and

−iωβ = −ik2
β

ω
− iβ

∫
k2v∂vf0(v)

kv − ω
dv.

In particular, one has the dispersion relation

k2

ω2
+

∫
f ′
0(v)

v − ω/k
dv = 1. (8)

Conversevely, if (8) holds for some k ∈ Z and ω ∈ C with ℑm(ω) > 0, then the modes (6) with α and γ given
by (7) are solutions of (4). We proved the following proposition

Proposition 2.1. The linearized equations (4) have exponentially growing modes if and only if there exists
k ∈ Z and ω ∈ C with ℑm(ω) > 0 satisfying (8). In that case, α and γ are given by (7) for any β ∈ R.

This situation is similar to the case of the Vlasov-Poisson system [12,31,35]{
∂tf + v · ∇xf −∇xφ · ∇vf = 0

−∆xφ =
∫
R
fdv − 1.

(9)
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as observed by Penrose [33]. Applying the same strategy to the linearized Vlasov-Poisson equations, one founds
the dispersion relation

Z
(ω
k

)
:=

∫
f ′
0(v)

v − ω/k
dv = k2 (10)

Now, denoting ℑ+ the upper half plane, a solution ω(k) of (10) exists if and only if Z(ℑ+) constains a positive
real number k2. The set Z(ℑ+) is bounded and its boundary is the curve

x 7→ PV

∫
f ′
0(v)

v − x
dv + iπf ′

0(x)

and this curve is bounded, starting and ending at the origin, and for k large enough, the equation (10) has no
solution. Therefore, in the case where the profile f0 leads to a solution ω ∈ ℑ+ of (10), there is a finite number
of exponentially growing modes. For the system (4), the situation is quite different since the equation (8) can
be rewritten as

ζ(z) :=
1

z2
+

∫
f ′
0(v)

v − z
dv = 1, z ∈ C,

with z = ω/k. Therefore, if z = ω/k ∈ ℑ+ is a solution, then so is z = (nω)/(kn), with n ∈ N∗. This situation
also happen in other singular kinetic equations such as the Vlasov-Benney equation (see [5]){

∂tf + v∂xf − ∂xV ∂vf = 0

V =
∫
R
f dv,

(11)

for which the dispersion relation writes ∫
f ′
0(v)

v − ω/k
dv = 1,

or this equation, which can be seen as a kinetic version of the incompressible Euler equation (see [3, 23]){
∂tf + v∂xf − ∂xV ∂vf = 0∫
R
f dv = 1.

(12)

for which the dispersion relation writes ∫
f ′
0(v)

v − ω/k
dv = 0,

However, because of the term 1
z2 , the set ζ(ℑ+) is unbounded, and the curve

x 7→ 1

x2
+ PV

∫
f ′
0(v)

v − x
dv + iπf ′

0(x), x ∈ R,

is also unbounded. Nevertheless, we expect that distribution f0 with multiples bumps (corresponding to so-
called ”two-stream instability” of plasma physics [11, 19]) is an unstable profile (as shown in the numerical
simulations below).

2.2.2. The maxwellian case

In the maxwellian case f0(v) = e−v2/2, the operator H defined by (5) restricted to X := L2
0(T) × L2

0(T) ×
L2
0(T × R) with domain D [H] = {U ∈ X, HU ∈ X} is self-adjoint, so the dispersion relation (8) has no

solution ℑm(ω) > 0. Moreover its spectrums can be decomposed in terms of theory of measure [26,28]. It yields
the following decomposition

X = Xac ⊕Xsc ⊕Xpp.
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where Xac (resp. Xsc, resp. Xpp) corresponds to the absolutely continuous (resp. singular continuous, resp.
pure point) part of the spectrum. The pure point subspace Xpp is spanned by the eigenvectors

Xpp = Span{φ ∈ X, Hφ = λφ for some λ ∈ R}.

On the other hand, the subspace Xac is characterized [22, 25, 34] by the existence of a dense subset A ⊂ Xac

such that

φ ∈ A ⇒
∥∥∥(H − λ− iε)

−1
φ
∥∥∥
X

= O

(
1√
ε

)
. (13)

This characterisation is known as the Christensen criterion. Applying this criterion to the operator H, one finds
that the space X can be decomposed as X = Xac, it is then a classical fact of scattering theory [26, 28] that,
denoting eitH the semi-group associated with H, the solution U(t) = (τ(t), u(t), f(t)) = eitH(τini, uini, fini)
weakly converges to 0 in X as t → ∞. Then it is possible to show that τ(t) and u(t) strongly converges in L2

0

to 0 as t → ∞, using the conservation of the quadratic norm. It yields the following result [10].

Theorem 2.2. If f0(v) = e−v2/2, the operator H is self-adjoint and one has the decomposition X = Xac. As
a consequence, a solution (τ(t, ·),u(t, ·), f(t, ·, ·)) of (4) weakly converges in X to 0 as t → ∞. One also has
convergence of the acoustic energy ∥τ(t)∥2L2 + ∥u(t)∥2L2 to 0 at t → +∞.

The strategy to prove Theorem 2.2 is similar to the one used in [13, 14] to prove a linear Landau damping
for the Vlasov-Poisson system. This fact and the numerical simulations (see Figure 3 below) leads to believe
that this result is qualitatively similar to the linear Landau damping. In [9], the authors prove a linear stability
result around radially decreasing profiles of the form

f0(v) = F

(
v2

2

)
where F : R+ → R+ is a smooth strictly decreasing function, the maxwellian case corresponds to F (w) = e−w.
It is expected that Theorem 2.2 is also true in this case. We also refer to the last section of [10] for preliminary
results on the reintroduction of a nonzero friction D⋆ > 0 in the system and its consequences on the damping
effect, using formal computations and numerical simulations.

3. Examples

In this section, we show examples of stable and unstable equilibrium f0. The numerical illustrations are done
by discretizing the nonlinear equations (2) with the methods described in [10]. For the initial conditions, we
take 

ϱ(t = 0, x) = ϱ0

u(t = 0, x) = 0

f(t = 0, x, v) = (1 + ε cos(kx))f0(v).

with ϱ0 = 1, k = 0.5 and ε = 0.001.

3.1. Damping

In this section, we consider the case where

f0(v) =
1√
2π

e−v2/2.

This case has been studied in [10]. In this case the dispersion relation (8) has no roots ω(k) with positive
imaginary part, and thus, no growing modes exists. A plot of the evolution of ∥ϱ − ϱ0∥L2(t) and ∥u∥L2(t) in
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Figure 1. Plot of the functions ζ(s) (left) and Z(s) in the case where f0(v) =
(√

2π
)−1

e−v2/2.
The image of the upper half complex plane is in green, and the image of the real line is the
black curve. Notice how 1 is not in the image of ζ.

time can be found in Figure 3. One observes that theses quantities decreases exponentially, so the acoustic
energy which is the sum of these quantities decreases as well as predicted by Theorem 2.2. A possible strategy
to predict the rate of decay observed in the numerical simulation is to follow Landau [27] and to formally apply
a Fourier-Laplace transform on the linear system (4). The complete computations can be found in [10].

The dispersion relation are illustrated in Figure 1 for Vlasov-Poisson and the system (4). The image of ℑ+

are represent by the green dots for ζ on the left and for Z on the right. The black curve is the image of R under
ζ and Z. One sees the boundedness of Z(ℑ+), and the fact that there is no positive real number in Z(ℑ+).
Observe that the situation is quite different for ζ, indeed the set ζ(ℑ+) appears to be unbounded, the same is
true for the curve ζ(R). The curve is actually closed at infinity since f ′

0(0) = 0.

3.2. Two-stream instability

We consider here a case where f0 writes

f0(v) =
1

2
√
2π

(
e

−(v−v0)2

2 + e
−(v+v0)2

2

)
, v0 = 2.5.

By analogy with plasma physics [11,19], we call this test ”two-stream instability”. The evolution of ∥ϱ− ϱ0∥L2

and ∥u∥L2 in time is plotted in Figure 4e. One observes that at first,the quantities ∥ϱ−ϱ0∥L2 and ∥u∥L2 increase
exponentially, as predicted by the linear theory. At some later time saturation sets in and the solution enters the
nonlinear regime. In Figure 4a, one can see the apparition of vortex in the phase space distribution, eventually
the streams merge and there is a significant filamentation of the phase space distribution. The nature of this
problem makes it a challenging numerical problem. As all modes are growing, the saturation time decreases
when the mesh is refined, because the scheme is able to capture higher modes.
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Figure 2. Plot of the functions ζ(s) (left) and Z(s) in the case where f0(v) =(
2
√
2π

)−1
(
e−(v−v0)

2/2 + e(−v+v0)
2/2

)
with v0 = 2.5. The image of the upper half complex

plane is in green, and the image of the real line is the black curve. Notice how 1 is in the image
of ζ.
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Figure 3. Plot of the damping of the L2 norm of ϱ−ϱ0 and u. In blue, the numerical solution.
In orange, the solution predicted by the linear theory.
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The dispersion relation is illustrated in Figure 2 for Vlasov-Poisson and the system (4). It appears that the
set ζ(ℑ+) is the whole complex plane.
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(a) Particle phase space distribution at t = 55 (b) Particle phase space distribution at t = 65

(c) Particle phase space distribution at t = 80 (d) Particle phase space distribution at t = 90
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t
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(e) Plot of the L2 norm of ϱ− ϱ0 and u. In blue, the numerical solution. In orange,
the solution predicted by the linear theory.

Figure 4. Two-stream instability
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C, Analyse non linéaire, 2020.
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