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GLOBAL-IN-TIME WELL-POSEDNESS OF THE COMPRESSIBLE

NAVIER-STOKES EQUATIONS WITH STRIATED DENSITY

XIAN LIAO AND SAGBO MARCEL ZODJI

Abstract. We first show local-in-time well-posedness of the compressible Navier-Stokes equations, as-
suming striated regularity while no other smoothness or smallness conditions on the initial density. With
these local-in-time solutions served as blocks, for less regular initial data where the vacuum is permitted,
the global-in-time well-posedness follows from the energy estimates and the propagated striated regularity
of the density function, if the bulk viscosity coefficient is large enough in the two dimensional case. The
global-in-time well-posedness holds also true in the three dimensional case, provided with large bulk vis-
cosity coefficient together with small initial energy. This solves the density-patch problem in the exterior
domain for the compressible model with W 2,p-Interfaces. Finally, the singular incompressible limit toward
the inhomogenous incompressible model when the bulk viscosity coefficient tends to infinity is obtained.

1. Introduction

In this paper, we establish the existence and uniqueness of global-in-time weak solutions of compressible
viscous flows, and at the same time we investigate the dynamics of density-interfaces in dimension d ∈
{2, 3}. More precisely, we consider the following compressible Navier-Stokes equations describing the
motion of compressible viscous fluids:

{
∂tρ+ div(ρu) = 0,

∂t(ρu) + div(ρu⊗ u) +∇P (ρ) = µ∆u+ (µ+ λ)∇ div u.
(1.1)

Here µ > 0 represents the dynamic viscosity, and λ > 0 stands for the kinetic viscosity. In the present
paper, µ is some fixed positive constant while the constant λ may become very large. For notational
simplicity, we introduce the so-called bulk viscosity coefficient

ν = 2µ + λ,

which tends to infinity when λ → ∞. We always assume that our fluids are (strictly) viscous:

ν > ν > 0,

where ν is a fixed positive constant.
In the above, t ≥ 0, x ∈ R

d, d = 2, 3 denote the time and space variables respectively. The notations
ρ = ρ(t, x) > 0 and u = u(t, x) ∈ R

d represent, respectively, the density and velocity of the compressible
fluid, which serve as the unknowns in the problem. Meanwhile, P = P (ρ) is a given smooth (in this
paper we assume P ∈ C 2(R,R)) and increasing function of the density (that is, P ′(ρ) > 0). The system
(1.1) is supplemented with initial data

(ρ, ρu)|t=0 = (ρ0, ρ0u0),(1.2)

which satisfy

ρ0 > 0, ρ0 ∈ L∞(Rd; [0,∞)), ρ0 − ρ̃ ∈ L2(Rd;R), u0 ∈ H1(Rd;Rd),(1.3)

where ρ̃ > 0 is some given positive equilibrium state of the density.
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1.1. Striated regularity. We assume further striated regularity with respect to a given nondegenerate
family of vector fields for the initial density ρ0 in this paragraph.

We first introduce some notations, based on [10]. For some p ∈ (d,∞), L
∞,p(Rd;Rd) denotes the vector

space of bounded vector fields with gradients in Lp(Rd;Rd×d). From now on we denote the Lebesgue
spaces Lp(Rd;Rn) resp. Sobolev spaces Hs(Rd;Rn) with p ∈ [1,∞], s ∈ R and n ∈ N

∗, simply by Lp(Rd)
or Lp, resp. Hs(Rd) or Hs with an abuse of notations. We have defined

L
∞,p(Rd) =

{
Y ∈ L∞(Rd)

∣∣∣ ‖Y ‖L∞,p(Rd) := ‖Y ‖L∞(Rd) + ‖∇Y ‖Lp(Rd) < ∞
}
.

We define the norm ‖ · ‖L∞,p for a family of vector fields Y = (Y1, Y2, . . . , Ym) ⊂ L
∞,p(Rd), m ∈ N as

‖Y‖
L∞,p(Rd) := sup

16υ6m
‖Yυ‖L∞,p(Rd).

Definition 1.1 (Nondegeneracy). Let Y = (Y1, Y2, . . . , Ym) ⊂ L
∞,p(Rd) be a family of m vector fields

with m > d− 1 and p ∈ (d,∞). We say that Y is nondegenerate if it satisfies the following property

I(Y) := inf
x∈Rd

sup
Υ∈Υm

d−1

∣∣∣∣
d−1∧

YΥ(x)

∣∣∣∣

1
d−1

> 0.

Above Υ ∈ Υm
d−1 means that Υ = (υ1, υ2, · · · , υd−1) with each υi ∈ {1, · · · ,m} and υi < υj for i < j,

YΥ := (Yυ1 , Yυ2 , . . . , Yυd−1
), while the symbol

d−1∧
YΥ stands for the unique element of R

d such that

(
d−1∧

YΥ

)
· Z = det(Yυ1 , Yυ2 , · · · , Yυd−1

, Z), ∀Z ∈ R
d.

Definition 1.2 (Striated regularity with respect to a nondegenerate family of vector fields). Let Y ∈
L
∞,p(Rd), p ∈ (d,∞) be a (single) vector field, and Y = (Y1, Y2, . . . , Ym) ⊂ L

∞,p(Rd) be a nondegenerate
family of vector fields with m > d− 1.

(a) A function g ∈ L∞(Rd) is said to be of class Lp(Rd) along Y , if

g ∈ L
p
Y (R

d) := {g ∈ L∞(Rd) |div(gY ) ∈ Lp(Rd)}.
We define the derivative of the function g along Y as follows

∂Y g := div(gY )− g div Y,

and hence we can equivalently define

L
p
Y (R

d) = {g ∈ L∞(Rd) | ∂Y g ∈ Lp(Rd)}.
(b) A function g ∈ L∞(Rd) is said to be of class Lp(Rd) along the family Y, if

g ∈ L
p
Y(R

d) :=
⋂

16υ6m

L
p
Yυ
(Rd),

and we equip the space L
p
Y(R

d) with the following norm

‖g‖
L
p
Y
(Rd) :=

1

I(Y) sup
16υ6m

[
‖g‖L∞(Rd)‖Yυ‖L∞,p(Rd) + ‖div(gYυ)‖Lp(Rd)

]
,

which is equivalent to the norm with div(gYυ) above replaced by ∂Yυg.

We now continue with the assumption of the initial density ρ0 given in (1.2)-(1.3) associated with the
compressible Navier-Stokes equations (1.1). We assume further that

ρ0 ∈ L
p
X0
(Rd),(1.4)

where X0 = (X0,1, . . . X0,m) ⊂ L
∞,p(Rd) is a given nondegenerate family of vector fields for some m > d−1

and p ∈ (d,∞).
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Remark 1.3 (Initial density of density-patch type). It’s interesting to notice that the initial density of
the form

(1.5) ρ0 = α1D0 + ρ̃1Dc
0
, α > 0,

satisfies the assumptions for ρ0 in (1.3)-(1.4), if D0 is a W 2,p(Rd) (with p > d) bounded, simply connected
domain in R

d. Indeed, (1.4) holds for a nondegenerate (divergence-free) family of vector fields X0 =
(X0,1, . . . X0,m) ⊂ L

∞,p(Rd) which is tangent to ∂D0
1, and this means that the initial density given by

(1.5) persists tangential regularity with respect to the boundary ∂D0.

1.2. Statement of the main results. The purpose of this paper is threefold.

1. We establish the local-in-time well-posedness of the system (1.1) for positive density function with
striated regularity, under the compatibility condition. We thus remove the smallness condition
required on the density in Danchin, Fanelli, Paicu’s paper [10].

2. These local-in-time solutions become global-in-time unique solutions of the Cauchy problem (1.1)-
(1.2)-(1.3)-(1.4), if

• d = 2, and the bulk viscosity coefficient is large enough ν ≥ ν0 with ν0 depending on the
norms of the initial data given in (1.2)-(1.3). This result is inspired by the work by Danchin
and Mucha [16].

• d = 3, the initial energy is small and the bulk viscosity coefficient ν ≥ ν0 is large enough.
Here although ‖ρ0− ρ̃‖L2(Rd) is assumed to be small, ρ0 may have large variation in L∞(Rd).

This result supplements the local-in-time well-posedness work [10] with global-in-time well-
posedness result and the work by Shibata and Zhang [46] with less regular initial data.

3. Additionally, by letting the bulk viscosity tend to infinity ν → ∞, we establish a singular limit
toward the incompressible inhomogeneous model on the whole space, in the spirit of Danchin and
Mucha’s work [16] where the considered domain has finite measure.

1.2.1. Local-in-time well-posedness and continuation criterion. We begin by providing the statement of
the local-in-time result, which technically further assumes the strict positivity of the initial density
function and the compatibility condition on the initial data.

Theorem 1.4 (Local-in-time well-posedness and continuation criterion). We consider the Cauchy prob-
lem of the compressible Navier-Stokes equations (1.1) supplemented with the initial data (1.2) verifying
(1.3) and (1.4). We further assume the strict positivity of the initial density and the compatibility condi-
tion as follows

0 < ρ 6 ρ0(x) and µ∆u0 + (µ+ λ)∇ div u0 −∇P (ρ0) ∈ L2(Rd).(1.6)

Then, there exists a time T > 0 and a unique solution (ρ, u) to the Cauchy problem (1.1)-(1.2),
satisfying the following properties:

1) Energy bounds: u ∈ C ([0, T ],H1(Rd)), u̇ ∈ C ([0, T ], L2(Rd)),
√
σ∇u̇, σü ∈ L∞((0, T ), L2(Rd)),

and ∇u̇,
√
σü, σ∇ü ∈ L2((0, T ) × R

d).

1Indeed, for d = 2 the existence of such a nondegenerate family of tangential vector fields is obvious since we can take

X0,1 =

(

∂x2
f

−∂x1
f

)

=: ∇⊥f to be the tangent vector field close to ∂D0 with f ∈ W 2,p(R2) and f |∂D0
= 0 and ∇f |∂D0

6= 0,

while X0,2 = ∇⊥(χx1) to be a non-zero vector field with χ a smooth cutoff function away from the boundary, see e.g. [43,
(1.10)] (with m = 3). The existence result for d = 3 with m = 5 follows from the similar idea, see e.g. [24, Proposition 3.2],

where X0,1 =





0
−∂x3

f

∂x2
f



, X0,2 =





∂x3
f

0
−∂x1

f



, X0,3 =





−∂x2
f

∂x1
f

0



 are generated by the function f ∈ W 2,p(R3) with f |∂D0
= 0

and ∇f |∂D0
6= 0, while X0,4 =





∂x3
(χx3)
0

−∂x1
(χx3)



, X0,5 =





−∂x2
(χx1)

∂x1
(χx1)
0



 forms a nondegenerate family away from ∂D0 with χ

a smooth cutoff function away from the boundary ∂D0.
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Here and in what follows we use the notations

σ = σ(t) := min{1, t}, v̇ :=
(
∂t + u · ∇

)
v, v̈ :=

(
∂t + u · ∇

)
v̇.(1.7)

2) Striated regularity: For all 0 < t < T , we have ρ(t) ∈ L
p
X (t)(R

d), where X (t) = (Xυ(t))16υ6m ⊂
L
∞,p(Rd) is the nondegenerate family of vector fields transported by the fluid flow, in the sense

that each vector field Xυ(t), 1 6 υ 6 m solves uniquely the following Cauchy problem

(1.8)

{
∂tXυ + u · ∇Xυ = ∂Xυu,
Xυ |t=0 = X0,υ.

Here the directional derivative was defined in Definition 1.2: ∂Xυu
j = div(ujXυ) − uj divXυ,

1 6 j 6 d.
The velocity field is Lipschitz continuous when integrated in time and persists also the striated

regularity for positive times:
• For d = 2 or for d = 3 and 3 < p 6 6, ∇u ∈ L2((0, T ),Lp

X (Rd));

• For d = 3 and 6 < p < ∞, σ
3
4−

1
r−

3
2p∇u ∈ Lr((0, T ),Lp

X (R
3)) and σ

3
4−

1
r∇u̇ ∈ Lr((0, T ), L3(R3)),

for any 2 6 r 6 ∞.
3) Continuation criterion: If (ρ, u) is the solution defined up to a maximal time T ∗ > 0 and

lim sup
t→T ∗

{
‖X (t)‖L∞,p(Rd) +

1

I(X (t))
+

∥∥∥∥
1

ρ(t)

∥∥∥∥
L∞(Rd)

+ ‖ρ(t)‖L∞(Rd)

+‖∂X (t)ρ(t)‖Lp(Rd) + ‖∇u(t)‖L2(Rd) + ‖u̇(t)‖L2(Rd)

}
< ∞,(1.9)

then T ∗ = ∞.

The solution of Theorem 1.4 is constructed in the spirit of a recent contribution of the second author
[50], which deals with the more involved case of density-dependent viscosity coefficient. Thus, we only
present a sketch of the proof of Theorem 1.4 in Appendix B.

Remark 1.5. (a) This result supplements the contribution by Danchin, Fanelli and Paicu [10] by
removing the smallness condition on the density deviation. Unlike the maximum regularity ar-
gument used in [10], which requires a critical regularity for one part of the initial velocity, our
method relies on the change into Lagrangian coordinates along with energy estimation methods.

(b) The compatibility condition in (1.6), µ∆u0 + (µ + λ)∇ div u0 − ∇P (ρ0) ∈ L2(Rd) expresses the
continuity of the stress tensor, and does not require (explicitly) smoothness of the density. The
parabolic effect of the momentum equations ensures that this condition holds true at positive
times even for less regular initial data, see [27].

(c) The velocity field persists further regularity property which are stated in Corollary B.2 below,
thanks to the decomposition of the velocity gradient (B.13).

1.2.2. Definitions of energy functionals. The global-in-time well-posedness result will follow from the
above local-in-time well-posedness, continuation criterion and a series of energy estimates. We define in
this subsection the relevant energy functionals.

Recall the positive density equilibrium ρ̃ in (1.3). We define first

The pressure equilibrium P̃ := P (ρ̃),(1.10)

The ρ-dependent functions Hl(ρ) = ρ

∫ ρ

ρ̃
s−2|P (s)− P̃ |l−1(P (s)− P̃ )ds, l ∈ [1,∞),(1.11)

The pressure deviation G(t, x) :=
(
P (ρ)

)
(t, x) − P̃ ,(1.12)

The effective flux F (t, x) = ν(div u)(t, x)−G(t, x).(1.13)

We define the associated energy function of the compressible Navier-Stokes equations (1.1)

(1.14) E(t) =

∫

Rd

[
ρ
|u|2
2

+H1(ρ)

]
(t, x)dx +

∫ t

0

[
µ‖∇u(t′)‖2L2(Rd) + (µ+ λ)‖div u(t′)‖2L2(Rd)

]
dt′,
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which consists of

• The kinetic energy 1
2‖

√
ρu(t)‖2

L2(Rd)
;

• The potential energy

∫

Rd

(
H1(ρ)

)
(t, x)dx with H1(ρ) defined in (1.11): H1(ρ) = ρ

∫ ρ

ρ̃

P (s)− P̃

s2
ds;

• The energy dissipation µ‖∇u‖2
L2((0,t)×Rd)

+ (µ+ λ)‖div u‖2
L2((0,t)×Rd)

.

The energy E(t) is conserved for regular enough solutions of (1.1).
Recall the notations in (1.7), and we introduce energy functionals of higher order

(1.15)
A1(t) =

µ

2
‖∇u(t)‖2L2(Rd) +

µ+ λ

2
‖div u(t)‖2L2(Rd) +

∫ t

0
‖√ρu̇(t′)‖2L2(Rd)dt

′,

A2(t) = σ(t)‖√ρu̇(t)‖2L2(Rd) +

∫ t

0
σ(t′)

[
µ‖∇u̇(t′)‖2L2(Rd) +

µ+ λ

ν2
‖Ḟ (t′)‖2L2(Rd)

]
dt′.

The hierarchy of energy functionals E(t),A1(t),A2(t) encode L2(Rd)-norm, Ḣ1(Rd)-norm for u(t) and
(time-weighted) L2(Rd)-norm for the material derivative u̇(t), respectively. Although trivially |div u| 6
d|∇u|, we will make efforts to get the (large) viscosity coefficient λ before div u in the definition of E,A1,
such that intuitively div u → 0 as λ → ∞ if E,A1 is bounded uniformly in time. The review of their
history can be found in Section 1.3 below.

Recall the initial data (1.2) and we denote G0(x) = G(0, x) =
(
P (ρ0)

)
(x)−P̃ . For notational simplicity

we denote

The first initial energy E0 := E(0) =

∫

Rd

[
ρ0

|u0|2
2

+H1(ρ0)

]
(x) dx,(1.16)

The total initial energy Eν
0 := E0 + µ‖∇u0‖2L2(Rd) + ν‖div u0‖2L2(Rd) +

1

ν
‖G0‖2L2(Rd),(1.17)

The upper bound of the initial density ρ∗0 := sup
x∈Rd

ρ0(x).(1.18)

We observe that for initial data given in (1.2)-(1.3),

E0 ≤ C(ρ∗0)‖(ρ0 − ρ̃, u0)‖L2(Rd) < +∞, Eν
0 ≤ C(µ, ν, ρ∗0)(E0 + ‖∇u0‖L2(Rd)) + ν‖div u0‖2L2(Rd) < +∞.

We aim to bound A1(t),A2(t) globally in time in terms of Eν
0 , ρ

∗
0, if ν ≥ ν0 is large enough (and if the

initial energy is small enough for d = 3). The following quantity A3(t) captures the striated regularity
of the density function along the family of vector fields X (t) = (Xυ(t))16υ6m transported by the flow as
in (1.8)

A3(t) = ‖X (t)‖
L∞,p(Rd) + sup

16υ6m
‖(∂Xυρ)(t)‖Lp(Rd).(1.19)

It is straightforward to see that A3(t) grows exponentially in ‖∇u‖L1
tL

∞ . We aim to show that the

striated regularity encoded in ‖ logA3‖L1((0,t)) together with the energy functionals A1(t),A2(t) controls
‖∇u‖L1

tL
∞ . Gronwall’s inequality hence implies the exponential-in-time control of ‖∇u‖L1

tL
∞ .

1.2.3. Global-in-time well-posedness. We now state our global-in-time result for less regular initial data
on which the assumption (1.6) is not assumed.

Theorem 1.6. Assume the Cauchy problem (1.1)-(1.2)-(1.3)-(1.4) and the following conditions

either d = 2 and ν > ν0,(1.20)

or d = 3, p ∈ (3, 6), Eν
0E0 6 c and ν > ν0,(1.21)

where c is a fixed constant depending only on µ, ν while ν0 is a constant depending additionally on the
initial norms: E0, ‖∇u0‖L2(Rd), ρ

∗
0. Then the Cauchy problem has a unique global-in-time solution (ρ, u)

verifying
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1) Energy bounds: For all t > 0, we have



E(t) +A1(t) +A2(t) 6 Cν

0 ,

‖ρ(t) − ρ̃‖2L∞(Rd) 6 ‖ρ0 − ρ̃‖2L∞(Rd) + Cν
0 ,

(1.22)

where the constant Cν
0 depends on µ, ν, ρ∗0, and (superlinearly) on Eν

0 .
2) Striated regularity: For all t > 0, ρ(t) ∈ L

p
X (t)(R

d), where X (t) = (Xυ(t))16υ6m ⊂ L
∞,p(Rd) is a

nondegenerate family of vector fields defined to solve the Cauchy problem (1.8).
Moreover ∇u ∈ L1

loc
([0,∞), L∞(Rd)) with the following estimates:





A3(t) 6 A3(0) exp
(
C0

∫ t

0

[
1 +

√
t+ ‖∇u(t′)‖L∞(Rd)dt

′
])

,

∫ t

0
‖∇u(t′)‖L∞(Rd)dt

′ 6 C0

(
1 +

A3(0)

I(X0)

)
exp(C0t),

∫ t

0
‖∂X (t′)∇u(t′)‖Lp(Rd)dt

′ 6 C0(1 + t+ tA3(t))A3(t),

(1.23)

where C0 depends on µ, ν,m, d, p, ρ∗0, E
ν
0 .

Remark 1.7 (Bounds for div u). We have assumed some uniform bounds (with respect to ν) for div u0
implicitly: The conditions in (1.20) and (1.21) imply that

ν‖div u0‖2L2(Rd) 6





Eν
0 < ∞, if d = 2,

Eν
0 min

{
1,

c

E0

}
< ∞, if d = 3.

This boundedness is propagated over time:

ν‖div u(t)‖2L2(Rd) 6 Cν
0 .

Theorem 1.6 and Remark 1.3 imply immediately

Corollary 1.8 (Density patch problem in the exterior domain). The Cauchy problem (1.1)-(1.2) with
initial density of density-patch type (1.5) and u0 ∈ H1(Rd), under the assumption (1.20) or (1.21),
has a unique global-in-time solution (ρ, u) with ρ(t) persisting tangential regularity with respect to the
boundary ∂Dt which is transported by the flow of u and keeps its W 2,p(Rd)-regularity.

Remark 1.9. If α > 0, deriving a uniformly positive lower bound for the density is straightforward (see
[17, Section 2.1 (Step 6)]). This results in an exponential-in-time decay of the jump in the density ρ(t)
across ∂Dt, as observed in [29, 30].

Intuitively, thanks to the uniform bound in (1.22): A1(t) 6 Cν
0 , letting ν → ∞ yields a couple (̺, v)

that satisfies the incompressible inhomogeneous model:




∂t̺+ div(̺v) = 0,

∂t(̺v) + div(̺v ⊗ v) +∇Π− µ∆v = 0,

div v = 0.

(1.24)

Corollary 1.10 (Incompressible limit). Let (ρ0, u0) be the initial data given in (1.2) verifying (1.3),
(1.4) and div u0 = 0. Let (ρ(ν), u(ν)) be the corresponding unique solution constructed in Theorem 1.6,
under the assumption (1.20) or (1.21).

Then (ρ(ν), u(ν))ν converges weakly-* to (̺, v) in L∞((0,∞) × R
d)× L∞((0,∞),H1(Rd)) as ν goes to

infinity, and (̺, v) solves (uniquely) the inhomogeneous, incompressible model (1.24) with initial data
(ρ0, u0) in the distribution sense. Moreover, we have

{
div u(ν) = O(ν−1/2) in L2 ∩ L∞((0,∞), L2(Rd)),

∂t(ρ
(ν)u(ν)) + div(ρ(ν)u(ν) ⊗ u(ν))−∇F (ν) − µ∆u(ν) = O(ν−1/2) in L∞((0,∞), Ḣ−1(Rd)),

(1.25)

where F (ν) = ν div u(ν) −G(ν) with G(ν) = P (ρ(ν))− P̃ .



7

The proofs of Theorem 1.6 and Corollary 1.10 are presented in Section 2.3, based on the a priori
estimates in Section 2.1 and their proofs in Section 2.2.

Remark 1.11. This result in Corollary 1.10 is a partial continuation of the work by Danchin and Mucha
[13, 14, 16], and Danchin and Wang [17], and stands, as far as we know, as the first one dealing with
discontinuous initial data in the whole space. We notice that, except for the work [13] dealing with
the whole space case and initial data in the critical Besov space, the other studies rely heavily on the
assumption that the domain has finite measure. The extension to the whole space, especially for d = 2, is
not obvious, and it requires some refined computations, e.g. the compensated result by Coifman, Lions,
Meyer, Semmes in [8].

1.3. Review of known results. Classical solutions for the Navier-Stokes equations (1.1) with regular
initial data are known to exist, since the work by Nash [42], Itaya [33, 34], Solonnikov [47], Tani [48], just
to cite a few examples. These solutions are defined up to a positive time which depends on the (norms of)
initial data. The first result addressing the global-in-time well-posedness of classical solutions is provided
by Matsumura and Nishida [41] for small initial data in L1(R3) ∩ H3(R3). Nowadays, global-in-time
classical solutions are known to exist under smallness assumption on the initial data in critical Besov
space [4, 7, 26].
Weak solutions and estimates for E(t) and G. Similar to the solutions constructed by Leray [35]
for the incompressible Navier-Stokes equations, there are well-established results that investigate the
existence of global-in-time weak solutions for the compressible Navier-Stokes equations (1.1), with finite
initial energy. The first result was obtained by P.-L. Lions [40], followed by Feireisl, Novotný, Petzeltová
[23], for pressure laws of the form P (ρ) = aργ , a > 0, with some limitations on γ. These weak solutions
verify the following classical energy inequality:

E(t) 6 E(0) = E0,(1.26)

where the functional E has been given in (1.15).
The introduction of the (generalized) specific energy Hl(ρ), l ∈ [1,∞), in (1.11) helps (technically)

to estimate the pressure deviation G. As observed in e.g. [3], the so-defined Hl(ρ) is non-negative:
Hl(ρ) > 0, since the pressure P (ρ) is an increasing function of the density.

For the classical case l = 1, H1(ρ) appears in the definition of E(t), which is integrable in space

uniformly in time due to (1.26):

∫

Rd

(
H1(ρ)

)
(t, x) dx 6 E(t) = E0. Consequently, under the a priori

assumption

ρ(t, x) 6 ρ∗,

we have the estimates for G uniformly in time by the energy E0 below

sup
[0,t]

‖G‖q
Lq(Rd)

6 C∗ sup
t′∈[0,t]

∫

Rd

H1(ρ(t
′, x)) dx 6 C∗E0, with q ∈ [2,∞),(1.27)

where the constant C∗ depends only on ρ∗ and q. In the above, the first inequality follows from the
definition of H1(ρ) in (1.11).

General Hl(ρ), l > 1, as a function of ρ, satisfies the following ordinary differential equation

ρH ′
l(ρ)−Hl(ρ) = |P (ρ)− P̃ |l−1(P (ρ)− P̃ ),

and hence, by virtue of the mass equation (1.1)1, the function
(
Hl(ρ)

)
(t, x) satisfies the following time

evolutionary equation

∂tHl(ρ) + div(Hl(ρ)u) + |P (ρ)− P̃ |l−1(P (ρ)− P̃ ) div u = 0,

which is in the same spirit of the renormalized continuity equation appearing in e.g. [40]. By view of the
definitions (1.12) and (1.13), it is equivalent to

∂tHl(ρ) + div(Hl(ρ)u) +
1

ν
|G|l+1 = −1

ν
|G|l−1GF.
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Consequently, integrating the above in space yields, after Hölder’s inequality, the following

d

dt
‖Hl(ρ)(t, x)‖L1(Rd) +

1

ν
‖G‖l+1

Ll+1(Rd)
6

1

ν
‖G‖lLl+1(Rd)‖F‖l+1

Ll+1(Rd)
,(1.28)

and hence by Young’s inequality and integration in time, G can be controlled by F in the following way

1

ν
‖G‖l+1

Ll+1((0,t)×Rd)
6 2‖Hl(ρ0)(x)‖L1(Rd) +

C

ν
‖F‖l+1

Ll+1((0,t)×Rd)
, ∀t ∈ (0,∞).(1.29)

Density patch problem. In the last three decades, there has been growing interests in exploring
the properties of weak solutions to models arising from fluid mechanics that enable tracking down dis-
continuities of some quantities such as density or vorticity. We refer to the density patch problem for
incompressible models stated in [39]: Consider the incompressible model (1.24) in two dimension with
initial density as the characteristic function of some regular domain D0 ∈ R

2: ρ0 = 1D0. The density-
patch problem asks whether or not, at positive times, the density is still some characteristic function
1D(t) with the domain D(t) ⊂ R

2 preserving the initial regularity of D0. This problem is almost solved
for incompressible models, even for density-dependent viscosity (under some smallness assumption) or
higher Sobolev regularity of D0, see [11, 12, 15, 18, 19, 20, 25, 36, 37, 38].

However, for a similar problem in the context of compressible fluids, there are not so many results.
On one hand, the global classical solutions constructed by Matsumura and Nishida, or in critical Besov
space, are too strong in a way that they do not allow for discontinuous solutions. On the other hand,
the weak solutions constructed by P.-L. Lions or Feireisl, Novotný, Petzeltová only require that the
initial energy is finite, allowing for discontinuous density. However, the velocity is relatively weak, with
∇u ∈ L2((0,∞)×R

d), and this is insufficient to track down discontinuities in the density. A natural idea
is to construct weak solutions in a class that allows for tracking down the discontinuity of the interface.
The first result addressing this issue is, as far as we know, [29] by Hoff, where the author considered
an initial density with Hölder regularity on both sides of a suitable curve, allowing for jumps across
this curve. The initial curve is transported by the flow of the velocity into a curve that maintains its
initial regularity. The density also remains Hölder continuous on both sides of the transported curve,
and moreover, its jump through the latter decays exponentially over time. This result pertains only in
the case of linear pressure law and small bulk viscosity. Recently, these restrictions were removed in [49],
even in the more challenging case of density-dependent viscosity. Theorem 1.6 is thus added to this list,
in the constant viscosity setting, with domains having Sobolev regularity, and the density can be large
in L∞(Rd), unlike the cited results.

1.3.1. Hoff’s strategy. We review briefly some key concepts in Hoff’s works [27, 28, 29, 30].
Energy functionals. In [27], Hoff introduced the following energy functionals which can be compared
with our definitions in (1.15)





AH
1 (t) = sup

[0,t]
σ‖∇u‖2L2(Rd) +

∫ t

0
σ(t′)‖√ρu̇(t′)‖2L2(Rd)dt

′,

AH
2 (t) = sup

[0,t]
σd‖√ρu̇‖2L2(Rd) +

∫ t

0
σd(t′)‖∇u̇(t′)‖2L2(Rd)dt

′,

B(t) = sup
[0,t]

‖ρ− ρ̃‖2L∞(Rd),

where the time weight σ and the material derivative u̇ are defined as in (1.7). He provides bounds for

these functionals by requiring that the initial velocity is small in L2(Rd) but can be large in L2d(Rd).
Additionally, he requires that the initial density is bounded away from zero and bounded from above,
along with some technical assumptions.
Effective flux and vorticity. Hoff’s computations, mainly while propagating the lower and upper
bounds of the density, rely strongly on the effective viscous flux F given in (1.13): F = ν div u −G. It
plays a crucial role by connecting the momentum equations and the mass equation, which was discovered
by Hoff and Smoller in [31]. It presents its power also in the study of the propagation of oscillations in
[45], and in the constructions of weak solutions in [23, 28, 40].
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In fact, recall the momentum equations (1.1)2, which can be written by virtue of the mass conservation
law (1.1)1 as

ρu̇− µ∆u− (µ+ λ)∇ div u+∇
(
P (ρ)− P̃

)
= 0.

We apply the divergence operator to it to obtain the Poisson equation for F as follows

∆F = div(ρu̇).(1.30)

Similarly we can apply the curl operator to the momentum equations, to derive the Poisson equation for
the vorticity, curlu, as follows

µ∆curlu = curl(ρu̇).(1.31)

Consequently, the regularity of the material derivative of the velocity u̇, as provided by functionals
AH

1 and AH
2 , allows the effective flux F and the vorticity curlu to be regular at positive time, even for

rough density. This means that there is some cancellation between the divergence of the velocity and the
pressure at positive times. In particular, the fact that F ∈ L8/3((1,∞), L∞(Rd)) allows him to propagate
the L∞(Rd) estimate for the density.

Thanks to this observation, under smallness condition on the initial data, Hoff proved existence of
global weak solutions for the system (1.1) with a linear pressure law in a first paper [27]. He later
considered pressure laws of the form P (ρ) = aργ , with γ > 1 in a second paper [28], in which, again, the
effective flux played a crucial role in proving compactness for the density.
Velocity gradient expression involving Riesz operators. In order to study the dynamics of dis-
continuous surfaces, Hoff in [29] used the following decomposition of the velocity gradient:

µ∇u = −(−∆)−1∇(ρu̇) +
µ+ λ

ν
RRF +

µ

ν
RRG =: µ∇ũ+ µ∇uG,(1.32)

which is nothing but a rewriting of the above momentum equations, where Rj = (1i ∂j)(−∆)−
1
2 , 1 6 j 6 d,

are the Riesz operators.
By assuming more regularity on the velocity u0 ∈ Hβ(R2), he reduces the singularity of time weighs

in the definitions of functionals AH
1 and AH

2 . Namely, in dimension two, the time weights σ and σ2 are
replaced, respectively, by σ1−β and σ2−β . Thus, ∇ũ and the effective flux F belong to L1

loc
([0,∞),C α(R2))

for all 0 < α < β. With the help of the regularity of F , Hoff propagated the piecewise Hölder regularity
of the density, resulting piecewise Hölder continuity of ∇uG on both sides of a time-dependent curve.
This time-dependent curve is the transport of an initial suitable curve with some geometric assumptions,
and only provided with bounded velocity gradient can the structure of the density and of the curve be
propagated.

However, since Riesz operators fail to be continuous on L∞(Rd), additional regularity must be as-
sumed on the density to obtain RRG ∈ L∞(Rd). In [30], Hoff and Santos observed that in the con-
figuration of the previous works (see [27, 28]), the rough part of the velocity gradient ∇uG belongs to
L∞((0,∞), BMO(Rd)). In this case, the initial interface γ0 ∈ C α, α > 0, is transported to an interface
γt ∈ C αt at time t > 0, with αt decaying exponentially to zero in time.

Hence to propagate interface regularity (more than continuity) requires a Lipschitz velocity. For the
incompressible model with constant viscosity, this regularity is directly obtained from energy computa-
tions and interpolations. In contrast, for the compressible case with discontinuous density, the problem
is more delicate, and the issue is to find an appropriate functional space framework such that even-order
Riesz operators maps into L∞(Rd).

1.3.2. The strategy by use of tangential regularity. Apart from the tools used in [29, 49] to handle the
rough part of the velocity gradient, there exists another framework that allows for the same. It is referred
as tangential/striated regularity space, which goes back to Chemin’s study (see e.g. [5, 6]) of the vortex
patch problem for the ideal incompressible model. See also [2] for another interesting geometric proof
for the persistence of regularity in the vortex patch problem. Chemin’s idea has been further developed
to higher dimensional cases in [9, 24], to the inhomogeneous case in [22], as well as the density patch
problem of the inhomogeneous incompressible Navier-Stokes model in e.g. [36, 37, 38, 43]. However,
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there are very few results in this direction for the compressible case. To the best of our knowledge, the
only one work in the literature is [10] by Danchin, Fanelli, and Paicu. They establish the local-in-time
well-posedness of the compressible equations (1.1) with a striated initial density, and we now delve into
a brief discussion of their methods. From the momentum equations (1.1)2, they express the velocity as:

u = w −∇(Id −∆)−1G,(1.33)

where w solves a parabolic equation with source term in some suitable space Lr((0, T ), Lp(Rd)). They
employ maximal regularity tools to establish Lipschitz bounds for w. Meanwhile, Lipschitz bound for
the second term of the velocity’s expression (1.33), associated with the pressure, is obtained through
tangential regularity estimates. The maximal regularity argument requires smallness assumption on the
density in L∞(Rd), and the global-in-time result is still missing. Toward this, we establish local-in-time
well-posedness of the system (1.1) without imposing any smallness condition on the initial data (see
Theorem 1.4), and global-in-time well-posedness (see Theorem 1.6) without any smallness assumption
of the initial density fluctuation in L∞(Rd), and the vacuum is allowed. This is accomplished through
a coupling mechanism that involves the effective flux. By achieving this objective, we propagate the
Sobolev regularity of interfaces over time.

Incompressible limit. We aim also to establish an incompressible limit in the spirit of the work of
Danchin and Mucha [16]. Let us look briefly at this question. The work by Matsumura and Nishida [41]
paved the way for attempts to relax the assumptions on the initial data. Despite reducing the regularity
assumption to critical Besov space or even Lebesgue space, the condition of smallness is frequently
encountered in the literature. In their work [13], Danchin and Mucha introduced a new framework that
enables them to bypass the smallness condition on the initial data, namely, replacing the smallness in
the initial data by large enough bulk viscosity coefficient. In particular, as the bulk viscosity ν → ∞, the
solution converges to a limit that satisfies the incompressible model. This has been down for initial data
in critical Besov space. For less regular initial data, they work on the torus in [14, 16], where they rely
technically on the finite-measure of the domain, particularly on the logarithmic interpolation inequality,
which proves to be crucial in handling vacuum states in [16]. We also refer to the work by Danchin and
Wang [17] where exponential decay rate of the solutions of the compressible model on torus has been
investigated. However, the exponential decay does not generally hold in the whole space. For instance,
the work by Hu and Wu [32] provides lower bound for the norms of solutions in certain cases. We obtain
similar results to those in [16] in the presence of vacuum on the whole space (see Corollary 1.10), where
we apply technically, in dimension two. The extension to the whole space, particularly in two dimension,
the compensated result by Coifman, Lions, Meyer, Semmes [8].

Outline of the paper. The rest of the paper is structured as follows. In next section Section 2, we
give the proofs of Theorem 1.6 and Corollary 1.10, provided with the validity of Theorem 1.4, whose
proof is postponed in Appendix B. A useful density-weighted interpolation inequality is established in
Appendix A.

2. Proof of the main results

This section is devoted to the proofs of Theorem 1.6 and Corollary 1.10, which goes from a priori
estimates for solutions of the Navier-Stokes equations (1.1) to the proof of the compactness of approximate
solutions. It is divided into three parts. In the first one, Section 2.1, we summarise all key ideas with
brief explanations and give the a priori estimates in a series of lemmas. Technical details and the proofs
of these lemmas are presented in the second part Section 2.2. As we will see in the final part of the proof
in Section 2.3, the existence of a local-in-time solution (without any smallness condition in the density) is
by no means obvious, and it is the purpose of Appendix B. The regularity of the (local-in-time) solution
is sufficient in order to use u and u̇ as test functions in the subsequent computations to get energy
estimates.
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2.1. Proof ideas and statements of lemmas. In this section, we give the main ideas of the proof of
Theorem 1.6. We state the energy estimates for the solutions of the compressible Navier-Stokes equations
(1.1) with initial data (1.2) satisfying (1.3). The tangential regularity (1.4) is assumed when we show the
boundedness of the Lipschitz-norm of the velocity vector field as a second step. Recall the definitions of
the energy functionals

E(t),A1(t),A2(t),A3(t)

together with the notations P̃ ,Hl(ρ), G, F and E0, E
ν
0 , ρ

∗
0, given in Section 1.2.2.

In the literature (see e.g. [40] where finally only the energy inequality (1.26) was established for weak
solutions) the following a priori energy equality for E(t) was shown for strong solutions

E(t) = E(0) =: E0.(2.1)

More precisely, it follows from taking the scalar product of the momentum equation (1.1)2 with the
velocity u and then integrating in time and space. This energy balance (2.1) is going to be used freely in
the proof, and we aim to show the estimates for A1,A2,A3.

In the following we state step by step

• In Section 2.1.1: Energy estimates for A1,A2 together with the boundedness of the density
deviation ‖ρ− ρ̃‖L∞

t,x
.

Under the assumption that the density is a priori upper bounded

(2.2) 0 6 ρ(t, x) 6 ρ∗,

for some ρ∗ > 0, we show first (local-in-time) a priori energy estimates for A1,A2 (see Lemma 2.1
and Lemma 2.2) and then a boundedness of the density in terms of A1,A2 (see Lemma 2.3) for
solutions of the Cauchy problem (1.1)-(1.2)-(1.3). Under the assumption (1.20) or (1.21), that
is, in the case of either large bulk viscosity coefficient for d = 2 or with small initial energy and
large bulk visocosity coefficient for d = 3, a bootstrap argument implies the global-in-time a priori
energy estimates for A1,A2, and density bound estimate (see Lemma 2.4).

• In Section 2.1.2: The striated regularity estimate for A3 together with the boundedness of the
velocity gradient ‖∇u‖L1

tL
∞
x

.

With the estimates in Section 2.1.1 at hand, we turn to the striated regularity for the density
function A3(t) for solutions of the Cauchy problem (1.1)-(1.2)-(1.3)-(1.4), which finally implies
the Lipschitz-continuity of the velocity field (see Lemma 2.6), thanks to the L∞-estimates for the
double Riesz-operators provided with extra striated regularity (see Proposition 2.5).

2.1.1. A priori estimates for A1,A2 and ‖ρ− ρ̃‖L∞
t,x

. In order to derive higher-order energy estimates for

the velocity u and its material derivative

u̇ := (∂t + u · ∇)u,

we use first u̇ as a test function in the weak formulation of the momentum equation (1.1)2 to establish
bounds for A1. The functional A2 emerges when, first rewriting the momentum equation (1.1)2 with the
effective flux F , and then applying the operator ∂t · +div( · u) to the resulting equation before testing
it with u̇.

In two dimension, the following estimates are valid for these functionals A1,A2.

Lemma 2.1 (Preliminary energy estimates for d = 2). Assume that d = 2 and (2.2). Then the following
a priori bounds hold true for the functionals A1 and A2:

A1(t) 6 C∗

(
Eν

0 +
1

ν3/2
A1(t)(E0 +A1(t))

)
exp (C∗E0) ,(2.3)

A2(t) 6 C∗

(
(E0 +

1

ν4
E2

0) + (1 + E0 +A1(t))A1(t)

)
,(2.4)

where the constant C∗ depends on µ, ν and (increasingly) on ρ∗.
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The proof of Lemma 2.1 is established through refined computations, and the compensated result by
Coifman et al. [8] turns out to be crucial for achieving a uniform bound with respect to λ. We refer to
Section 2.2.2 below for the detailed proof.

For d = 3, the following estimates hold true for functionals A1 and A2.

Lemma 2.2 (Preliminary energy estimates for d = 3). Assume that d = 3 and (2.2). Then, the following
estimates hold true for the functionals A1 and A2:

A1(t) 6 C∗
(
Eν

0 +
1

ν
2
3

E
1
3
0

)
+ CE0A1(t)

2,(2.5)

A2(t) 6 C∗
(1
ν
E

1
3
0 + E0 + E2

0 + (1 +A1(t)
2)A1(t)

)
.(2.6)

Here C depends on µ, ν, and C∗ depends on µ, ν and (increasingly) on ρ∗.

The proof is given in Section 2.2.3. Let us point out that the computations in [14, 16, 17] depend
heavily on the fact that the domain has finite measure. Lemma 2.1 and Lemma 2.2 are the first to
provide bounds for the solution (ρ, u) uniformly with respect to λ (large) in the whole space, with only
bounded density.

Based on the above estimates, it turns out that the functionals A1 and A2 are under control as long
as the density is upper-bounded. Therefore, the next step is devoted to estimating the upper bound of
the density, whose proof is given in Section 2.2.4.

Lemma 2.3 (Density upper bound in terms of energies). Assume (2.2). Then the following bounds hold
true for the density:

‖ρ− ρ̃‖L∞([0,t]×Rd) 6 ‖ρ0 − ρ̃‖L∞(Rd)

+
C∗

ν
1
3

×





(
1 + E

1
18
0

)(
E

1
6
0 + ν

1
6A1(t)

1
6
)(
A1(t)

1
3 +A2(t)

1
3
)
, d = 2,

(
A1(t)

1
2 +A2(t)

1
2
)
, d = 3.

(2.7)

Finally, we notice that for d = 2 there is a small factor 1
ν (or its positive powers) before A1(t),A2(t)

in the estimates (2.3) and (2.7), while A2(t) can be bounded by A1(t) and ρ∗ by (2.4). We can close the
estimates in Lemma 2.1, Lemma 2.2 and Lemma 2.3 by a bootstrap argument as in e.g. [3, 16], which is
not repeated here.

Lemma 2.4 (Global-in-time estimates under the assumption (1.20) or (1.21)). There exist c depending
only on µ, ν and ν0 > ν depending on µ, ν,E0, ‖∇u0‖L2(Rd), ρ

∗
0 such that

(1) If d = 2 and ν > ν0, then

A1(t) +A2(t) 6 Cν
0 and ‖ρ− ρ̃‖L∞([0,t]×R2) 6 ‖ρ0 − ρ̃‖L∞(R2) + (Cν

0 )
1
2 .

(2) If d = 3, Eν
0E0 6 c and ν > ν0, then

A1(t) +A2(t) 6 Cν
0 and ‖ρ− ρ̃‖L∞([0,t]×R3) 6 ‖ρ0 − ρ̃‖L∞(R3) + (Cν

0 )
1
2 .

Above, Cν
0 depends on µ, ν, ρ∗0 and (superlinearly) on Eν

0 .

2.1.2. A priori estimates for A3 and ‖∇u‖L1
tL

∞
x

. Now we have Lemma 2.4, which gives the (uniform)

bounds of functionals A1, A2 and ρ. We use the notation C0 below to denote some time-independent
constant depending on the initial data as follows:

(2.8) C0 = C0(µ, ν,m, d, p, ρ∗0, E
ν
0 ),

where m, p appears in the initial condition (1.4). C0 may vary from lines to lines and bounds in particular
A1,A2, ρ. The next step is dedicated to translating these bounds into the tangential regularity estimates
for the density, together with the Lipschitz norm of the velocity. As the tangential regularity A3 can be
transported by Lipschitz continuous flow, we sketch the idea to show Lipschitz continuity of u as follows.
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We first recall the following decomposition of the velocity gradient

∇u = ∇ũ+∇uG(2.9)

:=
(
−1

ν
RR(−∆)−1 div(ρu̇)− 1

µ
RR(−∆)−1 · curl(ρu̇)

)
+
(1
ν
RRG

)
.

where Rj = (1i ∂j)(−∆)−
1
2 , with 1 6 j 6 d, is the Riesz transform and G = P (ρ)− P̃ . Indeed, we notice

that the following expression

(2.10) ∆uj = ∂j div u+ ∂k curljk u, with curljk u = ∂ku
j − ∂ju

k, j, k = 1, · · · , d,

and from (1.13), (1.30) and (1.31) we have

div u =
1

ν
(F +G) , F = −(−∆)−1 div(ρu̇) and µ curlu = −(−∆)−1 curl(ρu̇).(2.11)

Hence the velocity gradient can be expressed as in (2.9):

∇u = −∇(−∆)−1∆u

= −∇(−∆)−1∇ div u−∇(−∆)−1 div(curlu)

= −1

ν
∇(−∆)−1∇ (F +G)− 1

µ
∇(−∆)−1 div(µ curl u)

=

(
−1

ν
RR(−∆)−1 div(ρu̇)− 1

µ
RR(−∆)−1 · curl(ρu̇)

)
+
(1
ν
RRG

)
.

Thanks to the regularity of u̇ provided by functionals A1 and A2, ∇ũ ∈ L1((0, t), L∞(Rd)). Motivated
by the pioneering work of Chemin [5, 6] and Danchin, Fanelli, and Paicu [10] which show RRG ∈ L∞(Rd)
provided with extra tangential regularity on G, the L∞-bound for ∇uG in our case relies on the following
logarithmic inequality, which is simply the application of the Sobolev embedding L∞(Rd) ∩ Ẇ 1,p(Rd) ⊂
C

1− d
p (Rd) to Theorem 7.40 of [1].

Proposition 2.5 ([1], L∞-bound for double Riesz transforms provided with tangential regularity). Let
X = (Xυ)16υ6m ⊂ L

∞,p(Rd), with d < p < ∞, be a non-degenerate family of m ∈ N
∗ vector fields as in

Section 1.1. Let 1 6 q < ∞.
There exits a constant C = C(m,d, p, q) > 0 such that for all G ∈ Lq(Rd) ∩ L∞(Rd) ∩ L

p
X (R

d), the
following estimate holds true:

‖RRG‖L∞(Rd) 6 C‖G‖Lq(Rd) + C‖G‖L∞(Rd)

(
1 + log

(
e+

‖G‖
L
p
X
(Rd)

‖G‖L∞(Rd)

))
.(2.12)

With the aid of the above logarithmic estimate, we can propagate tangential regularity of density and
achieve Lipschitz regularity of the velocity at the same time.

Lemma 2.6 (Tangential regularity for the density and Lipschitz continuity for the velocity). Assume
the initial condition (1.4) that ρ0 ∈ L

p
X0
(Rd) where X0 = (X0,υ)16υ6m ⊂ L

∞,p(Rd) is a non-degenerate
family of m ∈ N

∗ vectors fields, with m > d− 1, with 2 < p < ∞ if d = 2 or 3 < p < 6 if d = 3.
Then, the family of vector fields X (t) = (Xυ(t))16υ6m, defined as solution of the Cauchy problem (1.8),

is non-degenerate and X (t) ⊂ L
∞,p(Rd). Moreover, ρ(t) ∈ L

p
X (t)(R

d) and the following bounds hold true:





A3(t) 6 A3(0) exp
(
C0

∫ t

0

[
1 +

√
t+ ‖∇u(t′)‖L∞(Rd)dt

′
])

,
∫ t

0
‖∇u(t′)‖L∞(Rd)dt

′ 6 C0

(
1 +

A3(0)

I(X0)

)
exp(C0t).

(2.13)

The proof of the above Lemma is the object of Section 2.2.5.
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Remark 2.7 (Improved time regularity). We have the following improved time regularity, which is
required for the uniqueness result, see e.g. [10, Equation (4.31)]: For some t0 > 0,

∫ t0

0
σ(t′)s‖∇u(t′)‖2L∞(Rd)dt

′ < ∞,

where s = 4/9 if d = 2 and s = 1/2 if d = 3. Indeed, we apply Hölder’s inequality with respect to the
time variable to (2.66) in the proof in Section 2.2.5 to obtain (noticing (2.67) and (2.69))

∫ t

0
‖∇uG(t

′)‖2L∞(Rd)dt
′ ≤ C0t

(
1 +

A3(0)

I(X0)
+ t+

∫ t

0
‖∇u(t′)‖L∞(Rd)

)2

and similarly as in the proof of (2.68) and (2.70), we have
∫ t

0
σ
4
9 ‖∇ũ‖2L∞(R2) 6 C0(1 + t

1
3 ),

∫ t

0

√
σ‖∇ũ‖2L∞(R3) 6 C0.

To complete the proof of Theorem 1.6, we need to construct an approximate sequence (ρδ, uδ)δ globally
defined in time that converges to (ρ, u), the unique solution of (1.1). Once this is done, we will have

obtained a sequence (ρ(ν), u(ν)) of solutions to (1.1), and the last step will be to justify that this sequence
converges to some (̺, v) that solves the inhomogeneous incompressible model. This is the purpose of
Section 2.3, and, as we will see, the local solutions constructed in [10] cannot serve as building blocks.
Thus, we will need to establish local well-posedness for the system (1.1) in Appendix B.

2.2. Proofs. In this subsection we give the detailed proofs of Lemma 2.1, Lemma 2.2, Lemma 2.3 and
Lemma 2.6. Before that we recall some basic facts, which will be used freely in the proofs below.

2.2.1. Basic facts. Under the assumption (2.2), we have the L∞((0, t), Lq(Rd)) estimate for the vibration

of the pressure term G(t, x) =
(
P (ρ)

)
(t, x)− P̃ given in (1.27)

‖G‖L∞([0,t],Lq(Rd)) 6 C∗(E0)
1
q , with q ∈ [2,∞],(2.14)

where C∗ depends on q, ρ∗. Here the case q = ∞ follows straightforwardly from the definition. Recall
also the estimate (1.29) for G by F : For any l > 1,

1

ν
‖G‖l+1

Ll+1((0,t)×Rd)
6 C∗(l)E0 +

C

ν
‖F‖l+1

Ll+1((0,t)×Rd)
, ∀t ∈ (0,∞),(2.15)

where we estimated ‖Hl(ρ0)‖L1(Rd) by C∗(l)E0.

Recall also the relations (2.10):

∆uj = ∂j div u+ ∂k curljk u, j, k = 1, · · · , d,
and (2.11) between div u, F,G, ρu̇, curlu:

div u =
1

ν
(F +G) , F = −(−∆)−1 div(ρu̇) and µ curlu = −(−∆)−1 curl(ρu̇).(2.16)

By use of the Lq(Rd), q ∈ (1,∞), d > 2-boundedness of Riesz operators, the following estimates follow
immediately

‖∇u‖Lq(Rd) 6 C(q, d)
(
‖div u‖Lq(Rd) + ‖ curlu‖Lq(Rd)

)
,(2.17)

‖∇F‖Lq(Rd) + µ‖∇ curlu‖Lq(Rd) 6 C(q, d)‖ρu̇‖Lq(Rd).(2.18)

We now recall the compensated result by Coifman, Lions, Meyer, Semmes [8] in dimension two.

Proposition 2.8 (Coifman-Lions-Meyer-Semmes’ Estimate for d = 2). Let v, w ∈ Ḣ1(R2;R) be two
functions and let us define

g = det

(
∂1v ∂2v
∂1w ∂2w

)
.
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Then g belongs to the Hardy space H1(R2), whence for all f ∈ BMO(R2) we have the estimate
∣∣∣∣
∫

R2

f(x)g(x)dx

∣∣∣∣ 6 ‖f‖BMO(R2)‖∇v‖L2(R2)‖∇w‖L2(R2).

In particular, since Ḣ1(R2) →֒ BMO(R2), for all f ∈ Ḣ1(R2) we have:
∣∣∣∣
∫

R2

f(x)g(x)dx

∣∣∣∣ 6 ‖∇f‖L2(R2)‖∇v‖L2(R2)‖∇w‖L2(R2).

It helps in the proof, by virtue of the following equalities in dimension two

∇uj · ∇uk∂ku
j = div u{|∇u|2 − det(∇u)}, ∇ul · ∂lu = (div u)2 − 2 det(∇u).(2.19)

Here and in the following we use Einstein’s summation convention for repeated indices, unless otherwise
claimed.

2.2.2. Proof of Lemma 2.1 for d = 2. This paragraph is devoted to obtaining bounds for functionals A1

and A2 as defined in (1.15) for d = 2, provided with bounded density function (2.2). The constants in
the following estimates may depend on the viscosity coefficient µ and the lower bound ν for ν, while not
on the viscosity coefficient ν which will be chosen to be big.

Proof of (2.3). The functional A1 arises while using u̇ as a test functional in the weak formulation of the
momentum equation (1.1)2. By doing so, one obtains the following equality:

A1(t) =
µ

2
‖∇u0‖2L2(Rd) +

µ+ λ

2
‖div u0‖2L2(Rd) − µ

∫ t

0

∫

Rd

∇uj · ∇uk∂ku
j +

µ

2

∫ t

0

∫

Rd

|∇u|2 div u

+
µ+ λ

2

∫ t

0

∫

Rd

(div u)3 − (µ+ λ)

∫ t

0

∫

Rd

div u∇ul · ∂lu+

∫ t

0

∫

Rd

∇ul · ∂luG

+

∫

Rd

div u(s)G(s)

∣∣∣∣
s=t

s=0

+

∫ t

0

∫

Rd

(ρP ′(ρ)− P (ρ) + P̃ )(div u)2.(2.20)

Step 1: Reformulation of the energy equality. In the following lines, we will reformulate the terms
appearing in the right hand side above by use of (2.16) and (2.19).

By (2.16) and (2.19), the sum of the third and the fourth terms on the right hand side of (2.20) can
be reduced as follows:

µ

∫ t

0

∫

R2

div u

[
det(∇u)− 1

2
|∇u|2

]

=
µ

ν

∫ t

0

∫

R2

F det(∇u)− µ

2ν

∫ t

0

∫

R2

F |∇u|2 + µ

ν

∫ t

0

∫

R2

G

[
det(∇u)− 1

2
|∇u|2

]
,(2.21)

and similarly, the sum of the second and the third terms of the second line of (2.20) read

− µ+ λ

ν

∫ t

0

∫

R2

F∇ul · ∂lu+
µ

ν

∫ t

0

∫

R2

∇ul · ∂luG

= 2
µ+ λ

ν

∫ t

0

∫

R2

F det(∇u)− µ+ λ

ν

∫ t

0

∫

R2

F (div u)2 +
µ

ν

∫ t

0

∫

R2

∇ul · ∂luG.(2.22)

Now we pack the first term of the second line of (2.20) and the middle term in the above (2.22) and use
(2.16) to get

µ+ λ

2

∫ t

0

∫

R2

(div u)3 − µ+ λ

ν

∫ t

0

∫

R2

F (div u)2 = −µ+ λ

2ν2

∫ t

0

∫

R2

(
F 2 −G2

)
div u.(2.23)

Step 2: Estimates for the integrals in terms of E0, E
ν
0 and L4

t,x-norms of (∇u,G, F ). We are
ready to estimate all the terms above.
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• With the help of Proposition 2.8 and (2.18), the first terms of the right hand side of (2.21) and
(2.22) can be estimated, as follows:

∣∣∣∣
3µ+ 2λ

ν

∫ t

0

∫

R2

F det(∇u)

∣∣∣∣ 6 C

∫ t

0
‖∇F‖L2(R2)‖∇u‖2L2(R2)

= C

∫ t

0
‖ρu̇‖L2(R2)‖∇u‖2L2(R2)

6 η

∫ t

0
‖√ρu̇‖2L2(R2) +

Cρ∗

4η

∫ t

0
‖∇u‖4L2(R2), by Young’s inequality,(2.24)

for some η > 0 small enough to be determined later.
• By the energy balance (2.1) and the upper bound ρ∗ for the density (2.2), the last terms of (2.20)

and the terms involving the pressure deviation G in (2.21) and(2.22) can be bounded as follows
∣∣∣∣
∫ t

0

∫

Rd

(ρP ′(ρ)− P (ρ) + P̃ )(div u)2
∣∣∣∣+

µ

ν

∣∣∣∣
∫ t

0

∫

R2

G

[
det(∇u)− 1

2
|∇u|2

] ∣∣∣∣

+
µ

ν

∣∣∣∣
∫ t

0

∫

R2

∇ul∂luG

∣∣∣∣ 6
C∗

ν
E0.(2.25)

• Next, the middle term of (2.21) is:

µ

2ν

∣∣∣∣
∫ t

0

∫

R2

F |∇u|2
∣∣∣∣ 6

C

ν

∫ t

0
‖F‖L4(R2)‖∇u‖L4(R2)‖∇u‖L2(R2)

6 C

∫ t

0

[
1

ν5/2
‖F‖4L4(R2) +

1

ν3/2
‖∇u‖4L4(R2)

]
+ C

∫ t

0
‖∇u‖2L2(R2).(2.26)

• The term in (2.23) can be estimated as follows

µ+ λ

2ν2

∣∣∣∣
∫ t

0

∫

R2

(
F 2 −G2

)
div u

∣∣∣∣ 6
C

ν3

∫ t

0

[
‖F‖4L4(R2) + ‖G‖4L4(R2)

]
+ Cν

∫ t

0
‖div u‖2L2(R2).(2.27)

• It only remains the first term in the last line of (2.20) which can be bounded as follows:
∣∣∣∣∣

∫

Rd

div u(s)G(s)

∣∣∣∣
s=t

s=0

∣∣∣∣∣ 6 ην‖div u(t)‖2L2(R2) +
C

4ην
‖G(t)‖2L2(R2)

+
C

ν
‖G0‖2L2(R2) + Cν‖div u0‖2L2(R2),

with the second term of the right hand side controlled by the initial energy as in (2.14).

We combine all of these estimates and we choose η small in order to obtain the following:

A1(t) 6 C

(
1 +

C∗

ν

)
Eν

0+Cρ∗
∫ t

0
‖∇u‖4L2(R2)+

C

ν3/2

∫ t

0

[
‖∇u‖4L4(R2) +

1

ν
‖F‖4L4(R2) +

1

ν3/2
‖G‖4L4(R2)

]

where Eν
0 is given in (1.17). Hence Gronwall Lemma yields:

A1(t) 6

[
C∗Eν

0 +
C

ν3/2

∫ t

0

(
‖∇u‖4L4(R2) +

1

ν
‖F‖4L4(R2) +

1

ν3/2
‖G‖4L4(R2)

)]
exp (C∗E0) .(2.28)

Step 3: Final estimates. The next step is devoted to obtaining estimate for the L4((0, t) × R
2) norm

of the velocity gradient ∇u, the pressure deviation G and the effective flux F .

• L4-Estimate for G. Recall (2.15) with l = 3:

1

ν
‖G‖4L4((0,t)×Rd) 6 C∗E0 +

C

ν
‖F‖4L4((0,t)×Rd).(2.29)
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• L4-Estimate for F . The L4((0, t) × R
2)-norm of the effective flux F follows from Gagliarodo-

Nirenberg’s inequality ‖f‖2L4(R2) . ‖f‖L2(R2)‖∇f‖L2(R2) and (2.18) as

‖F‖L4(R2) 6 C‖F‖
1
2

L2(R2)
‖∇F‖

1
2

L2(R2)
6 C‖F‖

1
2

L2(R2)
‖ρu̇‖

1
2

L2(R2)
,

which can be bounded further by virtue of (2.16) and the definition of E(t),A1(t) by

‖F‖4L4((0,t)×R2) 6 C

∫ t

0
(ν‖div u‖L2(R2) + ‖G‖L2(R2))

2‖ρu̇‖2L2(R2)

6 C∗(νA1(t) + E0)A1(t).

• L4-Estimate for ∇u. Similar as above for F , we have L4-Estimate for curlu:

‖curlu‖L4((0,t)×R2) 6 C‖ curlu‖
1
2

L∞((0,t);L2(R2))
‖ρu̇‖

1
2

L2((0,t)×R2)
6 CA1(t)

1
2 .

Hence, by use of (2.16)-(2.17), the following inequality holds true

‖∇u‖4L4((0,t)×R2) 6 C
(
‖div u‖4L4((0,t)×R2) + ‖curlu‖4L4((0,t)×R2)

)

6
C

ν4
(‖F‖4L4((0,t)×R2) + ‖G‖4L4((0,t)×R2)) +C‖curlu‖4L4((0,t)×R2)

6
C∗

ν3
E0 + C∗A1(t)

(
E0 +A1(t)

)
.

Finally, we go back to (2.28) and we have (2.3). �

Proof of (2.4). We turn to providing bound for the second functional A2 for d = 2. For this purpose, by
(2.16), we rewrite the momentum equation (1.1)2 as follows

ρu̇ = µ∆u+
µ+ λ

ν
∇F − µ

ν
∇G.(2.30)

We apply the operator ∂t · +div( · u) to (2.30) and we obtain the following equation for the material
derivative of the velocity:

(2.31) ∂t(ρu̇
j) + div(ρu̇ju)− µ∆u̇j − µ+ λ

ν
∂jḞ

= −µ∂k(∇uj · ∂ku) + µ∂k(∂ku
j div u)− µ div(∂ku

j∂ku)

+
µ+ λ

ν
∂j(F div u)− µ+ λ

ν
div(F∂ju)

+
µ

ν
∂j

(
(ρP ′(ρ)− P (ρ) + P̃ ) div u

)
+

µ

ν
div(∂juG), j = 1, · · · , d.

Step 1: Formulation of the energy equality. To obtain the functional A2, it suffices to multiply the
equation above by σu̇j , with σ = σ(t) = min{1, t}, sum up j, and integrate it in time and space. The

most delicate term is −µ+ λ

ν
∂jḞ on the left hand side of (2.31), which gives

−µ+ λ

ν

∫ t

0

∫

R2

σu̇j∂jḞ =
µ+ λ

ν

∫ t

0
σ

∫

R2

Ḟ div u̇.

We first focus on this integral for a while. Applying material derivative to (2.16) gives

div u̇ =
1

ν

(
Ḟ − ρP ′(ρ) div u

)
+∇uk · ∂ku,(2.32)

and hence

−µ+ λ

ν

∫ t

0

∫

R2

σu̇j∂jḞ =
µ+ λ

ν2

∫ t

0
σ‖Ḟ‖2L2(R2) +

µ+ λ

ν

∫ t

0
σ

∫

R2

Ḟ∇uk · ∂ku

− µ+ λ

ν2

∫ t

0
σ

∫

R2

Ḟ ρP ′(ρ) div u.(2.33)
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To conclude, testing (2.31) by σu̇ implies

(2.34)
1

2
σ(t)‖√ρu̇‖2L2(R2)+µ

∫ t

0
σ‖∇u̇‖2L2(R2)+

µ+ λ

ν2

∫ t

0
σ‖Ḟ‖2L2(R2) =

1

2

∫ σ(t)

0
‖√ρu̇‖2L2(R2) +

4∑

k=1

Ik,

where

I1 = −µ+ λ

ν

∫ t

0
σ

∫

R2

Ḟ∇uk · ∂ku+
µ+ λ

ν2

∫ t

0
σ

∫

R2

Ḟ ρP ′(ρ) div u,

I2 = µ

∫ t

0
σ

∫

R2

(
∇uj · ∂ku∂ku̇j − ∂ku

j div u∂ku̇
j + ∂ku

j∂ku · ∇u̇j
)
,

I3 =
µ+ λ

ν

∫ t

0
σ

∫

R2

(
−F div udiv u̇+ F∂ju

k∂ku̇
j
)
,

I4 = −µ

ν

∫ t

0
σ

∫

R2

(
div udiv u̇(ρP ′(ρ)− P (ρ) + P̃ ) + ∂ju

k∂ku̇
jG
)
.

Step 2: Estimate for I1. We focus first on the first integral in I1, which can be reformulated by
integration by parts (noticing σ(0) = 0) as

∫ t

0
σ

∫

R2

Ḟ∇uk · ∂ku = σ(t)

∫

R2

F (t)∇uk · ∂ku(t)−
∫ σ(t)

0

∫

R2

F∇uk · ∂ku− 2

∫ t

0
σ

∫

R2

F∂ku · ∇u̇k

+ 2

∫ t

0
σ

∫

R2

F∂ku · ∇ul∂lu
k −

∫ t

0
σ

∫

R2

F div u∇uk · ∂ku.(2.35)

The first term of the right hand side in (2.35) above can be estimated similarly as for the derivation of
(2.24) and (2.27), using the equality ∇ul · ∂lu = (div u)2 − 2 det(∇u) in (2.19):

∣∣∣∣σ(t)
∫

R2

F (t)(∇uk · ∂ku)(t)
∣∣∣∣ 6 Cσ(t)‖ρu̇‖L2(R2)‖∇u‖2L2(R2) + σ(t)

1

ν2

∣∣∣∣
∫

R2

F (t)(F (t) +G(t))2
∣∣∣∣

6 ησ(t)‖√ρu̇‖2L2(R2) + σ(t)
C2ρ∗

4η
‖∇u‖4L2(R2)

+ σ(t)
C

ν2

(
‖F (t)‖3L3(R2) + ‖G(t)‖3L3(R2)

)
.

Exactly as in the derivation of (2.24) and (2.27), the second integral of the right hand side of (2.35) can
be estimated as follows:

(2.36)

∣∣∣∣
∫ σ(t)

0

∫

R2

F∇uk · ∂ku
∣∣∣∣ 6 CE0 + C

∫ σ(t)

0
‖√ρu̇‖2L2(R2) + Cρ∗

∫ σ(t)

0
‖∇u‖4L2(R2)

+
C

ν3

∫ σ(t)

0

[
‖F‖4L4(R2) + ‖G‖4L4(R2)

]
.

In order to estimate the third term of the right hand side of (2.35), we write:

∂ju
k∂ku̇

j = div udiv u̇− (∂1u
1∂2u̇

2 − ∂2u
1∂1u̇

2)− (∂2u
2∂1u̇

1 − ∂1u
2∂2u̇

1)(2.37)

in such a way that, after making use of the compensated result Proposition 2.8 and Young’s inequality,
we have:

(2.38)

∣∣∣∣
∫ t

0
σ

∫

R2

F∂ku · ∇u̇k
∣∣∣∣ 6 η

∫ t

0
σ‖∇u̇‖2L2(R2) +

Cρ∗

η

∫ t

0
σ‖√ρu̇‖2L2(R2)‖∇u‖2L2(R2)

+
C

η

∫ t

0

[
1

ν2
‖F‖4L4(R2) +

1

ν2
‖G‖4L4(R2)

]
.
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Thanks to (2.16) and the equality ∂ku
l∇uk · ∂lu = div u{(div u)2 − 3 det(∇u)} in (2.19), we have the

following estimate for the last two terms of (2.35):

2

∣∣∣∣
∫ t

0
σ

∫

R2

F∂ku · ∇ul∂lu
k

∣∣∣∣+
∣∣∣∣
∫ t

0
σ

∫

R2

F div u∇uk · ∂ku
∣∣∣∣

6 C

∫ t

0
σ

[
‖∇u‖4L4(R2) +

1

ν2
‖F‖4L4(R2) +

1

ν2
‖G‖4L4(R2)

]
.

Finally, owing to Hölder’s and Young’s inequalities the second integral in I0 can be estimated as follows:

µ+ λ

ν2

∣∣∣∣
∫ t

0
σ

∫

R2

Ḟ ρP ′(ρ) div u

∣∣∣∣ 6 η
µ + λ

ν2

∫ t

0
σ‖Ḟ‖2L2(R2) +

C∗

ν2η
E0.

Gathering the above computations, we obtain the following estimate for I1:

|I1| 6 C(1 +
C∗

ν2η
)E0 + ησ(t)‖√ρu̇‖2L2(R2) + η

∫ t

0
σ‖∇u̇‖2L2(R2) + η

µ+ λ

ν2

∫ t

0
σ‖Ḟ‖2L2(R2)

+ C

∫ σ(t)

0
‖√ρu̇‖2L2(R2) + σ(t)

C∗

η
‖∇u‖4L2(R2) +

Cρ∗

η

∫ t

0
σ‖√ρu̇‖2L2(R2)‖∇u‖2L2(R2)

+ Cρ∗
∫ σ(t)

0
‖∇u‖4L2(R2) + σ(t)

C

ν2

(
‖F (t)‖3L3(R2) + ‖G(t)‖3L3(R2)

)

+ C

∫ t

0
σ

[
‖∇u‖4L4(R2) +

1

ην2
‖F‖4L4(R2) +

1

ην2
‖G‖4L4(R2)

]
.

Step 3: Final estimates. We now turn to the estimate of the last terms
4∑

k=2

Ik in (2.34). By Young’s

inequality it is straightforward to get

|I2| 6 η

∫ t

0
σ‖∇u̇‖2L2(R2) +

C

η

∫ t

0
σ‖∇u‖4L4(R2).

Similar as in Step 2 we have

|I3| 6 η

∫ t

0
σ‖∇u̇‖2L2(R2) +

Cρ∗

η

∫ t

0
σ‖√ρu̇‖2L2(R2)‖∇u‖2L2(R2) +

C

ν2η

∫ t

0
σ
[
‖F‖4L4(R2) + ‖G‖4L4(R2)

]
,

|I4| 6 η

∫ t

0
σ‖∇u̇‖2L2(R2) +

CC∗

ν2η
E0.

Summing up, we have for η small enough that

A2(t) 6 C(1 +
C∗

ν2
)E0 + C∗(1 + E0 +A1(t))A1(t)

+ σ(t)
C

ν2

(
‖F (t)‖3L3(R2) + ‖G(t)‖3L3(R2)

)
+ C

∫ t

0
σ

[
‖∇u‖4L4(R2) +

1

ν2
‖F‖4L4(R2) +

1

ν2
‖G‖4L4(R2)

]
.(2.39)

Recall Step 3 in the Proof of (2.3) above, and we get similar L4-Estimates with the time weight σ. We
have the following similar as (2.29)

1

2ν

∫ t

0
σ‖G‖4L4(R2) 6 C∗E0 +

C

ν

∫ t

0
σ‖F‖4L4(R2),

which implies
∫ t

0
σ

[
‖∇u‖4L4(R2) +

1

ν2
‖F‖4L4(R2) +

1

ν2
‖G‖4L4(R2)

]
6

C∗

ν3
E0 + C∗(E0 +A1(t))A1(t).(2.40)
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On the other hand, we have (2.14):
1

ν2
‖G(t)‖3L3(R2) 6

C∗

ν2
E0 and hence the following thanks to Gagliardo-

Nirenberg inequality and (2.16)-(2.18)

σ(t)

ν2
‖F (t)‖3L3(R2) 6 C

σ(t)

ν2
‖∇F (t)‖L2(R2)‖F (t)‖2L2(R2)

6 σ(t)‖ρu̇‖L2(R2)

(
1

ν2
‖G‖2L2(R2) + ‖div u‖2L2(R2)

)

6 ησ(t)‖√ρu̇‖2L2(R2) +
C∗

ην2

(
1

ν2
E2

0 + (A1(t))
2

)
.(2.41)

We finally combine (2.39), (2.40) and (2.41), we choose η small to derive (2.4). �

2.2.3. Proof of Lemma 2.2. This section is devoted to obtaining bounds for functionals A1 and A2 as
defined in (1.15), for d = 3. The proof is similar as in Lemma 2.1, and we adapt the estimates in three
dimension, for instance, the L4(R2)-norm is replaced by L6(R3)-norm below. Since Proposition 2.8 does

not hold in three dimension anymore, we will simply use the Sobolev embedding Ḣ1(R3) →֒ L6(R3) in
the estimates.

Proof of (2.5). We recall that the first functional appears while using u̇ as a test function in the weak
formulation of (1.1)2. By doing so, we obtain again (2.20):

A1(t) =
µ

2
‖∇u0‖2L2(R3) +

µ+ λ

2
‖div u0‖2L2(R3) − µ

∫ t

0

∫

R3

∇uj · ∇uk∂ku
j +

µ

2

∫ t

0

∫

R3

|∇u|2 div u

+
µ+ λ

2

∫ t

0

∫

R3

(div u)3 − (µ + λ)

∫ t

0

∫

R3

div u∇ul∂lu+

∫ t

0

∫

R3

∇ul∂luG

+

∫

R3

div u(s)G(s)

∣∣∣∣
s=t

s=0

+

∫ t

0

∫

R3

(ρP ′(ρ)− P (ρ) + P̃ )(div u)2.(2.42)

Step 1: Estimates in terms of Eν
0 and L2

tL
6
x-norms of (∇u,G, F ). With the help of Hölder’s

inequality the last two terms of the first line above can be straightforwardly estimated as follows:
∣∣∣∣− µ

∫ t

0

∫

R3

∇uj · ∇uk∂ku
j +

µ

2

∫ t

0

∫

R3

|∇u|2 div u
∣∣∣∣ 6 C‖∇u‖3L3((0,t)×R3).

Similarly, together with the relation between div u and F,G as well as Hölder’s inequality, the whole
second line in (2.42) can be bounded by

C

∫ t

0

(
‖div u‖L2(R3)‖div u‖L3(R3)‖(F,G)‖L6(R3) + ‖∇u‖L2(R3)‖∇u‖L3(R3)‖(F,

1

ν
G)‖L6(R3)

)

which is, by virtue of the interpolation inequality ‖f‖L3(R3) . ‖f‖1/2
L2(R3)

‖f‖1/2
L6(R3)

, bounded by

C

∫ t

0

(
‖
√
ν div u‖

3
2

L2(R3)

1

ν
5
4

‖(F,G)‖
3
2

L6(R3)
+ ‖∇u‖

3
2

L2(R3)
‖∇u‖

1
2

L6(R3)
‖(F, 1

ν
G)‖L6(R3)

)
.

This can be further estimated by Young’s inequality by the following with some small constant η > 0:

η

∫ t

0

∥∥∥
(
∇u, F,

1

ν
5
6

G
)∥∥∥

2

L6(R3)
+

C

η

∫ t

0
‖(
√
ν div u,∇u)‖6L2(R3).

By the same argument the whole third line in (2.42) can be bounded by

ην‖div u(t)‖2L2(R3) +
C

η
‖G(t)‖2L2(R3) + ‖div u0‖L2(R3)‖G0‖L2(R3) + C∗‖div u‖2L2((0,t)×R3)

6 ην‖div u(t)‖2L2(R3) + (
C∗

η
+

C∗

√
ν
)Eν

0 .
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Summing up, we obtain the following by further applying the interpolation inequality and then Young’s
inequality to ‖∇u‖3L3((0,t)×R3):

(2.43)

A1(t) 6
C∗

η
Eν

0 + η
(
ν‖div u(t)‖2L2(R3) +

∫ t

0

∥∥∥
(
∇u, F,

1

ν
5
6

G
)∥∥∥

2

L6(R3)

)
+

C

η

∫ t

0
‖(
√
ν div u,∇u)‖6L2(R3),

with some small parameter η 6 1 to be determined below.
Step 2: Final Estimates. We now turn to the estimate of the L2((0, t);L6(R3))-norm (∇u,G, F ),
similar as in Step 3 in the proof of (2.3).

• L2
tL

6
x-Estimate for G. Recall (1.28) with l = 5:

d

dt
‖H5(ρ)‖L1(R3) +

1

ν
‖G‖6L6(R3) 6

1

ν
‖G‖5L6(R3)‖F‖L6(R3).

We define the time-dependant function h(t) := ‖H5(ρ)‖
1
3

L1(R3)
. Thanks to the equivalence between

‖H5(ρ)‖L1(R3) and ‖G‖6L6(R3), we have ‖G‖2L6(R3) ∼C∗ h.

3
d

dt
h+

1

νC∗
h 6

1

ν
h

1
2 ‖F‖L6(R3),

which together with Young’s inequality yields:

3 sup
[0,t]

h+
1

2νC∗

∫ t

0
h 6 3h(0) + 2

C∗

ν

∫ t

0
‖F‖2L6(R3).

Finally we find the following estimate for G in terms of E0 and F :

1

ν

∫ t

0
‖G‖2L6(R3) 6 C∗E

1
3
0 +

C∗

ν

∫ t

0
‖F‖2L6(R3).(2.44)

• L2
tL

6
x-Estimate for F . We use the Sobolev embedding ‖g‖L6(R3) . ‖∇g‖L2(R3) to bound the

L6
x-norm of F by (2.18):

∫ t

0
‖F‖2L6(R3) 6 C

∫ t

0
‖∇F‖2L2(R3) = C

∫ t

0
‖ρu̇‖2L2(R3).

• L2
tL

6
x-Estimate for ∇u. Similarly, by use of (2.16)-(2.17)-(2.18) the following inequality holds

true
∫ t

0
‖∇u‖2L6(R3) 6 C

(∫ t

0
‖div u‖2L6(R3) +

∫ t

0
‖ curlu‖2L6(R3)

)

6
C

ν2

∫ t

0
‖(F,G)‖2L6(R3) + C

∫ t

0
‖ρu̇‖2L2(R3).

Finally (2.5) follows from (2.43) when we choose η small enough.
�

Proof of (2.6). Here we derive estimate for the functional A2 as defined in (1.15) for d = 3. We recall
that it appears while rewriting the equation on the form (2.30), next applying the operator ∂t ·+div( ·u)
in order to obtain (2.31) which we test with the material derivative of the velocity u̇. By doing so, we
obtain (2.34):

(2.45)
1

2
σ(t)‖√ρu̇‖2L2(R3)+µ

∫ t

0
σ‖∇u̇‖2L2(R3)+

µ+ λ

ν2

∫ t

0
σ‖Ḟ‖2L2(R2) =

1

2

∫ σ(t)

0
‖√ρu̇‖2L2(R2) +

4∑

k=1

Ik,

where Ik, k = 1, 2, 3, 4 are given as in (2.34).
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Step 1 Estimates for I1. By the identity (2.35) and Hölder’s inequality we achieve the estimates

∣∣∣∣
∫ t

0
σ

∫

R3

Ḟ∇uk · ∂ku
∣∣∣∣ . σ(t)‖F‖L6(R3)‖∇u‖L2(R3)‖∇u‖L3(R3) +

∫ σ(t)

0
‖F‖L6(R3)‖∇u‖L2(R3)‖∇u‖L3(R3)

+

∫ t

0
σ‖F‖L6(R3)‖∇u‖L3(R3)‖∇u̇‖L2(R3) +

∫ t

0
σ‖F‖L6(R3)‖∇u‖2L6(R3)‖∇u‖L2(R3).

Similar as in the proof of (2.5) above, we use the interpolation ‖∇u‖L3(R3) . ‖∇u‖1/2
L2(R3)

‖∇u‖1/2
L6(R3)

and

Young’s inequality to derive (noticing σ(t) 6 1)

∣∣∣∣
∫ t

0
σ

∫

R3

Ḟ∇uk · ∂ku
∣∣∣∣

6 C
(√

σ(t)‖F‖L6(R3)

)
‖∇u‖

3
2

L2(R3)

(√
σ(t)‖∇u‖L6(R3)

) 1
2 +

∫ σ(t)

0
‖F‖L6(R3)‖∇u‖

1
2

L6(R3)
‖∇u‖

3
2

L2(R3)

+

∫ t

0
‖
√
σF‖L6(R3)‖∇u‖

1
2

L6(R3)
‖∇u‖

1
2

L2(R3)
‖
√
σ∇u̇‖L2(R3) +

∫ t

0
σ‖F‖L6(R3)‖∇u‖2L6(R3)‖∇u‖L2(R3)

6 η
(
σ(t)‖(∇u, F )‖2L6(R3) +

∫ t

0
σ‖∇u̇‖2L2(R3)

)

+
C

η

(
‖∇u‖6L2(R3) +

∫ t

0
σ
(
‖F‖2L6(R3)‖∇u‖L6(R3) + ‖F‖L6(R3)‖∇u‖2L6(R3)

)
‖∇u‖L2(R3)

)

+
(∫ σ(t)

0
‖F‖2L6(R3)

) 1
2
(∫ σ(t)

0

(
‖∇u‖2L6(R3) + ‖∇u‖6L2(R3)

)) 1
2
.

By the Sobolev embedding Ḣ1(R3) →֒ L6(R3) and (2.16)-(2.17)-(2.18)-(2.44) we have

‖(F, curl u)‖L6(R3) 6 Cρ∗‖√ρu̇‖L2(R3),

1

ν

∫ t

0
‖G‖2L6(R3) 6 C∗E

1
3
0 +

C∗

ν

∫ t

0
‖√ρu̇‖2L2(R3) 6 C∗E

1
3
0 +

C∗

ν
A1(t),

‖∇u‖L6(R3) 6 C(‖div u‖L6(R3) + ‖ curlu‖L6(R3)) 6 Cρ∗‖√ρu̇‖L2(R3) +
C

ν
‖G‖L6(R3),

which implies

σ(t)‖(∇u, F )‖2L6(R3) 6 C∗A2(t) +
C

ν2
E

1
3
0 ,

∫ t

0
σ‖F‖L6(R3)‖(F,∇u)‖2L6(R3)‖∇u‖L2(R3) 6 C∗A1(t)

1
2A2(t)

1
2
(
A1(t) +

C∗

ν
E

1
3
0

)
,

(∫ σ(t)

0
‖F‖2L6(R3)

) 1
2
(∫ σ(t)

0

(
‖∇u‖2L6(R3) + ‖∇u‖6L2(R3)

)) 1
2
6 C∗A1(σ(t))

1
2
(
A1(σ(t)) +

1

ν
E

1
3
0 +E0A1(σ(t))

2
) 1

2 .

It holds by Young’s inequality that

µ+ λ

ν2

∣∣∣∣
∫ t

0
σ

∫

R3

Ḟ ρP ′(ρ) div u

∣∣∣∣ 6 η
µ + λ

2ν2

∫ t

0
σ‖Ḟ‖2L2(R3) +

C∗

ν2η
E0.

Gathering all of these computations and using Young’s inequality, we have:

|I1| 6 C∗
(
ηA2(t) +

1

ν
E

1
3
0 +

1

η2
A1(t)

3 +
1

η
A1(t)

1

ν2
E

2
3
0 +A1(σ(t)) + E0A1(σ(t))

3
2

)
.(2.46)
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Step 2. Final estimates. Recall the definitions of Ik, k = 2, 3, 4 given in (2.34), and we can estimate
them similarly as in Step 1 as follows:

|I2 + I3 + I4| 6 C

∫ t

0
σ‖∇u̇‖L2(R3)‖(∇u, F )‖L6(R3)‖∇u‖L3(R3) + C∗

∫ t

0
σ‖∇u̇‖L2(R3)‖∇u‖L2(R3)

6 η

∫ t

0
σ‖∇u̇‖2L2(R3) +

C∗

η

∫ t

0

(
σ‖(∇u, F )‖3L6(R3)‖∇u‖L2(R3) + ‖∇u‖2L2(R3)

)

6 ηA2(t) +
C∗

η
A1(t)

1
2
(
A2(t)

1
2A1(t) +

E
2
3
0

ν2
+

E
1
6
0

ν3
A1(t)

)
+

C∗

η
E0.

Gathering all of these computations, we obtain, after choosing η small enough:

A2(t) 6 C∗
(1
ν
E

1
3
0 + E0 +

E
2
3
0

ν2
A1(t)

1
2 + (1 +

1

ν2
E

2
3
0 )A1(t) + (E0 +

E
1
6
0

ν3
)A1(t)

3
2 +A1(t)

3
)

A further application of Young’s inequality yields (2.6). �

2.2.4. Proof of Lemma 2.3. In this paragraph, we derive a priori estimate for the upper bound of the
density in terms of A1,A2, under the assumption sup

t,x
ρ(t, x) 6 ρ∗. The basic facts in Section 2.2.1 will

be used freely.

Proof. With the help of the expression of div u in (2.16), we begin by rewriting the mass equation (1.1)1
in terms of F,G as follows:

∂tρ+ u · ∇ρ+
ρ

ν
G = −ρ

ν
F.

Due to the fact that the pressure is an increasing function of the density and G = P (ρ) − P̃ the above
equation yields:

∂t|ρ− ρ̃|+ u · ∇|ρ− ρ̃|+ ρ

ν
|G| = −ρ

ν
sgn(ρ− ρ̃)F.(2.47)

It yields immediately the following L∞ estimate for the density, which we use on the short time interval
[0, σ(t)]

sup
[0,σ(t)]

‖ρ− ρ̃‖L∞(Rd) 6 ‖ρ0 − ρ̃‖L∞(Rd) +
ρ∗

ν

∫ σ(t)

0
‖F (s)‖L∞(Rd)ds.(2.48)

For larger time we would like to improve the L1
t -norm for ‖F‖L∞

x
into L3

t -norm, which requires less
decay rate in time. From (2.47) we have

1

3

(
∂t|ρ− ρ̃|3 + u · ∇|ρ− ρ̃|3

)
+

ρ

ν
|G||ρ − ρ̃|2 = −ρ

ν
sgn(ρ− ρ̃)F |ρ− ρ̃|2.(2.49)

As well, since the pressure is an increasing function of the density such that

|G||ρ − ρ̃|2 ∼C∗ |ρ− ρ̃|3,
we derive the following estimate from Young’s inequality on larger time interval [σ(t), t]

sup
[σ(t),t]

‖ρ− ρ̃‖3L∞(Rd) 6 ‖ρ(σ(t)) − ρ̃‖3L∞(Rd) +
C∗

ν

∫ t

σ(t)
‖F (s)‖3L∞(Rd)ds.(2.50)

Gathering estimates (2.48) and (2.50), we have:

sup
[0,t]

‖ρ− ρ̃‖L∞(Rd) 6 ‖ρ0 − ρ̃‖L∞(Rd) +
C∗

ν

∫ σ(t)

0
‖F (s)‖L∞(Rd)ds+

C∗

ν1/3

[∫ t

σ(t)
‖F (s)‖3L∞(Rd)ds

]1/3
.

(2.51)

It only remains to estimate the norm of the effective flux F in terms of the functionals A1 and A2 and
to do so, we distinguish two cases according to the dimension.
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Case d = 2. We recall that the effective flux is given by

F = −(−∆)−1 div(ρu̇) = ν div u−G, G = P (ρ)− P̃ .(2.52)

Hence, interpolation inequality yields the following estimate on the small interval [0, σ(t)]
∫ σ(t)

0
‖F‖L∞(R2) 6 C

∫ σ(t)

0
‖F‖

1
2

L2(R2)
‖∇F‖

2
3

L4(R2)
6

∫ σ(t)

0
‖(G, ν div u)‖

1
3

L2(R2)
‖ρu̇‖

2
3
L4(R2)

6
(
C∗E

1
6
0 + ν

1
6A1(t)

1
6
)
)

∫ σ(t)

0
‖ρu̇‖

2
3
L4(R2)

.

Since the density contains vacuum states, we are not allowed to bound the last factor in the above
inequality solely by the Gagliardo-Nirenberg inequality. On T

2, we have at our disposal a logarithmic
interpolation inequality (see [16, 17, 21]) which is not valid in the whole space. To address this issue, we
prove in Lemma A.1 an interpolation inequality that will allow us to take into account the vacuum state.
Thus, from Lemma A.1, we have:

∫ σ(t)

0
‖ρu̇‖

2
3
L4(R2)

6 C∗

∫ σ(t)

0
‖√ρu̇‖

1
3
L2(R2)

‖∇u̇‖
1
3
L2(R2)

+ C∗E
1
18
0

∫ σ(t)

0
‖√ρu̇‖

2
9
L2(R2)

‖∇u̇‖
4
9
L2(R2)

6 C∗A1(t)
1
6A2(t)

1
6 + C∗E

1
18
0 A1(t)

1
9A2(t)

2
9

and therefore:
∫ σ(t)

0
‖F‖L∞(R2) 6 C∗

(
1 +E

1
18
0

)
)
(
E

1
6
0 + ν

1
6A1(t)

1
6
)
)
(
A1(t)

1
3 +A2(t)

1
3
)
).(2.53)

Similarly, interpolation inequality and Lemma A.1 yield on the larger time interval [σ(t), t]
∫ t

σ(t)
‖F‖3L∞(R2) 6

∫ t

σ(t)
‖(G, ν div u)‖L2(R2)‖ρu̇‖2L4(R2)

6
(
C∗E

1
2
0 + ν

1
2A1(t)

1
2
)(
C∗

∫ t

0
‖√ρu̇‖L2(R2)‖∇u̇‖L2(R2) + C∗E

1
6
0

∫ t

0
‖√ρu̇‖

2
3
L2(R2)

‖∇u̇‖
4
3
L2(R2)

)

6
(
C∗E

1
2
0 + ν

1
2A1(t)

1
2
)(
C∗A1(t)

1
2A2(t)

1
2 +C∗E

1
6
0 A1(t)

1
3A2(t)

2
3
)
.

Hence,
∫ t

σ(t)
‖F‖3L∞(R2) 6 C∗

(
1 + E

1
6
0

)(
C∗E

1
2
0 + ν

1
2A1(t)

1
2
)(
A1(t) +A2(t)

)
.(2.54)

Finally (2.51), (2.53) and (2.54), lead to:

(2.55) sup
[0,t]

‖ρ − ρ̃‖L∞(R2) 6 ‖ρ0 − ρ̃‖L∞(R2) +
C∗

ν
1
3

(
1 + E

1
18
0

)(
E

1
6
0 + ν

1
6A1(t)

1
6
)(
A1(t)

1
3 + A2(t)

1
3
)
.

Case d = 3. From the expression of the effective flux (2.52), we have by Gagliardo-Nirenberg inequality:

∫ σ(t)

0
‖F‖L∞(R3) 6 C

∫ σ(t)

0
‖F‖

1
2

L6(R3)
‖∇F‖

1
2

L6(R3)
6 C

∫ σ(t)

0
‖ρu̇‖

1
2
L2(R3)

‖ρu̇‖
1
2
L6(R3)

6 C∗A1(t)
1
4A2(t)

1
4 ,

(2.56)

∫ t

σ(t)
‖F‖3L∞(R3) 6 C

∫ t

σ(t)
‖ρu̇‖

3
2
L2(R3)

‖ρu̇‖
3
2
L6(R3)

6 C∗A1(t)
1
4A2(t)

5
4 .

Finally, we get:

sup
[0,t]

‖ρ− ρ̃‖L∞(R3) 6 ‖ρ0 − ρ̃‖L∞(R3) +
C∗

ν1/3

(
A1(t)

1
2 +A2(t)

1
2
)
,

and this ends the proof of Lemma 2.3. �
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2.2.5. Proof of Lemma 2.6. The present section is devoted to the propagation of tangential regularity
of the density together with the derivation of the Lipschitz norm of the velocity, provided with the
(time-independent) bounds C0 for A1(t),A2(t), ρ(t).

We recall that the family of vector fields X (t) = (Xυ(t))16υ6m is defined as solution of (1.8)
{
∂tXυ + u · ∇Xυ = ∂Xυu = (Xυ · ∇)u,

Xυ |t=0 = X0,υ,
(2.57)

and we can estimate the norms of

‖X (t)‖L∞,p(Rd) = sup
16υ6m

‖Xυ(t)‖L∞,p(Rd) = sup
16υ6m

(
‖Xυ(t)‖L∞(Rd) + ‖∇Xυ(t)‖Lp(Rd)

)

by use of the Lipschitz norm of the velocity. On the other side, these norms will help to bound the
Lipschitz norm of the velocity, and in particular the pressure-related part ∇uG in the decomposition
(2.9) of ∇u:

∇u = ∇ũ+∇uG(2.58)

:=
(
−1

ν
RR(−∆)−1 div(ρu̇)− 1

µ
RR(−∆)−1 · curl(ρu̇)

)
+
(1
ν
RRG

)
.

Finally we will close the estimates for

A3(t) = ‖X (t)‖L∞,p(Rd) + sup
16υ6m

‖div(ρXυ)(t)‖Lp(Rd)

by Gronwall’s inequality.

Proof. Step 1. Preliminary estimates for ‖X‖L∞,p(Rd). From (2.57) we deduce easily:

‖Xυ(t)‖L∞(Rd) 6 ‖X0,υ‖L∞ +

∫ t

0
‖Xυ(s)‖L∞(Rd)‖∇u(s)‖L∞(Rd)ds.(2.59)

We now take derivatives in (2.57) and we obtain:

∂t∂kX
j
υ + (u · ∇)∂kX

j
υ = ∂kXυ · ∇uj − ∂ku · ∇Xj

υ + ∂Xυ∂ku
j .(2.60)

We take the trace in the above equality and we make use of the expression of the divergence of the

velocity div u =
1

ν
(F +G) , in order to obtain the following equation for divXυ:

∂t(divXυ) + u · ∇ divXυ =
1

ν
∂XυG+

1

ν
∂XυF.

Hence, it is straightforward to show the following:

(2.61) ‖divXυ(t)‖Lp(Rd) 6 ‖divX0,υ‖Lp(Rd) +
1

ν

∫ t

0
‖∂XυG‖Lp(Rd) +

1

ν

∫ t

0
‖Xυ‖L∞(Rd)‖∇F‖Lp(Rd)

+

∫ t

0
‖div u(s)‖L∞(Rd)‖divXυ(s)‖Lp(Rd)ds.

As well, we take the antisymmetric part in (2.60) to get the following equation for curlXυ:

∂t(∂kX
j
υ − ∂jX

k
υ ) + u · ∇(∂kX

j
υ − ∂jX

k
υ ) = ∂kXυ · ∇uj − ∂jXυ · ∇uk

+ ∂ju · ∇Xk
υ − ∂ku · ∇Xj

υ + ∂Xυ

(
∂ku

j − ∂ju
k
)
,

from which we deduce easily:

(2.62) ‖curlXυ(t)‖Lp(Rd) 6 ‖curlX0,υ‖Lp(Rd) +

∫ t

0
‖∇Xυ‖Lp(Rd)‖∇u‖L∞(Rd)

+

∫ t

0
‖Xυ‖L∞(Rd)‖∇ curl u‖Lp(Rd).
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By combining (2.61) and (2.62), we obtain the following estimate for the vector field gradient:

‖∇Xυ(t)‖Lp(Rd) 6 ‖∇X0,υ‖Lp(Rd) +
1

ν

∫ t

0
‖∂XυG‖Lp(Rd) +

∫ t

0
‖∇Xυ(s)‖Lp(Rd)‖∇u(s)‖L∞(Rd)ds

+

∫ t

0
‖Xυ(s)‖L∞(Rd)

∥∥∥
(1
ν
∇F (s),∇ curl u(s)

)∥∥∥
Lp(Rd)

ds.(2.63)

Step 2. Estimates for A3(t) = ‖X (t)‖L∞,p(Rd) + sup16υ6m‖div(ρXυ)(t)‖Lp(Rd). In order to estimate

the Lp(Rd) norm of div(ρXυ), we combine the equation on the density (1.1)1 and the equation on the
vector field Xυ (2.57) in order to obtain

∂t(div(ρXυ)) + div(udiv(ρXυ)) = 0,

from which we deduce the following estimates:

‖div(ρXυ)(t)‖Lp(Rd) 6 ‖div(ρ0X0,υ)‖Lp(Rd) +

∫ t

0
‖div u(s)‖L∞(Rd)‖div(ρXυ)(s)‖Lp(Rd)ds.(2.64)

Consequently we can estimate

∂XυG = P ′(ρ) div(ρXυ)− ρP ′(ρ) divXυ

by

‖∂XυG‖Lp(Rd) 6 C0

(
‖div(ρXυ)‖Lp(Rd) + ‖divXυ‖Lp(Rd)

)
.

We combine (2.59), (2.63) and (2.64) together with (2.18) to get

A3(t) 6 A3(0) + C0

∫ t

0
A3(s)

[
1

ν
+ ‖∇u(s)‖L∞(Rd) + ‖ρu̇(s)‖Lp(Rd)

]
ds.

Gronwall’s Lemma yields:

A3(t) 6 A3(0) exp
(
C0

∫ t

0

[
1 + ‖∇u(s)‖L∞(Rd) + ‖ρu̇(s)‖Lp(Rd)

]
ds
)
.(2.65)

Step 3. Estimates for ‖∇uG‖L1
tL

∞
x
.

We consider ∇uG first. We use Proposition 2.5 to bound the second part ∇uG = 1
νRRG:

‖∇uG(t)‖L∞(Rd) 6
C

ν
‖G(t)‖L2(Rd) +

C

ν
‖G(t)‖L∞(Rd)

[
1 + log

(
e+

‖G(t)‖
L
p

X(t)
(Rd)

‖G(t)‖L∞(Rd)

)]
.

Now we focus on the estimate for

‖G(t)‖
L
p

X(t)
(Rd) ∼

1

I(X (t))

[
‖G(t)‖L∞(Rd)‖X (t)‖L∞,p(Rd) + sup

16υ6m
‖∂XυG(t)‖Lp(Rd)

]
6

C0

I(X (t))
A3(t).

From (2.57), it is obvious that this quantity comes with the following lower bound:

I(X (t)) > I(X0) exp

(
−
∫ t

0
‖∇u(s)‖L∞(Rd)ds

)
.

We hence have

‖∇uG(t)‖L∞(Rd) 6 C0

(
1 +

A3(0)

I(X0)
+

∫ t

0

[
1 + ‖ρu̇‖Lp(Rd) + ‖∇u‖L∞(Rd)

]
(s)ds

)
.(2.66)

Step 4. Final estimates. In the following we continue with the estimates for ‖ρu̇‖L1
tL

p(Rd) and

‖∇ũ‖L1
tL

∞(Rd), taking the dimension into account.
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Case d = 2. Similar as in the proof of Lemma 2.3, by using our interpolation inequality in Lemma A.1,
we obtain:

∫ t

0
‖ρu̇‖Lp(R2) 6 C0

∫ t

0

[
‖√ρu̇‖

2
p
L2(R2)

‖∇u̇‖
1
p′−

1
p

L2(R2)
+ E

1
p (1−

p′

2 )

0 ‖√ρu̇‖
p′

p
L2(R2)

‖∇u̇‖
1−

p′

p
L2(R2)

]
,

where the first integral of the right hand side above is bounded as
∫ t

0
‖√ρu̇‖

2
p
L2(R2)

‖∇u̇‖
1
p′−

1
p

L2(R2)
=

∫ t

0
‖√ρu̇‖

2
p
L2(R2)

[
σ‖∇u̇‖2L2(R2)

]1
2−

1
p
σ
1
p−

1
2

6

[∫ t

0
‖√ρu̇‖2L2(R2)

]1
p
[∫ t

0
σ‖∇u̇‖2L2(R2)

]1
2−

1
p
[∫ t

0
σ
2
p−1
]1
2
6 C(p)(1 +

√
t)A1(t)

1
pA2(t)

1
2−

1
p ,

and the second integral of the right hand side above is bounded as

∫ t

0
‖√ρu̇‖

p′

p
L2(R2)

‖∇u̇‖
1−

p′

p
L2(R2)

=

∫ t

0

[
‖√ρu̇‖2L2(R2)

] p′
2p
[
σ‖∇u̇‖2L2(R2)

]1
2−

p′

2p
σ

p′

2p−
1
2

6

[∫ t

0
‖√ρu̇‖2L2(R2)

] p′

2p
[∫ t

0
σ‖∇u̇‖2L2(R2)

]1
2−

p′

2p
[∫ t

0
σ
p′

p −1

]1
2

6 C(p)(1 +
√
t)A1(t)

p′

2pA2(t)
1
2−

p′

2p .

In sum, for all 2 < p < ∞:
∫ t

0
‖ρu̇‖Lp(R2) 6 C0(1 +

√
t).(2.67)

Now following the computations leading to (2.53), it is straightforward to obtain the following
∫ t

0
‖∇ũ‖L∞(R2)ds 6

1

ν

∫ t

0
‖RR(−∆)−1 div(ρu̇)‖L∞(R2) +

1

µ

∫ t

0
‖RR(−∆)−1 curljk(ρu̇)‖L∞(R2)(2.68)

6 C∗
( 1

ν5/6
+ 1
)
(1 + t

2
3 )

(
1 + E

1
18
0

)(
A1(t)

1
2 +A2(t)

1
2

)
6 C0(1 + t

2
3 ).

We plug (2.67) into (2.66), sum (2.66) and (2.68) up, and finally use Gronwall’s inequality to get the
estimate (2.13)2 for d = 2. The estimate (2.13)1 for A3(t) follows correspondingly from (2.65).

Case d = 3. Similarly as the proof of (2.67), for 3 < p < 6 we interpolate the Lp(R3) norm of
√
ρu̇

between L2(R3) and L6(R3), next we make use of the embedding Ḣ1(R3) →֒ L6(R3) to derive
∫ t

0
‖ρu̇‖Lp(R3) 6 C0

∫ t

0
‖√ρu̇‖

3
p−

1
2

L2(R3)

[
σ‖∇u̇‖2L2(R3)

]3
4−

3
2p

σ
3
2p−

3
4 6 C0(1 +

√
t).(2.69)

Owing to interpolation inequality and Sobolev embedding, we have
∫ t

0
‖∇ũ‖L∞(R3) 6

∫ t

0
‖ρu̇‖

1
2
L2(R3)

‖ρu̇‖
1
2
L6(R3)

6 C0(1 +
√
t).(2.70)

Similar as above, we plug (2.69) into (2.66), sum (2.66) and (2.70) up, and finally use Gronwall’s inequality
to get the estimate (2.13)2 for d = 3. The estimate (2.13)1 for A3(t) follows from (2.65) in dimension
three. This ends the proof of Lemma 2.6. �

2.3. Proof of Theorem 1.6 and Corollary 1.10. This section is devoted to the final step in the proof
of the main result, Theorem 1.6. We recall that we are considering the Cauchy problem associated with
equations (1.1) and with initial data (1.2) verifying (1.3) and (1.4).

Usually the sequence of initial data (ρδ0, u
δ
0) is obtained by mollifying (ρ0, u0) with a smooth kernel.

This regularization procedure has the unfortunate effect of destroying the density’s structure. As observed
in [29, 49], the most effective approach is to construct the approximate solutions in a class that is very
close to the limit. From this point of view, the local result obtained by Danchin, Fanelli, Paicu in [10]
should be appropriate. However, the argument of the maximum regularity of the heat equations requires
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the density to be a small perturbation of a constant state, even for the local solution. We are therefore
led to prove the local well-posedness of equations (1.1) stated in Theorem 1.4 in Appendix B.

Proof of Theorem 1.6. In order to apply the local-in-time well-posedness results in Theorem 1.4, we con-
sider a sequence of initial densities (ρδ0)δ verifying: for all 0 < δ < 1:

ρδ0 > δ, ρδ0 − ρ̃ ∈ L2(Rd) ∩ L∞(Rd) ∩ L
p
X0
(Rd)(2.71)

such that

ρδ0 − ρ̃
δ→0−−−→ ρ0 − ρ̃ in L2(Rd).

The construction of the sequence of initial velocities (uδ0)δ ⊂ H1(Rd), converging strongly to u0 in H1(Rd)
and satisfying the compatibility condition

div{2µDuδ0 + (λdiv uδ0 − P (ρδ0) + P̃ )} ∈ L2(Rd)(2.72)

can be found in [49, Section 3.5]. Now we can apply Theorem 1.4 to get the existence of a unique solution
(ρδ, uδ) that satisfies:

{
∂tρ

δ + div(ρδuδ) = 0,

∂t(ρ
δuδ) + div(ρδuδ ⊗ uδ) +∇P (ρδ) = µ∆uδ + (µ + λ)∇ div uδ

(2.73)

with initial data

(ρδ)|t=0 = ρδ0 and (uδ)|t=0 = uδ0.

The solution is defined up to a maximal time T δ and enjoys the regularities outlined in Theorem 1.4
which are sufficient for the computations performed in the preceding sections to be meaningful, leading
to Lemma 2.4 and Lemma 2.6. In particular, all the conditions outlined in the blow-up criterion (1.9) are
satisfied, implying that T δ = +∞. Finally, employing classical arguments involving compact embedding,
Aubin-Lions Lemma and leveraging the regularity of the effective flux, one can establish the strong
convergence of a subsequence of (ρδ, uδ) to (ρ, u) satisfying the regularity in Theorem 1.6. Furthermore,
given the improved-in-time Lipschitz bound of the velocity field in Remark 2.7, a change of variables
into Lagrangian coordinates ensures the uniqueness of such a solution. We refer for example to [10] for
the computations.

�

Proof of Corollary 1.10. At this level, we obtain a sequence (ρ(ν), u(ν))ν>ν satisfying:
{
∂tρ

(ν) + div(ρ(ν)u(ν)) = 0,

∂t(ρ
(ν)u(ν)) + div(ρ(ν)u(ν) ⊗ u(ν))−∇F (ν) − µ∆u(ν) = −µ

ν
∇F (ν) − µ

ν
∇P (ρ(ν)),

(2.74)

with initial data (1.2) verifying (1.3) and (1.4) and div u0 = 0. Above the effective flux F (ν) solves the
following elliptic equation:

∆F (ν) = div(ρ(ν)u̇(ν)).

Given that (ρ(ν))ν is bounded in L∞((0,∞)×R
d) and (

√
ρ(ν)u̇(ν)) is bounded in L2((0,∞)×R

d) it follows

that (−∇F (ν))ν is bounded in L2((0,∞)×R
d) , resulting in weak convergence to some ∇Π ∈ L2((0,∞)×

R
d). Obviously, the right hand side of (2.74)2 converges strongly to zero in L∞((0,∞), Ḣ−1(Rd)), given

that (ν−1/2F (ν)) is bounded in L∞((0,∞), L2(Rd)) and (P (ρ(ν))−P̃ )ν is bounded in L∞((0,∞), L2(Rd))).

The regularity of the sequence (u(ν)) ensures that, up to a subsequence, (u(ν)) converges strongly in

L2
loc

((0,∞) × R
d) to some v ∈ L∞((0, T ),H1(Rd)). Furthermore, since the sequence (ρ(ν))ν is bounded

in L∞((0,∞) × R
d), it converges weakly-* to some ̺ ∈ L∞((0,∞) × R

d). Additionally, (div u(ν))ν
converges strongly to zero in L∞((0,∞), L2(Rd)), since from the bound of functional A1, the sequence(
ν‖div u(ν)‖2

L2(Rd)

)

ν
is bounded. These convergences, along with the Aubin-Lions Lemma, are sufficient

to pass to the limit in (2.74) and establish that (̺, v) solves the incompressible model (1.24). The
uniqueness result for (1.24) in [44] and the uniform bounds in Theorem 1.6 implies the convergence of
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the whole sequence (ρ(ν), u(ν))ν (instead of some subsequence). This completes the proof of Corollary 1.10.
�
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Appendix A. Interpolation inequality

Lemma A.1 (Density-weighted interpolation inequality). Let v ∈ Ḣ1(R2), ρ > 0 such that
√
ρv ∈ L2(R2)

and ρ− ρ̃ ∈ Lp(R2) for some 1 < p < ∞, with ρ̃ > 0. Then v ∈ L2(R2) and there exists a constant C > 0
depending only on ρ̃ and p such that the following estimate holds true:

‖v‖L2(R2) 6 C

(
‖ρ− ρ̃‖

p
2
Lp(R2)

‖∇v‖L2(R2) + ‖√ρv‖L2(R2)

)
.(A.1)

Moreover, for all 2 < q < ∞, we have:

‖ρ
q′

2q v‖Lq(R2) 6 C

(
‖√ρv‖

2
q
L2(R2)

‖∇v‖
1
q′ −

1
q

L2(R2)
+ ‖ρ− ρ̃‖

p
q (1−

q′

2 )

Lp(R2)
‖√ρv‖

q′

q
L2(R2)

‖∇v‖
1−

q′

q
L2(R2)

)
.(A.2)

Proof. In the first step of the proof, we emulate the approach in [44, Proposition A.6] by expressing:

ρ̃|v|2 = (ρ̃− ρ)|v|2 + ρ|v|2.(A.3)

Due to the assumption that
√
ρv ∈ L2(R2), we only need to compute the integral of the first term of the

right hand above. With the help of interpolation, Hölder and Young inequalities, we have:
∫

R2

(ρ̃− ρ)|v|2 6 ‖ρ− ρ̃‖Lp(R2)‖v‖2L2p′ (R2)

6 Cp‖ρ− ρ̃‖Lp(R2)‖v‖
2
p′

L2(R2)
‖∇v‖

2
p
L2(R2)

6
1

2
ρ̃‖v‖2L2(R2) + Cp,ρ̃‖ρ− ρ̃‖p

Lp(R2)
‖∇v‖2L2(R2),

and (A.1) just follows. Next, for all 2 < q < ∞, Hölder, Gagliardo Nirenberg inequalities yield:

‖ρ
q′

2q v‖Lq(R2) 6 ‖√ρv‖
q′

q
L2(R2)

‖v‖
1−

q′

q
L2q(R2)

6 C‖√ρv‖
q′

q
L2(R2)

‖∇v‖
1
q′ −

1
q

L2(R2)
‖v‖

1
q−

q′

q2

L2(R2)

6 C‖√ρv‖
q′

q
L2(R2)

‖∇v‖
1
q′ −

1
q

L2(R2)
‖v‖

2
q−

q′

q
L2(R2)

.

Hence (A.2) holds true while replacing the L2(R2) norm of the velocity by (A.1). �
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Appendix B. Local well-posedness

In this section, we prove the local well-posedness result in Theorem 1.4 of the Navier-Stokes equations
for a compressible fluid with an initial density having tangential regularity. Our method relies on a
change of variables into Lagrangian coordinates, followed by the study of the linearized system and the
full nonlinear system, in a similar way as in [50]. In particular, we do not require the density to be a
small perturbation around a constant state in L∞(Rd).

More precisely, we consider the Cauchy problem of the system (1.1):
{
∂tρ+ div(ρu) = 0,

∂t(ρu) + div(ρu⊗ u) +∇P (ρ) = µ∆u+ (µ+ λ)∇ div u,
(B.1)

equipped with initial data (1.2):

ρ|t=0 = ρ0 and (ρu)|t=0 = ρ0u0,(B.2)

verifying (1.3), (1.4) and (1.6):



0 < ρ 6 ρ0(x), ρ0 − ρ̃ ∈ L2(Rd) ∩ L∞(Rd) ∩ L

p
X0
(Rd),

u0 ∈ H1(Rd), µ∆u0 + (µ + λ)∇ div u0 −∇P (ρ0) ∈ L2(Rd).
(B.3)

Above ρ̃ > 0 is a constant and X0 = (X0,υ)16υ6m ⊂ L
∞,p(Rd), d < p < ∞, is a non-degenerate family of

m ∈ N
∗ vectors fields, with m > d− 1.

Here, we present the main lines of the proof of Theorem 1.4; detailed computations can be found in
[50], in the more involved case of density-dependent viscosity.
Step 1. Lagrangian coordinates. Let 0 < T 6 ∞, u be a Lipschitz vector field such that ∇u ∈
L1((0, T ), L∞(Rd)) and let us consider its flow map X given by

Xu(t, y) = y +

∫ t

0
u(τ,Xu(τ, y))dτ =: y +

∫ t

0
u(τ, y)dτ

where, hereafter, for all g = g(t, x), we define g = g(t, y) by:

g(t, y) = g(t,X (t, y)).

By performing this change of variables, the equations (B.1) reads:
{
∂t(ρJu) = 0,

ρ0∂tu = div
(
Adj(DXu){2µDAu

u+ (λdivAu
u− P (ρ) + P̃ )}

)
,

(B.4)

where

Ju = det(DXu), Au = (DXu)
−1, divAu

w = AT
u : ∇w = Dw : A

u
, 2DAu

w = Dw · Au +AT
u · ∇w.

Step 2. Well-posedness of the linearized system. Motivated by (B.4), we are led to consider the
linear system

{
ρ0∂tv − µ∆v − (µ + λ)∇ div v = div f,

v|t=0 = v0,
(B.5)

where the source term f and the initial datum v0 belong to the following space:

YT :=
{
(f, v0) ∈ L∞((0, T ), L2(Rd))×H1(Rd) : f, ∂tf, σ∂ttf ∈ L2((0, T ) × R

d);

√
σ∂tf ∈ L∞((0, T ), L2(Rd)), µ∆v0 + (µ+ λ)∇ div v0 + div f|t=0 ∈ L2(Rd)

}
.

The solution of the linearized system (B.5) is constructed in the following space:

ZT :=
{
v ∈ L∞((0, T ),H1(Rd)) : ∇v, ∂tv, ∇∂tv,

√
σ∂ttv, σ∇∂ttv ∈ L2((0, T )× R

d);

∂tv,
√
σ∇∂tv, σ∂ttv ∈ L∞((0, T ), L2(Rd))

}
.
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It is straightforward to check that for T < ∞ every v ∈ ZT satisfies:

v ∈ C ([0, T ],H1(Rd)), ∂tv ∈ C ((0, T ], L2(Rd)).

The well-posedness result for the linearized system (B.5) reads as follows.

Proposition B.1. Let 0 < T 6 ∞. For all (f, v0) ∈ YT , there exists a unique solution v ∈ ZT of the
Cauchy problem (B.5). Moreover, the following estimates holds true for v.

(1) Basic energy estimates:

(B.6) sup
[0,T ]

‖
(√

ρ0v,
√
ρ0∂tv, ∇v

)
‖2L2(Rd) +

∫ T

0
‖
(
∇v,

√
ρ0∂tv, ∇∂tv

)
‖2L2(Rd)

. ‖
(√

ρ0v0,
√
ρ0∂tv|t=0, ∇v0

)
‖2L2(Rd) + sup

[0,T ]
‖f‖2L2(Rd) +

∫ T

0
‖
(
f, ∂tf

)
‖2L2(Rd).

(2) Higher energy estimates:

(B.7) sup
[0,T ]

‖
(√

σ∇∂tv, σ
√
ρ0∂ttv

)
‖2L2(Rd) +

∫ T

0
‖
(√

σρ0∂ttv, σ∇(∂ttv)
)
‖2L2(Rd)

.

∫ T

0
‖∇∂tv‖2L2(Rd) + sup

[0,T ]
σ‖∂tf‖2L2(Rd) +

∫ T

0
σ2‖∂ttf‖2L2(Rd).

The constant appearing in the above estimates does not depend on the upper or lower bound of the
density ρ0.

The proof of Proposition B.1 is not part of the classical theory of parabolic systems due to the roughness
of the density. However, it can be achieved by a regularization process followed by a compactness
argument. We refer, for example, to [50, Theorem 3.1] for the derivation of estimates (B.6) and (B.7).
Step 3. Further estimates of the linearized system. By interpolating the estimates (B.6) and
(B.7), we observe that the following estimates hold true for the velocity gradient and its time derivative.

Corollary B.2. The following estimates hold true.

(1) Assuming that f ∈ Lr((0, T ), Lp(Rd)) for 2 6 r 6 ∞ and 2 < p < ∞ if d = 2 or 2 < p 6 6 if
d = 3, we have:

‖∇v‖2Lr((0,T ),Lp(Rd)) . ‖(f, v0)‖2YT
+ ‖f‖2Lr((0,T ),Lp(Rd)).(B.8)

The same estimate holds also true if d = 3, for 6 < p < ∞, and 2 6 r 6 4p/(p − 6).
(2) For all 2 6 r 6 ∞ and 2 < p < ∞ if d = 2 and 2 < p 6 6 if d = 3 we have:

‖σs∇∂tv‖2Lr((0,T ),Lp(Rd)) . ‖(f, v0)‖2YT
+ ‖σs∂tf‖2Lr((0,T ),Lp(Rd))(B.9)

where

s =





1− 1

p
− 1

r
if d = 2,

5

4
− 3

2p
− 1

r
if d = 3.

For d = 3, the same estimate also holds true for all 6 < p < ∞ and 2 6 r 6 4p/(p − 6).
(3) Let X0 = (X0,υ)16υ6m ⊂ L

∞,p(Rd), d < p < ∞, be a non-degenerate family of m ∈ N
∗ vectors

fields, with m > d− 1.

(a) Assuming that f ∈ Lr((0, T ), L∞(Rd) ∩ L
p
X0
(Rd)), with 2 6 r 6 8 if d = 2 and 2 6 r 6 32/9

if d = 3, then ∇v ∈ Lr((0, T ), L∞(Rd)) and the following estimate holds true.

‖∇v‖2Lr((0,T ),L∞(Rd)) . ‖(f, v0)‖2YT
+ ‖f‖2Lr((0,T ),L2(Rd)∩L∞(Rd)∩L

p
X0

(Rd)).(B.10)
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(b) Assuming that f ∈ Lr((0, T ), L∞(Rd) ∩ L
p
X0
(Rd)), with 2 < p < ∞, 2 6 r 6 2p/(p − 2) if

d = 2 and 3 < p 6 6, 2 6 r 6 4p/(3p − 6) if d = 3. Then we have:

(B.11) ‖∂X0∇v‖2Lr((0,T ),Lp(Rd)) . ‖X0‖2L∞(Rd)‖(f, v0)‖2YT
+ ‖∂X0f‖2Lr((0,T ),Lp(Rd))

+ ‖∇X0‖2Lp(Rd)‖f‖2Lr((0,T ),L2(Rd)∩L∞(Rd)∩L
p
X0

(Rd)).

Let d = 3 and 6 < p < ∞, 2 6 r 6 ∞. If σsf ∈ Lr((0, T ), L∞(R3) ∩ L
p
X0
(R3)) and

σ
3
4−

1
r ∂tf ∈ L3(R3) with

s =
3

4
− 1

r
− 3

2p

then, from (2), we have σ
3
4−

1
r∇∂tv ∈ L3(R3) and

(B.12) ‖σs∂X0∇v‖2Lr((0,T ),Lp(R3)) . ‖X0‖2L∞(R3)

(
‖(f, v0)‖2YT

+ ‖σ
3
4−

1
r ∂tf‖2Lr((0,T ),L3(R3))

)

+ ‖σs∂X0f‖2Lr((0,T ),Lp(R3)) + ‖∇X0‖2Lp(R3)‖σsf‖2Lr((0,T ),L2(R3)∩L∞(R3)∩L
p
X0

(R3)).

The constant appearing in the above estimates depends on both the lower and upper bounds of the
density.

Indeed, all the estimates in Corollary B.2 are based in the following expression of the velocity gradient:

∇v = ∇Pv +∇Qv

= − 1

µ
(−∆)−1∇P(ρ0∂tv)−

1

ν
(−∆)−1∇Q(ρ0∂tv)

+
1

µ
(−∆)−1∇P div f +

1

ν
(−∆)−1∇Qdiv f.(B.13)

The first two terms associated with ∂tv exhibit regularity due to the regularity of ∂tv. In particu-
lar, their Lr((0, T ), Lp(Rd)) norm estimates can be obtained by interpolating the estimate (B.6). The
Lr((0, T ), Lp(Rd)) norm estimate for the last two terms in the expression of the velocity gradient (B.13)
follows from the continuity of Riesz operators on Lp(Rd) for all 1 < p < ∞. These computations lead to
(B.8).

The estimate (B.10) is obtained similarly: the Lr((0, T ), L∞(Rd)) norm of the terms associated with
∂tv can be estimated by interpolating the estimate (B.6), while the norm of the remaining terms is
obtained using Proposition 2.5 since Riesz operators fail to be continuous on L∞(Rd).

To derive the estimate (B.9), we take time derivative of (B.13) and apply the continuity of Riesz
transforms on Lp(Rd), 1 < p < ∞, to obtain norms for the terms associated with ∂tf . The norm of the
first two terms, associated with ∂ttv, can be obtained by interpolating estimate (B.7).

For the last estimates (B.11) and (B.12), we take the derivative along X0 in (B.13) and we obtain:

∂X0∇v = − 1

µ
X0 · ∇(−∆)−1∇P(ρ0∂tv)−

1

ν
X0 · ∇(−∆)−1∇Q(ρ0∂tv)

+
1

µ
∂X0(−∆)−1∇P div f +

1

ν
∂X0(−∆)−1∇Qdiv f.

Once again, the norms of the first two terms are obtained using Hölder’s inequality and by interpolating
estimates (B.6) and (B.7). For the remaining terms, we use Lemma A.1 of [10]. This completes this step
of the study of the linear system (B.5).
Step 4. Final conclusion. Once we conclude the study of the linear system associated with (B.4),
the next step is to define a map that is contracting for some small time T > 0, such that it admits a
unique fixed point, which serves as a solution to (B.1) after reverting to Eulerian coordinates. With
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Proposition B.1 and Corollary B.2 in mind, we can verify that the unique solution of the full nonlinear
system can be constructed in

Z̃T :=
{
v ∈ ZT : ∇v ∈ L2((0, T ), L∞(Rd) ∩ L

p
X0
(Rd))

}

for 2 < p < ∞ if d = 2 and 3 < p 6 6 if d = 3 by following the steps outlined in [50, Section 4]. The only
argument we need to specify is the following lemmas.

Lemma B.3. Let v be a vector field verifying ∇v ∈ L1((0, t), L∞(Rd)) and ∂X0∇v ∈ L1((0, t), Lp(Rd))
for some t > 0. Assuming that

V :=

∫ t

0

[
‖∇v‖L∞(Rd) + ‖∂X0∇v‖Lp(Rd)

]
< 1,(B.14)

then, there exists a constant K = K(V ) such that the following estimate holds true:

‖∂X0 Adj(DXv(t)), ∂X0Av(t), ∂X0J
±1
v (t)‖Lp(Rd) 6 K‖∂X0Dv‖L1((0,t),Lp(Rd)).

Moreover, we have for all Dw ∈ L
p
X0
(Rd),

‖∂X0(Adj(DXv(t))DAv(t)w)− ∂X0Dw‖Lp(Rd) + ‖∂X0(Adj(DXv(t)) divAv(t) w)− ∂X0 divw‖Lp(Rd)

6 K
(
‖Dw‖L∞(Rd) + ‖∂X0Dw‖Lp(Rd)

)∫ t

0

(
‖Dv‖L∞(Rd) + ‖∂X0Dv‖Lp(Rd)

)
.

Lemma B.4. Let v1 and v2 two vector fields verifying (B.14): V1, V2 < 1, and let δv := v2 − v1. Then,
there exists a constant K = K(V1, V2) such that the following estimate holds true:

‖
(
∂X0Av2(t)− ∂X0Av1(t), ∂X0 Adj(DXv2(t))− ∂X0 Adj(DXv1(t)), ∂X0J

±1
v2 (t)− ∂X0J

±1
v1 (t)

)
‖Lp(Rd)

6 K

∫ t

0

(
‖Dδv‖L∞(Rd) + ‖∂X0Dδv‖Lp(Rd)

)
.

The particular case of 3 < p 6 6 for d = 3 is sufficient for constructing blocks for the global solution
of Theorem 1.6. For 6 < p < ∞ in three dimension, the fixed point theorem may be applied in a closed
subset of the following space:

Z̃T :=

{
v ∈ ZT : σ

3
4−

1
r∇∂tv ∈ Lr((0, T ), L3(Rd)); σ

3
4−

1
r−

3
2p∇v ∈ Lr((0, T ), L∞(Rd) ∩ L

p
X0
(Rd))

}
.

This ends the sketchy proof of Theorem 1.4.
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