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Abstract

In the order picking problem, a picker has to collect a number of products in a warehouse with a
minimum length tour. Ratliff and Rosenthal gave a linear algorithm for solving the order picking
problem in the case where the warehouse has two cross aisles. Their algorithm allows the tour
to double cross an entire aisle. We prove that, in rectangular warehouses, there always exists a
minimum length tour which doesn’t double cross an aisle.

1. Introduction

Order picking is a problem widely studied for decades in operations research, due to its impor-
tance in supply chains. In 1983, Ratliff and Rosenthal published a linear algorithm for warehouses
with two cross aisles (see [1] and [2]). The algorithm is presented for rectangular warehouses similar
to the one of Figure 1. The authors also mentioned it can be applied to non-rectangular warehouses
where aisles (and cross aisles) do not necessarily have the same length. They use a dynamic-
programming approach, based on the possible edge configurations of the tour along the aisles and
the cross aisles. In this note, we show that one of these configurations, namely double-crossing an
aisle, is unnecessary in rectangular warehouses. Note that Ratliff and Rosenthal already mention
this fact (without proof) as a side remark, although what they mean is not entirely clear.

We consider a warehouse graph G having two horizontal cross aisles and n vertical aisles, with
n ≥ 1. The vertices of G include a1, . . . , an and b1, . . . , bn, which are respectively the upper and
lower intersections between the aisles and the cross aisles. In what follows, we assume that G has
a rectangular shape, which means that all the aisles have the same length daisle, and that the two
cross aisles between aisles j and j + 1 have the same length dcrossj,j+1, for 1 ≤ j < n. Let us denote
P = {v0, v1, . . . , vk, . . . , vm} the set of vertices to be visited during the tour on G, by identifying v0
with the depot, and {v1, . . . , vm} with the products to be picked up. Except for v0 which can coincide
with a vertex aj or bj , all the vertices of P are strictly contained into an aisle of the warehouse.
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Figure 1: An example of a picking instance in a rectangular warehouse with five aisles and two cross aisles.
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Figure 2: A non optimal tour subgraph corresponding to the previous instance,
with two double edges crossing the aisles (a2, b2) and (a3, b3).
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Figure 3: A minimum length tour subgraph solving the previous instance.
It has no double edge crossing an entire aisle.

Ratliff and Rosenthal list all the possible edge configurations along a vertical aisle and along a
horizontal cross aisle (see Fig. 4). One of them seems to be unnecessary: the vertical double edge
crossing an entire aisle (configuration (v) on the left of Figure 4). Note that in the general case,
where the warehouse is not rectangular, this configuration is required, as shown in Fig. 5. But in
the case of a rectangular warehouse, there always exists an optimal tour that does not require (v).
We introduce some preliminary results from [1] in Section 2 and state the main result in Section 3.
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Figure 4: The possible edge configurations for vertical edges (on the left) and for
horizontal edges (on the right). The double edge across an aisle is the configuration (v).

2. A few prerequisites

The proofs of the lemmas presented in this section can be found in [1]. Define a subgraph T ⊆ G

as a tour subgraph if (i) all vertices v0, . . . , vm have positive degree in T ; (ii) T is connected; and
(iii) every vertex in T has even degree. Given a subgraph L ⊆ G, a subgraph T ⊆ L is a L partial
tour subgraph (PTS) if there exists a subgraph C ⊆ G−L such that T ∪C is a tour subgraph of G.
The subgraph C is called a completion of T .

Let us define the following subgraphs of G. For 1 ≤ j ≤ n, Lj (resp Rj) consists in the vertices
aj and bj (resp. aj+1 and bj+1), with everything in G strictly to the left (resp. to the right) of aisle
j (resp. j + 1). Moreover, for 1 ≤ j < n, we denote Mj,j+1 the subgraph induced by all vertices of
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Figure 5: An example of a minimum length tour subgraph visiting v0 and v1 using a necessary vertical double edge
crossing the aisle (a1, b1) in a non rectangular warehouse.

aisles j and j + 1. It includes vertices aj , bj and everything in between, together with aj+1, bj+1

and everything in between (see Fig. 6).
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Figure 6: Illustration of the definitions of Lj , Rj and Mj,j+1.

Let Sj be any of the subgraphs among Lj or Rj , for 1 ≤ j ≤ n. We have the following useful
characterization of a Sj PTS:

Lemma. The subgraph T ⊆ Sj is a Sj PTS if and only if

(i) for all vi ∈ Sj, the degree of vi is positive in T ;

(ii) every vertex in T has an even degree, except possibly for aj and bj; and

(iii) T has either no connected component, or a single connected component containing at least one
of aj and bj, or two connected components with aj in one component and bj in the other.

Two Sj PTS are said to be equivalent if any completion of one PTS is also a completion of the
other. It corresponds to the following characterization:

Lemma. The two Sj PTS T1 and T2 are equivalent if and only if

(i) aj has the same degree parity (even but not zero, odd or zero) in both T1 and T2, and bj has
the same degree parity in both T1 and T2; and

(ii) both T1 and T2 have no connected component, or both have a single connected component
containing at least one of aj and bj, or both have two connected components with aj in one
component and bj in the other.

We denote the class equivalence of a Sj PTS as (degree parity of aj , degree parity of bj, number
of connected components), where the degree parity of a vertex can be E (even but not zero), U

(uneven) or 0. There exist exactly seven equivalence classes for a Sj PTS, namely (U,U, 1C),
(E,E, 1C), (0, E, 2C), (E, 0, 2C), (E,E, 2C), (0, 0, 0C), (0, 0, 1C). In particular, we will often use
the fact that if a Sj PTS T doesn’t belong to the class (U,U, 1C), then aj and bj have an even
degree in T .

In addition, we define d(T ) as the sum of the edge distances of a subgraph T ⊆ G.
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3. Discarding vertical double edges along an entire aisle

In this section, we prove the following:

Theorem. There exists a minimum length tour subgraph T ⊆ G such as T has no vertical double
edge crossing an entire aisle.

Before presenting the sketch of the proof, let us point out some preliminary remarks.

• Firstly, the case where all the vertices of P lie on the same aisle doesn’t contradict our state-
ment. Indeed, the optimal tour subgraph in this case is a double edge between the two extreme
points of P . Since we imposed that the vertices of P can not coincide with a vertex aj or bj
(except possibly for the vertex v0), this double edge doesn’t cross the entire aisle. Hence, we
suppose that there exist vertices of P in at least two aisles.

• Secondly, we can assert without loss of generality that there exist vertices of P on both the
far left and the far right aisle (since a minimum length tour would never visit these aisles
otherwise, due to the rectangular shape of the warehouse).

• Thirdly, if T is a tour subgraph having a double edge along the aisle j, we can consider without
loss of generality that this aisle is not at the far right of the warehouse, i.e. j < n. Indeed,
in the case where j = n, we simply flip the warehouse by a vertical symmetry, in order to get
a vertical double edge along the first aisle. The aim of this observation is to ensure that the
aisle j + 1 exists in G.

Considering a tour subgraph T ⊆ G having at least one vertical double edge, we will make a
reduction into a tour subgraph T ′ having strictly less vertical double edge than T , with T ′ not longer
than T . We list the conditions to check when constructing such a reduction:

(i) T ′ is not longer than T , i.e. d(T ′) ≤ d(T ),

(ii) T ′ has strictly less vertical double edge than T ,

(iii) T ′ visits all vertices of P ,

(iv) T ′ is connected,

(v) T ′ has only vertices of even degree.

Hence, starting with any minimum length tour subgraph and applying this reduction iteratively
will eventually lead to a minimum length tour subgraph without a vertical double edge.

Proof. Let T ⊆ G a tour subgraph having a vertical double edge between aj and bj . Due to the
preliminary remarks, we can assume that G has at least two aisles, with products to be picked up at
both the far left and the far right aisle, and that the aisle j is not at the far right of the warehouse,
such that the aisle j + 1 exists in G.

We decompose the tour subgraph into T = TL ∪ TM ∪ TR, with TL = T ∩ Lj , TM = T ∩Mj,j+1

and TR = T ∩Rj+1. In the reduction presented below, we will only modify TM into T ′

M ⊆ Mj,j+1,
and set T ′ = TL ∪ T ′

M ∪ TR. Hence, all the figures will only show the modifications performed on
TM . We will always construct T ′

M with edge configurations appearing in the set of possible edge
configurations of Fig. 4. Hence, the conditions listed in the sketch of the proof become:

(i) d(T ′

M ) ≤ d(TM ),

(ii) T ′

M has strictly less vertical double edge than TM ,

(iii) T ′

M visits all the vertices of P lying on Mj,j+1,

(iv) TL ∪ T ′

M ∪ TR is connected,

(v) each vertex aj , bj, aj+1, bj+1 has the same degree parity (even or odd) in TM and in T ′

M .

Let us consider the equivalence class cL of TL (as a Lj partial tour subgraph) and the equivalence
class cR of TR (as a Rj+1 partial tour subgraph). Pay attention to the fact that even if aj and bj
are linked by a vertical double edge in T , they might be in two distinct connected components in
TL. The reduction will distinguish between three cases.
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First case: cL = (U,U, 1C).
In this case, we note in particular that aj and bj are in the same connected component in
TL. It suffices to remove from TM a double edge between two consecutive vertices of aisle
j to obtain T ′

M (see Fig. 7). Both the length of the tour and the number of vertical double
edges have decreased, and the tour still visits all the vertices of P . Moreover, T ′ is connected.
Indeed, T is connected and differs from T ′ by an edge linking two vertices which remains in
the same connected component. Finally, we observe that the parity of the degrees of aj , bj,
aj+1 and bj+1 remains the same.
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Figure 7: Reduction in the case where cL = (U, U, 1C). The gray edges represent any possible edge configuration of
Fig. 4, they are not modified during the reduction.

Second case: cL 6= (U,U, 1C) and cR = (U,U, 1C).
Since every vertex has an even degree in T , this assumption implies, in particular, that aj and
bj have an even degree in TM , while aj+1 and bj+1 have an odd degree in TM . Because of
the double edge between aj and bj, we are left with two possibilities for the top cross aisle
(aj , aj+1) and the bottom cross aisle (bj , bj+1) between aisles j and j+1: both can have either
a horizontal double edge, or no edge at all. Moreover, because T is connected and has to
visit the two extreme aisles of the warehouse, at least one of these cross aisles is visited. We
suppose, by symmetry, that the top cross aisle is a double edge. Because of the odd parity of
the degrees of aj+1 and bj+1 in TM , the aisle j + 1 is crossed by a single edge. It all comes to
the situation depicted on the left of Fig. 8. We note that d(TM ) is at least 3daisle + 2dcrossj,j+1.
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Figure 8: Reduction in the case where cL 6= (U,U, 1C) and cR = (U, U, 1C). The gray edge represents either a
horizontal double edge or no edge at all.

We define T ′

M as the subgraph of Mj,j+1 having a single edge along the aisle j, a single edge
on both cross aisles between aisles j and j+1, and a vertical double edge along the aisle j+1,
except between two consecutive vertices (see Fig. 8). We check that d(T ′

M ) < 3daisle+2dcrossj,j+1 =
d(TM ), and that T ′

M doesn’t have any vertical double edge, visits all vertices of P in Mj,j+1,
and doesn’t break the connectivity of the tour. Indeed, T ′

M has a single connected component,
which contains all the vertices of Mj,j+1. Furthermore, the degree of aj , bj, aj+1, bj+1 has the
same parity in TM and in T ′

M .

Third case: cL 6= (U,U, 1C) and cR 6= (U,U, 1C).
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It implies that all the vertices aj , bj, aj+1, bj+1 have an even degree in TM . Like in the
previous case, it forces at least one of the two cross aisles to have a double edge, and we can
suppose by symmetry that it is the case for the top cross aisle. The situation is drawn on
Fig 9. We define T ′

M as the subgraph of Mj,j+1 having one edge along the two aisles and the
two cross aisles. We check that d(T ′

M ) = 2daisle + 2dcrossj,j+1 ≤ d(TM ). Note that T ′

M has no
vertical double edge and visits all the vertices of Mj,j+1. Furthermore, the connectivity of the
tour is preserved, and aj, bj , aj+1, bj+1 have an even degree in T ′

M and TM .
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Figure 9: Reduction in the case where cL and cR are different from (U,U, 1C). The bottom gray edge represents a
horizontal double edge or no edge at all. The vertical gray edge represents any vertical edge configuration of Fig. 4

respecting the even degree of aj+1 and bj+1 in TM .

Finally, in all three cases considered above, we have a valid reduction to strictly decrease the
number of vertical double edges of the tour subgraph without increasing the length of the tour.
Thus, starting with a minimum length tour subgraph and applying this reduction iteratively will
eventually lead to a minimum length tour subgraph without a vertical double edge.

4. Conclusion

We have proven that considering vertical double edges along an aisle is unnecessary in rectangular
warehouses with two cross aisles. A natural generalization is to consider multiple cross aisles [3, 4, 5].
Double edges are obviously mandatory when the warehouse is made up of a single aisle and multiple
cross aisles for feasibility reasons since the only tour goes up and down the warehouse. But it appears
that double edges are more generally necessary in optimal solutions for rectangular warehouses with
more than two cross aisles. Two examples with mandatory double edges are shown in Fig. 10.
Nevertheless, bounding the number of double edges and restricting their locations might lead to
practical improvements for the exact resolution of the order picking problem in large warehouses or
the rectilinear traveling salesman problem.
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(a) (b)

Figure 10: (a) One necessary vertical double edge (red) in a warehouse with six cross aisles and three aisles, all filled
with products (circles). The intersections are represented by solid black circles. (b) Two necessary vertical double
edges (red) in a warehouse with eight cross aisles and three aisles, all filled with products except for the middle

center aisle.
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