
HAL Id: hal-04586520
https://hal.science/hal-04586520

Submitted on 24 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Source Code Archiving to the Rescue of Reproducible
Deployment

Ludovic Courtès, Timothy Sample, Simon Tournier, Stefano Zacchiroli

To cite this version:
Ludovic Courtès, Timothy Sample, Simon Tournier, Stefano Zacchiroli. Source Code Archiving to
the Rescue of Reproducible Deployment. 2024 ACM Conference on Reproducibility and Replicability,
Jun 2024, Rennes, France. �10.1145/3641525.3663622�. �hal-04586520�

https://hal.science/hal-04586520
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Source Code Archiving
to the Rescue of Reproducible Deployment
Ludovic Courtès

ludovic.courtes@inria.fr
Inria

Bordeaux, France

Timothy Sample
samplet@ngyro.com
Saskatoon, Canada

Simon Tournier
simon.tournier@inserm.fr

Université Paris Cité
Paris, France

Stefano Zacchiroli
stefano.zacchiroli@telecom-paris.fr

LTCI, Télécom Paris, Institut Polytechnique de Paris
Palaiseau, France

ABSTRACT
The ability to verify research results and to experiment with method-
ologies are core tenets of science. As research results are increas-
ingly the outcome of computational processes, software plays a
central role. GNU Guix is a software deployment tool that supports
reproducible software deployment, making it a foundation for com-
putational research workflows. To achieve reproducibility, we must
first ensure the source code of software packages Guix deploys
remains available.

We describe our work connecting Guix with Software Heritage,
the universal source code archive, making Guix the first free soft-
ware distribution and tool backed by a stable archive. Our contri-
bution is twofold: we explain the rationale and present the design
and implementation we came up with; second, we report on the
archival coverage for package source code with data collected over
five years and discuss remaining challenges.

KEYWORDS
reproducible research, replicability, digital preservation, functional
package management, Guix, Software Heritage

ACM Reference Format:
Ludovic Courtès, Timothy Sample, Simon Tournier, and Stefano Zacchiroli.
2024. Source Code Archiving to the Rescue of Reproducible Deployment. In
ACM Conference on Reproducibility and Replicability (ACM REP ’24), June
18–20, 2024, Rennes, France. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3641525.3663622

1 INTRODUCTION
Now that software is an integral part of scientific experimental
workflows, it must be held to the same standards of other scientific
workflows: computational workflows must be transparent and re-
producible. While such a statement is becoming consensual among
scholars, its implications are often less understood: source code
must be publicly available, with a license that grants the right to

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ACM REP ’24, June 18–20, 2024, Rennes, France
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0530-4/24/06.
https://doi.org/10.1145/3641525.3663622

use it, to study it, to modify it, and to share those modifications.
UNESCO’s Recommendation on Open Science [20] further states:

In the context of open science, when open source
code is a component of a research process, enabling
reuse and replication generally requires that it be
accompanied with open data and open specifications
of the environment required to compile and run it.

That last part—the specifications of the environment—is often
overlooked or dismissed: researchers often resort to either impre-
cise natural-language build instructions or large binary images
(“containers” or virtual machines) that let others run the software,
but typically prevent them from experimenting with the code [21].

Guix is a software deployment tool developed by a large com-
munity since 2012 and which is seeing growing adoption [6, 7].
It can be used as a “package manager” such as those found on
GNU/Linux distributions—apt, dnf, pip, etc.—or as a standalone
system—just like Debian, Fedora, etc. It builds upon the functional
software deployment model pioneered by Nix [8] and reproducible
builds [12], making it a tool of choice when deploying software for
reproducible research workflows.

Instead of capturing a list of package names and versions, Guix
lets users capture the entire graph of package definitions, which
includes, beyond version numbers, all the information required to
build the packages, including how to fetch the source code and
what its cryptographic hash must be, configuration options, and
dependencies—recursively. Once they have captured this informa-
tion, users can run the guix time-machine command to re-deploy
the exact same software environment, bit for bit, on a different ma-
chine or at a different point in time [21].

This, of course, can only be true if one necessary condition
holds: that package source code is available. Indeed, when the
source code of a package disappears, Guix (unsurprisingly) cannot
build that package anymore and thus becomes unable to redeploy
the software environment. The entire foundation for reproducible
deployment collapses if the source of one or more of the packages
in our environment disappears. This scenario is far from unrealistic:
source code hosting sites come and go, even those backed by large
companies deemed “too big to fail” [9].

With the mission to save and archive all publicly-available source
code, Software Heritage [5] (SWH for short) has the potential to
let us fill this gap.

https://orcid.org/0000-0003-4472-154X
https://orcid.org/0009-0007-1813-4073
https://orcid.org/0000-0002-2639-818X
https://orcid.org/0000-0002-4576-136X
https://doi.org/10.1145/3641525.3663622
https://doi.org/10.1145/3641525.3663622
https://doi.org/10.1145/3641525.3663622

ACM REP ’24, June 18–20, 2024, Rennes, France Ludovic Courtès, Timothy Sample, Simon Tournier, and Stefano Zacchiroli

Contributions and paper structure. In the vast field of reproducible
research, we focus exclusively on software deployment and un-
der the assumption that we are only dealing with free and open
source software, in line with the open science recommendations
mentioned above. The following sections describe what it meant
to “connect” Software Heritage and Guix, and the roadblocks we
had to overcome. Section 3 describes our first contribution: the
design and implementation of our bridge between Guix and SWH,
including novel tools developed to address sub-problems. Section 4
provides an evaluation of the effectiveness of our solution, looking
at 5 years worth of package source code referred to by Guix—our
second contribution. Lastly, we describe related work and conclude
on challenges that remain to be addressed.

Reproducibility package. A full reproducibility package for this
work is available. See Section 7 for details.

2 BACKGROUND
To understand what we are trying to achieve, let us first describe
the two components at play: Guix package definitions on one hand,
and the Software Heritage archive on the other hand.

2.1 Guix Package Definitions
Guix is a software deployment tool that stands alone: it can only
deploy software packages that have been defined in its own package
collection. To date, Guix itself provides almost 30 000 packages, mak-
ing it one of the five largest free software distributions according to
Repology.1 Each package definition specifies metadata, instructions
on how to build the package, and references to dependencies (which
are themselves other Guix packages). Like Nix and unlike Debian
or Fedora, Guix at its core is a “source-based” deployment tool that
builds software from source; it can optionally download pre-built
binaries as a substitute for local compilation [7, 8].

Package definitions are declarative and embedded in the Scheme
programming language [6]. Figure 1 shows the definition of the
python package, simplified—we omitted fields that specify depen-
dencies and build options. The source field declares an origin indi-
cating that the source of python is the file Python-3.10.7.tar.xz,
a so-called tarball to be downloaded over HTTPS. Crucially, the
sha256 field specifies the cryptographic hash of that file. When
Guix fails to download the file, or if it obtains a different hash,
it immediately aborts—an obvious prerequisite for reproducible
software deployment.

The second package definition in Figure 1 is slightly different:
source code is to be checked out using the Git version control
system (VCS), from the 1.3.2 tag. The SHA256 hash, in this case,
is that of the checked out directory once serialized as a so-called
normalized archive or nar. The nar format was initially designed for
Nix; unlike the venerable tar format (for “tape archive”), it omits
Unix metadata unimportant in this context: file timestamps, access
rights, and ownership information.

Package source can also be fetched through other methods: by
referring to a Git commit rather than a tag, or by using a different
version control system such as Subversion. Currently, 44% of the
packages get their source from a VCS when it was only 22% back in

1https://repology.org, accessed 2024-01-18.

(define-public python

(package
(name "python")

(version "3.10.7")

(source

(orig in
(method url-fetch)

(uri (string-append "https://www.python.org/ftp/python/"

version "/Python-" version ".tar.xz"))

(sha256

(base32

"0j6wvh2ad5jjq5n7sjmj1k66mh6lipabavchc3rb4vsinwaq9vbf"))))

;; various fields omitted

(license license:psfl)))

(define-public python-scikit-learn

(package
(name "python-scikit-learn")

(version "1.3.2")

(source

(orig in
(method git-fetch)

(uri (g i t−reference
(url "https://github.com/scikit-learn/scikit-learn")

(commit version)))

(sha256

(base32

"1hr024vcilbjwlwn32ppadri0ypnzjmkfxhkkw8gih0qjvcvjbs7"))))

;; various fields omitted

(license license:bsd-3)))

Figure 1: Package definitions of Python and Scikit-learn.

2019; Figure 3 shows how the distribution has changed over time.
In all these cases, a cryptographic hash of the content is always
specified, as in the examples above. Source code is thus essentially
content-addressed, with the URL and download method serving
more as a hint. An implication is that if those hints become stale—
e.g., the file is no longer available at the given URL—users can work
around the problem: if a copy of the file or checkout is available
elsewhere, one can run the guix download command with that
new URL to feed it to Guix. Guix then finds the source with the
expected hash and proceeds building it.

Our goal, as designers of a reproducible deployment tool, is to
ensure package source code can always be retrieved automatically
and reliably, even once the original source code hosting site has
vanished or has been compromised. This is where Software Heritage
comes in.

2.2 Source Code Archiving with Software
Heritage

Software Heritage [5] (SWH) is a digital preservation initiative with
the aim of collecting, preserving for the long-term, and providing
access to the entire body of software, in the preferred form for
making modifications to it (referred to as simply “source code” in
this article). The SWH archive2 is the largest publicly available
archive of software source code. At the time of writing it contains
more than 17 billion unique source code files and 3.5 billion commits,
coming from more than 250 million projects.

The SWH data model is a deduplicated Merkle graph [14], with
nodes of different types, corresponding to the software artifacts

2https://archive.softwareheritage.org, accessed 2024-01-18.

https://repology.org
https://repology.org
https://archive.softwareheritage.org
https://archive.softwareheritage.org

Source Code Archiving to the Rescue of Reproducible Deployment ACM REP ’24, June 18–20, 2024, Rennes, France

commonly stored in modern version control systems (VCSs): in-
dividual source code files and directories, commits, releases, etc.
SWH hence actually stores the full development history of software
projects, rather than only the most recent version of archived soft-
ware products. This enables restoring a hash-compatible version a
Git repository that has disappeared (or been tampered with) from
its usual hosting place—provided it was archived in time.

Each node in the SWH graph data model can be referenced via
persistent, intrinsic identifiers called SWHIDs [4], which are com-
puted as Merkle-style SHA1 hashes. For example,
swh:1:rev:309cf2674ee7a0749978cf8265ab91a60aea0f7d is a
SWHID referencing an archived commit of the Darktable image
processing software, where rev is the node type: here a “revision”
(akin to a “commit” in Git parlance). The current version of SWHID
identifiers (version 1) is compatible with Git SHA1 hash, which
allows revision SWHIDs to be constructed from Git commit identi-
fiers and vice-versa. (Note that merely constructing a syntactically
correct SWHID from Git does not mean the corresponding Git
object has actually been archived in SWH.)

The SWH archive is populated primarily by crawlers (“pull” style)
that track major forges (e.g., GitHub, GitLab, . . .), GNU/Linux dis-
tributions (e.g., Debian), and package manager repositories (e.g.,
PyPI, NPM, . . .). “Push” style archiving is also available; particularly
relevant for this work is the Save Code Now feature. It allows users
to trigger on-demand archiving of a specific Git repository that
has either never been archived before or ought to be re-archived
promptly, before the pull crawlers have a chance to notice its latest
archived copy is out-of-date.

Various mechanisms to access the SWH archive are available,
depending on the use case. Users can browse it via a forge-like Web
interface at https://archive.softwareheritage.org. Developers can
integrate with SWH via various application programming interfaces
(APIs): Web, gRPC, file system, and GraphQL-based. We rely on the
Web API3 for the Guix/SWH integration described in this paper,
using it for verifying that sources have been archived and triggering
push archiving of missing sources. Researchers can also analyze
the SWH archive data in bulk, via public large-scale datasets [15].

For the specific need of reconstructing repositories from the
archive (e.g., in case of disappearance from their previous hosting
place), a dedicated asynchronous service called the Vault is pro-
vided. Its need comes from the fact that, due to deduplication, an
individual repository is stored by SWH as a (sub-)graph made of
many nodes—e.g., tens of millions files, commits, etc., for a project
like the Linux kernel. A user interested in retrieving a specific ver-
sion of the linux.git repository will then file a Vault “cooking”
request, via either the Web user interface or the API, which will
then be processed by a dedicated pool of workers. When the bun-
dle is ready to be downloaded, the user is notified, via mail or a
Webhook trigger.

3 IMPLEMENTATION
The connection between Guix and Software Heritage goes both
ways: first we must ensure that the SWH archive ingests source
code of packages Guix refers to, and second Guix must fall back to

3https://archive.softwareheritage.org/api/, accessed 2024-01-19.

https://guix.gnu.org/
sources.json

Software
Heritage User

 guix lint -c archival

 Vault

disarchive.
guix.gnu.org

Upstream

Figure 2: Populating the Software Heritage archive (orange
arrows) and retrieving source code (blue arrows).

retrieving source code from SWH. The sections below look at these
two cases.

3.1 Populating the Archive
As we have seen, the SWH archive has already been ingesting
source code from a variety of repositories, covering a large subset
of the code referenced by Guix packages. Our goal is to achieve
full coverage—ensuring that the archive contains all the source
code referenced by Guix packages at any time. To achieve that,
Guix explicitly triggers source code archiving via two mechanisms
represented by the orange arrows in Figure 2.

First, Guix packagers routinely run the guix lint command on
packages they submit for inclusion. This command checks almost
30 properties on packages, such as making sure that they respect
certain conventions and that the URLs they refer to are reachable.
We extended guix lint with an archival check that (1) checks
whether the code is already archived, and (2) submits a Save Code
Now request (see Section 2.2) to SWH, via theWeb API, if the source
is not already archived and if it is a VCS checkout—the Save Code
Now interface rejects requests to save arbitrary tarballs.

The second mechanism complements this: Guix publishes https:
//guix.gnu.org/sources.json, which is a machine-readable list of all
its origins—URLs and hashes, along with commits or tags when
referring to VCS checkouts. SWH periodically ingests all the tar-
balls and VCS repositories referenced by this file using a dedicated
crawler, as described in Section 2.2. When it ingests a VCS reposi-
tory, SWH preserves all its history; when it ingests a tarball, SWH
only preserves the contents of the tarball and not the tarball itself.

3.2 Retrieving VCS Checkouts
Ensuring that source code is archived is only half of the job. How
can we retrieve VCS checkouts from the SWH archive once the
original hosting site has disappeared?

The sha256 field of origins in package definitions make them
content-addressed. However, as we have seen before, Guix and SWH
each use a different method to compute the hash of directories: Guix
computes the hash of a “normalized archive” (nar) whereas SWH

https://archive.softwareheritage.org/swh:1:rev:309cf2674ee7a0749978cf8265ab91a60aea0f7d
https://archive.softwareheritage.org
https://archive.softwareheritage.org/api/
https://archive.softwareheritage.org/api/
https://guix.gnu.org/sources.json
https://guix.gnu.org/sources.json

ACM REP ’24, June 18–20, 2024, Rennes, France Ludovic Courtès, Timothy Sample, Simon Tournier, and Stefano Zacchiroli

computes the hash of a Git tree. For a long time this mismatch
made it impossible to query content by nar hash—a problem that
has now been fixed, as we will see below.What the SWH archive
does permit, though, is to query the checkout associated with the
SHA1 identifier of a Git commit, and to browse the VCS snapshots
of a given URL. We can distinguish several cases.

The easiest case is that of origins that refer to a Git commit by
its SHA1 identifier. Using the Web API of the SWH archive, we can
query the directory object associated with that identifier—this is
effectively content-addressed access, made possible by the fact that
revision identifiers in the SWH data model are equal to Git commit
identifiers. To obtain the files comprised in that directory, Guix then
uses the SWHVault; if data has not been “cooked” yet, the download
process has to wait until the Vault has made it available—see the
blue arrow on Figure 2. Our implementation in Guix is transparent:
package definitions do not need to be changed. Instead, Guix’s
download process automatically falls back to SWH when the URL
specified in the origin is unreachable.

What about references to VCS tags? Git tags and commit iden-
tifiers illustrate the trilemma known as “Zooko’s triangle” [22].
Compared to commit identifiers, tags have the advantage of being
human-readable: the second example of Figure 1 makes it clear that
the intent is to fetch a checkout for the tag corresponding to version
1.3.2 of Scikit-learn; for this reason, packagers often use them. But
tags have two major drawbacks: they are not content-addressed,
which make them context-dependent, and they are mutable—Git
allows users to replace a tag pointing to a given commit with a tag
pointing to a different commit.

In this case, Guix uses the SWH Web API to (1) look up the
repository by URL, (2) look up the tag by name to obtain the corre-
sponding commit identifier, and (3) download the corresponding
directory from the Vault. We have anecdotal evidence that this pro-
cess is “good enough” in most cases, but it is inherently brittle and
could fail or return the wrong data: tags might have been modified,
URLs might have been reused to host different code, etc. The worst
that can happen is that Guix is unable to download the source,
although SWH might contain it; hash mismatches are detected and
cause Guix to abort, as we have seen in Section 2.

The fundamental mismatch in how Guix and SWH identify di-
rectories was addressed by a recent SWH feature deployed in Jan-
uary 2024: SWH now computes and exposes nar hashes for di-
rectories. These hashes are an extension of the SWH data model
called external identifiers or ExtIDs; the Web API4 lets us obtain
the SWHID corresponding to a nar-sha256 ExtID, which is ex-
actly what is necessary to ensure content-addressed access in all
cases. Consequently, the fallback code in Guix was changed to use
that method. Since those ExtIDs have not yet been computed for
previously-ingested origins, Guix still uses the method described
earlier when lookup by nar-sha256 fails.

The beauty of this content-addressed download method is that
it works regardless of the origin type. In particular, it will still work
when Git repositories start using SHA256 identifiers instead of
SHA1—a feature that is slowly being deployed at this time—and it
works for other version control systems too: Mercurial, Subversion,
and CVS. Of these, Mercurial and CVS amount for less than 0.2%

4https://archive.softwareheritage.org/api/1/extid/doc/, accessed 2024-01-11.

M
ay

5, 2019
Aug. 25, 2019
Dec. 29, 2019
Apr. 19, 2020
Aug. 9, 2020
Nov. 29, 2020
M
ar. 21, 2021

Jul. 11, 2021
Nov. 7, 2021
Feb. 27, 2022
Jun. 19, 2022
Oct. 9, 2022
Jan. 29, 2023
M
ay

21, 2023
Sep. 10, 2023
Jan. 7, 2024

0

0.2

0.4

0.6

0.8

1
VCS checkout
File download

Figure 3: Relative high-level source types by sampled Guix
commit.

M
ay

5, 2019
Aug. 25, 2019
Dec. 29, 2019
Apr. 19, 2020
Aug. 9, 2020
Nov. 29, 2020
M
ar. 21, 2021

Jul. 11, 2021
Nov. 7, 2021
Feb. 27, 2022
Jun. 19, 2022
Oct. 9, 2022
Jan. 29, 2023
M
ay

21, 2023
Sep. 10, 2023
Jan. 7, 2024

0

0.2

0.4

0.6

0.8

1

Git
Subversion
Mercurial + Bazaar + CVS

Figure 4: Relative VCS source types by sampled Guix commit.

of the sources in the entire package collection, but Subversion
amounts for 15.7% of all sources as it is used to retrieve the source
of the more than 4000 individual TEX Live packages—see Figure 4.

3.3 Retrieving Source Code Tarballs
When SWH ingests source code from a tarball (or any other archival
file format), it unpacks the tarball and stores only its contents, rather
than keeping the entire file. This is the natural approach given its
graph-oriented representation of software projects. On the other
hand, Guix considers the tarball an atomic input and expects to be
able to retrieve it intact and verify that it is unmodified. The process
of creating a tarball is, in general, not reproducible: evenwhen using
the same inputs and tools, timestamps and nondeterminism can
result in small differences in the resulting files [12]. Therefore, Guix
cannot directly retrieve a tarball from SWH, nor can it retrieve
the same contents and synthesize one that would pass its own
verification.

https://archive.softwareheritage.org/api/1/extid/doc/
https://archive.softwareheritage.org/api/1/extid/doc/

Source Code Archiving to the Rescue of Reproducible Deployment ACM REP ’24, June 18–20, 2024, Rennes, France

file content at SWH
swh:1:dir:cabba93. . .

Disarchive
assemble

tarball
tar.gz

Disarchive
disassemble

tarball metadata
disarchive.guix.gnu.org

Figure 5: Disarchive tarball disassembly (orange arrows)
takes a “tarball” as input and produces metadata along with
a SWHID pointing to the tarball contents. Assembly (blue
arrows) reconstructs the tarball by combining its metadata
and its contents.

To solve this mismatch, we have developed a way to decompose
tarballs into two parts: the file system content and a description of
the process that transformed it into the tarball. If the description is
sufficiently detailed, we can run this process in reverse and arrive
again at the original tarball given these two parts. Since SWH
already stores the contents, if we could provide the corresponding
description, Guix could revive the original tarball.

We created a tool called Disarchive5 that implements this strat-
egy: it can disassemble a tarball to obtain a description and a link to
its contents in SWH, and can assemble that tarball given its contents
and the description, as shown in Figure 5. Currently, Disarchive
supports decomposing plain tar files as well as compressed files in
gzip, bzip2, and XZ formats. These formats represent the majority
of non-VCS Guix sources (see Figure 6). For tar files, it stores the
metadata for each file in the order the files appeared in the original
tarball: this includes file metadata (modification time, Unix owner
and group, permissions) but also low-level details about the tar
headers (details in the representation of tar members that vary
between tar implementations and variants).

To describe a compressed file, Disarchive guesses the compres-
sion system used and then verifies its guess—e.g., it tries both GNU
gzip and zlib, with various flags, until it matches the given gzip
file. This brute-force approach is admittedly not very elegant, but it
works in practice. Testing shows that 97.3% of the 41,521 compressed
tarballs referred to by Guix (see Section 4.2) can be disassembled
using this approach.

The tarball description resulting from Disarchive’s disassemble
step looks like that shown in Figure 7. It is a tree (a Scheme s-
expression) showing, in this case, the components of the gzipped
tar file: there is first a gzip member with a header and footer and
whose body was compressed with the gnu-best-rsync method;
the gzip member has a tarball as its input, which, in turn, has a
directory reference as its input. That last element points to the actual
contents of the tarball, referred to by a SWHID.

5https://ngyro.com/software/disarchive.html, accessed 2024-01-19.

M
ay

5, 2019
Aug. 25, 2019
Dec. 29, 2019
Apr. 19, 2020
Aug. 9, 2020
Nov. 29, 2020
M
ar. 21, 2021

Jul. 11, 2021
Nov. 7, 2021
Feb. 27, 2022
Jun. 19, 2022
Oct. 9, 2022
Jan. 29, 2023
M
ay

21, 2023
Sep. 10, 2023
Jan. 7, 2024

0.6

0.7

0.8

0.9

1

.tar.gz .tar.xz .tar.bz2

.tar .zip Text
Other

Figure 6: Relative download source types by sampled Guix
commit (truncated at 50%).

(disarchive
(version 0)

(gzip−member
(name "sed-4.8.tar.gz")

(digest (sha256 "53cf3e1. . . "))

(header (mtime 0) (extra-flags 2) (os 3))

(footer (crc 1582442600) (isize 10516480))

(compressor gnu-best-rsync)

(input

(t a r b a l l
(name "sed-4.8.tar")

(digest (sha256 "626 c2e3. . . "))

(default-header

(chksum (trailer " "))

(typeflag 0)

(magic "\x00\x00\x00\x00\x00\x00")

(version "\x00\x00")

(data-padding ""))

(headers

("sed-4.8/"

(mode 493)

(mtime 1579061438)

(chksum 3662)

(typeflag 53))

;; many headers omitted

("sed-4.8/bootstrap.conf"

(size 3129)

(mtime 1578639009)

(chksum 5071)))

(padding 1024)

(input

(direc tory− re f
(version 0)

(name "sed-4.8")

(addresses (swhid "swh:1:dir:f36d96f. . . "))

(digest (sha256 "994 ba02. . . "))))))))

Figure 7: Disarchive disassemble output for sed-4.8.tar.gz.

https://ngyro.com/software/disarchive.html
https://ngyro.com/software/disarchive.html

ACM REP ’24, June 18–20, 2024, Rennes, France Ludovic Courtès, Timothy Sample, Simon Tournier, and Stefano Zacchiroli

As can be guessed from this example, the difficult part in de-
signing Disarchive was to find out which details about tar and
compression formats needed to be kept so that Disarchive could
faithfully represent the variety of tarballs actually used without
loss of information while keeping the output reasonably compact.
The format shown here has proved to meet these requirements
for many thousands of tarballs, as we will see in Section 4. The
storage costs for those descriptions are modest. As an example, for
sed-4.8.tar.gz, which contains 987 files, the description takes
140 KiB uncompressed and only 14 KiB when compressed with gzip
at its maximum level.

Using Disarchive, we have built and are continuously updating
a database6 of these tarball descriptions. If a source tarball is no
longer available from its original location, Guix can automatically
recreate it with Disarchive by downloading its contents from SWH
and its description from the database—see the second blue arrow
on Figure 2.

Maintaining a separate database like this is at odds with our
stated goal of full coverage by the SWH archive. As such, work is
ongoing to integrate Disarchive and its database into SWH properly,
so that these descriptions can be archived there for the long term.
Doing so will not be particularly costly in terms of archival storage:
Disarchive descriptions are really small in comparison to other
source code artifacts already archived by SWH. In conjunction with
ExtIDs, this will enable the SWH archive to produce tarballs that
are byte-identical to tarballs observed in the wild—e.g., as a new
Vault download format.

3.4 Limitations and Mitigation
Our implementation suffers from several limitations, as we have
seen before. Source code tarballs are themost challenging part. As of
this writing, some archive formats are not supported by Disarchive,
including lzip compression, Zip files, and some unusual forms of
gzip compression. As we will see in Section 4, these amount to less
than 2.6% of the package source code though.

The Subversion version control system poses unique challenges:
unlike other VCSes, it allows users to retrieve individual sub-directories
within a repository. Luckily, SWH now computes nar-sha256 Ex-
tIDs for them, allowing Guix to recover them. However, TEX Live
packages in Guix work by combining several directories checked out
from Subversion—typically a source and a documentation directory—
and the nar hash in package definitions is computed over that com-
bination. This defeats content-addressed lookups because those
combinations do not exist as such in the SWH archive. As of this
writing, the Guix and SWH team are discussing a solution whereby
SWH would also store the nar hash for these combinations.

Another limitation has to do with the way Guix uses the SWH
Vault: the Vault needs to “cook” source code archives before Guix
can download them, and that process can take from minutes to
days depending on the size of the artifact to be built and the load
of the service. That we cannot guarantee timely downloads is a
significant usability problem. One solution we are considering is
to have SWH “pre-cook” any source referenced by Guix packages.
The storage cost of such a policy change is currently being assessed
before implementation and deployment can proceed.

6https://disarchive.guix.gnu.org, accessed 2024-01-19.

Table 1: “Link rot” empirical evaluation of all package sources
over five years.

May 2019 Apr. 2020 Nov. 2020 May 2021 Dec. 2022
v1.0.0 v1.1.0 v1.2.0 v1.3.0 v1.4.0

#sources 8794 11659 13609 15520 20184

avail. 91.5% 92.4% 95.0% 95.7% 96.4%
missing 8.5% 7.6% 5.0% 4.3% 3.6%
hash mis. 87 63 69 66 52

4 EVALUATION
In this section we evaluate “link rot”—source code disappearance
over time—and whether the upstream source code of Guix packages
exists in the SWH archive.

4.1 Source Code “Link Rot”
The first question we asked ourselves is: what is the extent of
the problem? How much of the source code referenced by Guix
packages has disappeared or has been tampered with? To answer
this question, we attempted to download the source code of all
the packages found in Guix at the time of past releases, covering 5
years of history from version 1.0.0 (released in May 2019) to today
(January 2024). Even though Guix was already 6 years old when
1.0.0 was released, we choose this as the starting point because it
represents the oldest point in history supported as a target for guix
time-machine.

To estimate link rot, we re-downloaded all the source code of
all the packages defined in Guix since version 1.0.0 from their
upstream location, turning off the fallback mechanisms described
in Section 3. Table 1 shows the fraction of package source code that
could still be downloaded from its initial location. After one year,
96.4% of the package source code is still available unaltered from its
upstream location; it decreases to 91.5% after five years. Among the
sources reported as missing, a fraction was actually still available
for download but had been tampered with (hash mismatch): that
represents 1% of the sources after five years, and 0.3% after one
year. These findings are consistent with those reported in an earlier
study [10].

To put it in perspective, 3.6% corresponds to 726 packages of
version 1.4.0 that are already “lost” a year later. How serious is
this? Obviously, this largely depends on what packages one is
trying to deploy, directly but also indirectly. Looking at the num-
ber of dependents of the packages whose source is missing (their
rank in the graph) gives a more accurate picture. As an example,
openjdk-9.181.tar.bz2 is unavailable from its original upstream
URL as it appears in Guix 1.4.0; the openjdk 9.181 package had
184 dependents, so we would effectively be losing 185 packages, not
just one, if this tarball were unrecoverable. Merely looking at the
fraction of missing package sources underestimates the real impact.

4.2 Preservation of Guix
The second question we wanted to answer is this: how much of the
source code of Guix packages is actually archived in SWH?Note that
we are concerned here with preservation. Code available in SWH
is not necessarily recoverable today by Guix due to the limitations

https://disarchive.guix.gnu.org
https://disarchive.guix.gnu.org

Source Code Archiving to the Rescue of Reproducible Deployment ACM REP ’24, June 18–20, 2024, Rennes, France

Table 2: SWH archive coverage of collected sources, including
coverage of select commits.

Commit Date Stored Missing Total

ee3ce0d mag 5, 2019 6313 71.7% 1879 21.3% 8810
3d76112 ago. 25, 2019 6870 73.4% 1812 19.4% 9362
34085ea dic. 29, 2019 8146 79.1% 1524 14.8% 10 300
fafe234 apr. 19, 2020 9470 79.8% 1453 12.2% 11 863
cb97d07 ago. 9, 2020 11 430 87.5% 613 04.7% 13 070
60a10a1 nov. 29, 2020 12 388 88.7% 507 03.6% 13 963
ba0dc1d mar. 21, 2021 13 894 89.4% 443 02.9% 15 541
5c3489a lug. 11, 2021 15 100 90.6% 353 02.1% 16 666
b11badf nov. 7, 2021 16 247 90.9% 306 01.7% 17 879
31ecd80 feb. 27, 2022 17 470 91.9% 274 01.4% 19 016
77db24f giu. 19, 2022 17 985 92.1% 275 01.4% 19 536
79358a9 ott. 9, 2022 18 805 92.3% 271 01.3% 20 373
bea2240 gen. 29, 2023 19 367 92.9% 278 01.3% 20 852
7b3f571 mag 21, 2023 20 323 92.8% 326 01.5% 21 903
2eb6df5 set. 10, 2023 24 775 94.0% 378 01.4% 26 370
25bcf4e gen. 7, 2024 25 473 93.8% 349 01.3% 27 157

All commits 58 530 85.5% 5950 08.7% 68 473

outlined in Section 3.4. Availability is a necessary condition for
code to be recoverable, though.

To answer this question, we implemented a set of tools on top
of Guix to conduct the analyses described below [16]. We have
extracted a list of nearly all of the sources referenced by Guix since
version 1.0.0. We sampled the history of the Guix repository, an-
alyzing one commit per week from May 2019 [18] until January
2024 [19].7 This gives us 243 snapshots of the history of the pack-
age collection. At each snapshot the package graph was built and
crawled, and each external reference was collected as both a crypto-
graphic hash and a machine-readable description of how to obtain
it. There are 68 473 sources in total.

As described in Section 3, the cryptographic hashes from Guix
cannot generally be used to locate content in the SWH archive.
Therefore, we attempted to download and verify these sources in
order to compute SWHIDs for each of them. Tarball sources are
processed with Disarchive, and the underlying directory SWHID is
extracted from the Disarchive specification. For bare files such as
patches, we compute a content SWHID. Git sources are cloned and
the directory SWHID of the checkout is taken from Git itself. Sub-
version sources in Guix can be composed of selected sub-directories
of a checkout. To account for this, we take the SWHID of each sub-
directory. Other, smaller categories of sources, like Mercurial and
CVS, are ignored.

This approach can fail in a number of ways: the sources may be
already unavailable; they may be available but fail to verify because
they have changed since they were first referenced by Guix; or
Disarchive may be unable to process a tarball. Nevertheless, we
found SWHIDs for 64 480 (94.2%) of the sources.

The SWHWeb API provides the known8 endpoint to query the
existence of SWHIDs in bulk. Using this, we found that the SWH

7Sampling reduces the number of commits to analyze by tens of thousands, easing
the computational burden of analysis. However, any external references that appeared
and disappeared between samples are missed. The number of missed sources can be
estimated by searching the text of the Guix repository (over the given period) for
cryptographic hashes. Such a search suggests that only about 1500 (2.1%) sources were
missed due to sampling.
8https://archive.softwareheritage.org/api/1/known/doc/, accessed 2024-02-08.

M
ay

5, 2019
Aug. 25, 2019
Dec. 29, 2019
Apr. 19, 2020
Aug. 9, 2020
Nov. 29, 2020
M
ar. 21, 2021

Jul. 11, 2021
Nov. 7, 2021
Feb. 27, 2022
Jun. 19, 2022
Oct. 9, 2022
Jan. 29, 2023
M
ay

21, 2023
Sep. 10, 2023
Jan. 7, 2024

0.6

0.7

0.8

0.9

1

Stored
Missing
Undetermined

Figure 8: Relative SWH archive coverage by sampled Guix
commit (truncated at 50%).

archive covered 58 530 (85.5%) of the total sources, or 90.8% of the
sources for which we found SWHIDs—see Table 2.

Breaking down the results by commit shows that recent commits
have far better coverage than older commits. The earliest commit
is missing 21.3% of total sources while the latest commit is missing
only 1.3%. This difference is clear in Figure 8, which shows relative
SWH coverage by the publish date of individual commits. The main
reason for this improvement is that SWH started loading sources
as listed by Guix in September 2020 (see Section 3.1). The sources
collected for this report will be loaded by SWH using the same
system, which will improve the coverage of earlier commits.

The true coverage is likely even better than these numbers show,
as many of the sources we were unable to process may be in the
SWH archive. This suggests that complete preservation is an achiev-
able goal.

4.3 Automatic Source Code Recovery
It is one thing to know that source code is preserved by SWH; it
is a different thing to be able to automatically recover it. This is in
part due to the limitations discussed in Section 3.4 but also, more
importantly, due to the fact that the recovery mechanism is itself
improving over time. Consider this command:
guix time-machine -q --commit=v1.0.0 -- install emacs

It installs (and potentially rebuilds) Emacs and all its dependen-
cies as they were defined in Guix 1.0.0 from 2019. SWH support
back then was in its infancy: it was able to retrieve Git check-
outs and little more. Thus, the command above ends up using this
less-capable code, or even buggy code, which may fail to recover
source code, even though today’s SWH support in Guix can do so.
Two bugs illustrate the problem: the fallback mechanism currently
does not fire upon hash mismatches9, meaning that source that has
been tampered with upstream is not automatically recovered; the
Vault Web API recently started responding with HTTP redirects

9https://issues.guix.gnu.org/28659, accessed 2024-02-11.

https://archive.softwareheritage.org/api/1/known/doc/
https://archive.softwareheritage.org/api/1/known/doc/
https://issues.guix.gnu.org/28659
https://issues.guix.gnu.org/28659

ACM REP ’24, June 18–20, 2024, Rennes, France Ludovic Courtès, Timothy Sample, Simon Tournier, and Stefano Zacchiroli

that Guix code did not follow10, preventing automatic recovery
altogether. These are “normal” bugs that happen in any software
development effort and eventually get fixed, but because Guix lets
users travel back in its history, those bugs make automatic recovery
a real challenge.

One measure we took recently to mitigate that is to further de-
couple the download mechanism from the rest of the packaging
machinery. For example, downloads of files as well as Git checkouts
can now be delegated to the Guix build daemon (via the special
builtin:download and builtin:git-download “builders”). The
build daemon evolves and incorporates improvements in its fallback
code; those improvements will be beneficial even when download-
ing today’s source code 5 years from now. A second mitigation
on our road map is a new guix command to recover source code
referenced by past revisions using present-day techniques.

5 RELATEDWORK
More and more frequently, scientists willing to share their computa-
tional workflows and to make them reproducible resort to workflow
systems such as Snakemake and Nextflow. These tools, in turn, often
delegate deployment of the computational environment to container
engines such as Docker, podman, or Singularity/Apptainer [11].

Container engines have been advocated as a tool for reproducible
research workflows for almost a decade now [3]. Container engines
run images typically built from a large base image on top of which
additional software is installed by various means—using the distri-
bution’s package manager or additional tools such as Conda and pip.
By shipping the container image, one enables others to re-run the
exact same code. Unfortunately, the build process of those images is
rarely reproducible, and provenance tracking and the source/binary
correspondence are lost [21]. As a result, recipients cannot really
tell what software they are running, nor experiment with variants
of that software.

Maneage [1] is a framework that aims to support reproducible
computational workflows and reproducible paper authoring. To do
so, it provides a set of Makefiles to download and build software
from source. However, its download method has no fallback: one
can no longer deploy the workflow, potentially irreversibly, once
one of the source code tarballs has become unavailable.

Many free operating system distributions and deployment tools
predate Guix of course, and they all have had to ensure to some
level that source code of their packages is available. However, few
have a stated goal of allowing “time travel”—being able to redeploy
and possibly rebuild software at a later point in time [13]. Most
major distributions such as Gentoo, Debian, and FreeBSD Ports
maintain copies of the source code of their packages, at least for a
certain amount of time. Most notably Debian operates the https://
snapshot.debian.org service, which contains all version of all Debian
packages in both source and binary form (including development
versions never shipped in a stable release), but “only” going as far
back as 2005 (Debian was created in 1993). Older releases of Debian
are available via the regular distribution network, but at the coarser
granularity of stable releases.

Conversely, many of the package managers that fill a particular
niche, such as Brew, Conda, pip, or Spack, do not have source

10https://issues.guix.gnu.org/69058, accessed 2024-02-12.

code mirrors in place. Package definitions in Brew and Spack, for
example, refer directly to the upstream source code location, with
limited mitigation against disappearance or tampering of source
code. The pip package manager fetches packages from the Python
Package Index (PyPI), where some packages are available as binaries
only, in the “wheels” format; remaining packages are available as
source and retained for an indefinite amount of time though the
project does not commit to any retention policy. Spack implements
a source code mirror mechanism11 but the project does not appear
to maintain such a cache. Brew and Conda do not have any source
code mirroring or download fallback in place, to our knowledge.

The deployment model pioneered by Nix and that Guix builds
upon gives a natural solution to source code caching [7, 8]. The
mechanism that allows users to download pre-built binaries as a
substitute for a local build also applies to source code. Consequently,
substitute servers automatically act as a cache for source code too.
This solution, however, typically does not offer durability guaran-
tees: those cached sources may end up being deleted from substitute
servers after an unspecified amount of time.

The mechanism described in Section 3.1 that allows SWH to
pull a list of source code URLs from a JSON file published by the
Guix project was initially implemented by a Nix developer. The
Nix project publishes a JSON file similar to that of Guix, which
thus allows Nix to ensure that its own package source code is also
being archived. However, to date, Nix and its package collection
do not implement a SWH-based download fallback as described in
Section 3.

SwhFS [2] is a file system for Linux that allows users to “mount”
subsets of the Software Heritage archive and navigate them as it
they were part of the local file system. It is meant to bridge the gap
between common software development activities such as searching
through development history and source code archiving. As such,
it is possible to use SwhFS to retrieve code disappeared from its
previously known hosting place, via the relevant SWHID identifiers.
It is not possible to do so via tarball hash though, as the SwhFS
interface is based on SWHIDs. The persistence characteristics of
SwhFS are inherited from Software Heritage, and hence analogous
to those of the approach proposed in this paper.

Disarchive, described in Section 3.3, is, to our knowledge, a new
approach to the tarball archiving issue. In 2007, the Debian Project
developed the pristine-tar tool12 to address this problem. To pre-
serve a compressed file, pristine-tar uses a similar guessing ap-
proach to Disarchive, and was its inspiration. To preserve a tarball,
it generates a fresh tarball in a controlled way using the system
implementation of tar, and then stores a binary delta between the
fresh tarball and the original [17]. Later it can generate another
fresh tarball and apply that delta to recreate an exact copy of the
original upstream tarball. Disarchive instead opts for a more trans-
parent approach with an explicit representation of tarball metadata.
This avoids potential stability issues with the output of the tar
program, and on tests of a few thousand tarballs, results in smaller
descriptions on average.

11https://spack.readthedocs.io/en/latest/mirrors.html, accessed 2024-02-06.
12https://manpages.debian.org/unstable/pristine-tar/pristine-tar.1.en.html, accessed
2024-02-06.

https://issues.guix.gnu.org/69058
https://snapshot.debian.org
https://snapshot.debian.org
https://issues.guix.gnu.org/69058
https://spack.readthedocs.io/en/latest/mirrors.html
https://manpages.debian.org/unstable/pristine-tar/pristine-tar.1.en.html
https://spack.readthedocs.io/en/latest/mirrors.html
https://manpages.debian.org/unstable/pristine-tar/pristine-tar.1.en.html

Source Code Archiving to the Rescue of Reproducible Deployment ACM REP ’24, June 18–20, 2024, Rennes, France

6 CONCLUSION
The ability to preserve source code in a long-term archive and to
automatically recover it from the archive when deploying software
might sometimes be dismissed as a technicality. Our view is that
addressing this technical issue is in fact the very first step required
to achieve reproducible software deployment, itself a prerequisite
of reproducible research workflows.

By connecting Guix to the Software Heritage archive and by
designing Disarchive to bridge the gap between them, we have
been able to ensure that 94% of the packages provided by Guix
today have their source code archived—85% if we look at all the
packages that have been provided by Guix over the past 5 years.
Our experience is that automatic source code recovery is even more
challenging than preservation; future work includes allowing users
to recover old package source code using present-day techniques.
To our knowledge, this is the first time a software deployment
tool is backed by a stable archive. The relevance of this work goes
beyond Guix itself and extends to the wealth of deployment tools
and scientific workflow managers that similarly need to be able to
reliably download package source code.

Our ambition with Guix is to provide a tool that can redeploy the
same software environment years later, whether or not pre-built
binaries are available—a tool scientists can rely on to share their
work among peers and to inspect andmodify it. The work presented
here naturally stems from this goal—and so do reproducible builds
and the functional deployment model embraced by Guix. It is at
odds with the more widespread approach that consists in storing
pre-built software images with little or no provenance tracking and
little or no support for inspection and experimentation.

Ten years of experience with Guix have allowed us to identify
further challenges towards that goal—addressing problems that do
not appear when “time-traveling” at the scale of one year, such as
the influence of system time and hardware details on software build
processes. Our work, going forward, is to tackle those remaining
stumbling blocks to achieve reproducible software deployment
viable over the course of many years.

7 DATA AVAILABILITY
A full reproducibility package for this work is available for down-
load from Zenodo at https://doi.org/10.5281/zenodo.11256698.

https://doi.org/10.5281/zenodo.11256698

ACM REP ’24, June 18–20, 2024, Rennes, France Ludovic Courtès, Timothy Sample, Simon Tournier, and Stefano Zacchiroli

REFERENCES
[1] Mohammad Akhlaghi, Raúl Infante-Sainz, Boudewijn F. Roukema, Moham-

madreza Khellat, David Valls-Gabaud, and Roberto Baena-Gallé. 2021. Toward
Long-Term and Archivable Reproducibility. Computing in Science & Engineering
23, 3 (2021), 82–91. https://doi.org/10.1109/MCSE.2021.3072860

[2] Thibault Allançon, Antoine Pietri, and Stefano Zacchiroli. 2021. The Software Her-
itage Filesystem (SwhFS): Integrating Source Code Archival with Development.
In 43rd IEEE/ACM International Conference on Software Engineering: Companion
Proceedings, ICSE Companion 2021, Madrid, Spain, May 25-28, 2021. IEEE, 45–48.
https://doi.org/10.1109/ICSE-COMPANION52605.2021.00032

[3] Carl Boettiger. 2015. An introduction to Docker for reproducible research. SIGOPS
Oper. Syst. Rev. 49, 1 (jan 2015), 71–79. https://doi.org/10.1145/2723872.2723882

[4] Roberto Di Cosmo, Morane Gruenpeter, and Stefano Zacchiroli. 2018. Identifiers
for Digital Objects: The case of software source code preservation. In Proceedings
of the 15th International Conference on Digital Preservation, iPRES 2018, Boston,
MA, USA, September 24-28, 2018, Nance McGovern and Ann Whiteside (Eds.).
https://hdl.handle.net/11353/10.923616

[5] Roberto Di Cosmo and Stefano Zacchiroli. 2017. Software Heritage: Why and
How to Preserve Software Source Code. In Proceedings of the 14th International
Conference on Digital Preservation, iPRES 2017, Kyoto, Japan, September 25-29,
2017, Shoichiro Hara, Shigeo Sugimoto, and Makoto Goto (Eds.). https://hdl.
handle.net/11353/10.931064

[6] Ludovic Courtès. 2013. Functional Package Management with Guix. In European
Lisp Symposium. Madrid, Spain. https://hal.inria.fr/hal-00824004/en

[7] Ludovic Courtès. 2022. Building a Secure Software Supply Chain with GNU
Guix. The Art, Science, and Engineering of Programming 7 (06 2022). Issue 1.
https://doi.org/10.22152/programming-journal.org/2023/7/1

[8] Eelco Dolstra, Merijn de Jonge, and Eelco Visser. 2004. Nix: A Safe and Policy-Free
System for Software Deployment. In Proceedings of the 18th Large Installation
System Administration Conference (LISA ’04). USENIX, 79–92.

[9] Emily Escamilla, Martin Klein, Talya Cooper, Vicky Rampin, Michele C. Weigle,
and Michael L. Nelson. 2022. The Rise of GitHub in Scholarly Publications.
In Linking Theory and Practice of Digital Libraries, Gianmaria Silvello, Oscar
Corcho, Paolo Manghi, Giorgio Maria Di Nunzio, Koraljka Golub, Nicola Ferro,
and Antonella Poggi (Eds.). Springer International Publishing, Cham, 187–200.

[10] Emily Escamilla, Martin Klein, Talya Cooper, Vicky Rampin, Michele C. Weigle,
and Michael L. Nelson. 2023. Cited But Not Archived: Analyzing the Status
of Code References in Scholarly Articles. In Leveraging Generative Intelligence
in Digital Libraries: Towards Human-Machine Collaboration: 25th International
Conference on Asia-Pacific Digital Libraries, ICADL 2023, Taipei, Taiwan, December
4–7, 2023, Proceedings, Part II (Taipei, Taiwan). Springer-Verlag, Berlin, Heidelberg,

194–207. https://doi.org/10.1007/978-981-99-8088-8_17
[11] Samuel Grayson, Darko Marinov, Daniel S. Katz, and Reed Milewicz. 2023. Auto-

matic Reproduction of Workflows in the Snakemake Workflow Catalog and nf-
core Registries. In Proceedings of the 2023 ACM Conference on Reproducibility and
Replicability (Santa Cruz, CA, USA) (ACM REP ’23). Association for Computing
Machinery, New York, NY, USA, 74–84. https://doi.org/10.1145/3589806.3600037

[12] Chris Lamb and Stefano Zacchiroli. 2022. Reproducible Builds: Increasing the
Integrity of Software Supply Chains. IEEE Software 2 (March 2022), 62–70.

[13] Arnaud Legrand and Pedro Velho. 2023. [Re] Velho and Legrand (2009) - Accuracy
Study and Improvement of Network Simulation in the SimGrid Framework.
ReScience C 6, 1 (Dec. 2023), 20. https://doi.org/10.5281/zenodo.10275726

[14] Ralph C. Merkle. 1987. A Digital Signature Based on a Conventional Encryption
Function. In Advances in Cryptology - CRYPTO ’87, A Conference on the Theory
and Applications of Cryptographic Techniques, Santa Barbara, California, USA,
August 16-20, 1987, Proceedings (Lecture Notes in Computer Science, Vol. 293), Carl
Pomerance (Ed.). Springer, 369–378. https://doi.org/10.1007/3-540-48184-2_32

[15] Antoine Pietri, Diomidis Spinellis, and Stefano Zacchiroli. 2020. The Software
Heritage Graph Dataset: Large-scale Analysis of Public Software Development
History. InMSR ’20: 17th International Conference on Mining Software Repositories,
Seoul, Republic of Korea, 29-30 June, 2020, Sunghun Kim, Georgios Gousios, Sarah
Nadi, and Joseph Hejderup (Eds.). ACM, 1–5. https://doi.org/10.1145/3379597.
3387510

[16] Timothy Sample. 2024. Preservation of Guix. swh:1:rev:
1e719900a301d266044eef6cfa04c7b200a60f0e;origin=https://git.ngyro.com/
preservation-of-guix/

[17] The Debian Project. [n. d.]. pristine-tar. https://salsa.debian.org/debian/pristine-
tar/

[18] The Guix contributors. 2019. GNU Guix 1.0.0. swh:1:rev:
6298c3ffd9654d3231a6f25390b056483e8f407c;origin=https://git.savannah.
gnu.org/git/guix.git

[19] The Guix contributors. 2024. GNU Guix. swh:1:rev:
25bcf4eda05b501758b11a53823867dc500ac7d1;origin=https://git.savannah.
gnu.org/git/guix.git

[20] UNESCO. 2021. UNESCO Recommendation on Open Science. https://www.
unesco.org/en/natural-sciences/open-science

[21] Nicolas Vallet, David Michonneau, and Simon Tournier. 2022. Toward practical
transparent verifiable and long-term reproducible research using Guix. Nature
Scientific Data 9 (October 2022). Issue 1. https://doi.org/10.1038/s41597-022-
01720-9

[22] Zooko Wilcox-O’Hearn. 2001. Names: Distributed, Secure, Human-Readable:
Choose Two. https://web.archive.org/web/20011020191610/http://zooko.com/
distnames.html [Online, Archived; accessed 27. Jan. 2024].

https://doi.org/10.1109/MCSE.2021.3072860
https://doi.org/10.1109/ICSE-COMPANION52605.2021.00032
https://doi.org/10.1145/2723872.2723882
https://hdl.handle.net/11353/10.923616
https://hdl.handle.net/11353/10.931064
https://hdl.handle.net/11353/10.931064
https://hal.inria.fr/hal-00824004/en
https://doi.org/10.22152/programming-journal.org/2023/7/1
https://doi.org/10.1007/978-981-99-8088-8_17
https://doi.org/10.1145/3589806.3600037
https://doi.org/10.5281/zenodo.10275726
https://doi.org/10.1007/3-540-48184-2_32
https://doi.org/10.1145/3379597.3387510
https://doi.org/10.1145/3379597.3387510
swh:1:rev:1e719900a301d266044eef6cfa04c7b200a60f0e;origin=https://git.ngyro.com/preservation-of-guix/
swh:1:rev:1e719900a301d266044eef6cfa04c7b200a60f0e;origin=https://git.ngyro.com/preservation-of-guix/
swh:1:rev:1e719900a301d266044eef6cfa04c7b200a60f0e;origin=https://git.ngyro.com/preservation-of-guix/
https://salsa.debian.org/debian/pristine-tar/
https://salsa.debian.org/debian/pristine-tar/
swh:1:rev:6298c3ffd9654d3231a6f25390b056483e8f407c;origin=https://git.savannah.gnu.org/git/guix.git
swh:1:rev:6298c3ffd9654d3231a6f25390b056483e8f407c;origin=https://git.savannah.gnu.org/git/guix.git
swh:1:rev:6298c3ffd9654d3231a6f25390b056483e8f407c;origin=https://git.savannah.gnu.org/git/guix.git
swh:1:rev:25bcf4eda05b501758b11a53823867dc500ac7d1;origin=https://git.savannah.gnu.org/git/guix.git
swh:1:rev:25bcf4eda05b501758b11a53823867dc500ac7d1;origin=https://git.savannah.gnu.org/git/guix.git
swh:1:rev:25bcf4eda05b501758b11a53823867dc500ac7d1;origin=https://git.savannah.gnu.org/git/guix.git
https://www.unesco.org/en/natural-sciences/open-science
https://www.unesco.org/en/natural-sciences/open-science
https://doi.org/10.1038/s41597-022-01720-9
https://doi.org/10.1038/s41597-022-01720-9
https://web.archive.org/web/20011020191610/http://zooko.com/distnames.html
https://web.archive.org/web/20011020191610/http://zooko.com/distnames.html

	Abstract
	1 Introduction
	2 Background
	2.1 Guix Package Definitions
	2.2 Source Code Archiving with Software Heritage

	3 Implementation
	3.1 Populating the Archive
	3.2 Retrieving VCS Checkouts
	3.3 Retrieving Source Code Tarballs
	3.4 Limitations and Mitigation

	4 Evaluation
	4.1 Source Code ``Link Rot''
	4.2 Preservation of Guix
	4.3 Automatic Source Code Recovery

	5 Related work
	6 Conclusion
	7 Data Availability
	References

