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Abstract

The expectation value of the Hamiltonian using a model wave function is widely used to

estimate the eigenvalues of electronic Hamiltonians. We explore here a modified formula for

models based on long-range interaction. It scales differently the singlet and triplet component

of the repulsion between electrons not present in the model (its short-range part). The scal-

ing factors depend uniquely on the parameter used in defining the model interaction, and are

constructed using only exact properties. We show results for the ground states and low-lying

excited states of Harmonium with two to six electrons. We obtain important improvements for

the estimation of the exact energy, not only over the model energy, but also over the expectation

value of the Hamiltonian.
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1 Introduction

A widespread procedure to estimate the energy of a given state is to use an approximate normal-

ized wave function Ψ(µ), and compute the expectation value of the Hamiltonian of the system of

interest, H,

EH(µ) = ⟨Ψ(µ)|H|Ψ(µ)⟩. (1)

When Ψ(µ) is constructed from orbitals, it is difficult to obtain a good description of the short-

range behavior of the wave function.1 This is associated to the singularity of the Coulomb repulsion

between electrons when their separation vanishes.2 This paper uses a model wave function, Ψ(µ),

produced by a long-range model. To improve over EH(µ), Eq. (1), we use an adiabatic connection,

and information about the exact short-range behavior of the wave function.

We first recapitulate the basic principles of our method.3,4 In previous papers, we presented results

for only N = 2 electrons. Here, we extend the method to a larger number of electrons. We obtain

the ground state energies and those of the lowest excited state for electrons confined by a quadratic

potential (Harmonium), for which we can use for comparison accurate energies published in the

literature.

2 Method

2.1 Model system and an adiabatic connection

We consider Ψ(µ) to be the eigenfunction of a model system with Hamiltonian H(µ),

H(µ)Ψ(µ) = E(µ)Ψ(µ), (2)
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where Ψ(µ) is normalized, and the Coulomb repulsion between electrons showing up in H(µ) is

replaced by

W(µ) = ∑
1≤i< j≤N

w(|ri − r j|,µ) (3)

where w(0,µ) is finite for every µ < ∞. Within the scope of this paper,

w(r,µ) =
erf(µr)

r
. (4)

It is noteworthy that w(r,0) = 0 and asymptotically, w(r,∞) = 1/r.

Even if solved accurately, E(µ) has no physical significance. To obtain the physical energy, E,

one must estimate the difference E −E(µ). For example, if we use Eq. (1), this difference can be

approximated by the expectation value of W(µ). One approximates

E ≈ EH(µ) = E(µ)+ ⟨Ψ(µ)|W(µ)|Ψ(µ)⟩ (5)

where, using Eq. (3),

W(µ) = ∑
1≤i< j≤N

w(|ri − r j|,µ), (6)

and

w(r,µ) =
erfc(µr)

r
. (7)

In this paper, we try to go beyond Eq. (1) without an exaggerated computational effort.3

In principle, the exact energy, E, an eigenvalue of H = H(µ = ∞), can be obtained through an

adiabatic connection. For it, we define the Hamiltonian

H(λ ,µ) = H(µ)+λW(µ). (8)
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The corresponding Schrödinger equation is

H(λ ,µ)Ψ(λ ,µ) = E(λ ,µ)Ψ(λ ,µ). (9)

Note that H=H(λ = 1,µ) =H(λ ,µ =∞) and H(µ) =H(λ = 0,µ). Similar omissions of λ or/and

µ in the notations are applied to E and Ψ. By using the Hellmann-Feynman theorem, one has

E = E(µ)+
∫ 1

0
dλ

∂E(λ ,µ)
∂λ

= E(µ)+
∫ 1

0
dλ ⟨Ψ(λ ,µ)|W(µ)|Ψ(λ ,µ)⟩. (10)

In contrast to EH, Eq. (1), Eq. (10) is in principle exact, but requires the knowledge of Ψ(λ ,µ)

for all λ . However, we assume that we know only the result for the wave function of the model

system, Ψ(µ) = Ψ(λ = 0,µ). In order to deal with this problem we exploit the short-range nature

of the operator W, Eq. (6): for obtaining ⟨Ψ(λ ,µ)|W(µ)|Ψ(λ ,µ)⟩ only the short-range part of the

wave function is needed, and we can benefit from some exact, universal knowledge about the latter

(see, e.g., ref. 5).

While this approach avoids the Coulomb singularity at electron-electron coalescence for any finite

µ , it is nevertheless computationally preferable to have a weak interaction, that is, a small value of

µ . Unfortunately, the solution we propose becomes exact only for large µ . As this model worsens

considerably when µ is small, the common practice would be to use a mean field potential when

the interaction between electrons is turned off. However, findings from a previous study6 indicate

that resorting to a mean field potential has no noticeable impact on the corrections applied, as long

as the results are within the bounds of chemical accuracy. This can be understood by considering

the model’s focus on the short-range behavior of the wave function. In situations where electrons

are close, the repulsive force between them is the dominant interaction, overshadowing the effects

of the one-particle potential. Furthermore, it is worth noting that the minimal error introduced by

the mean field approximation at µ = 0, characterized at the Hartree-Fock level, is essentially the

correlation energy. The magnitude of this error is usually significantly larger, by at least an order
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of magnitude, than the threshold defined by chemical accuracy,7 ±1 kcal/mol ≈1.6 mEh.

We explore how small we can choose µ without sacrificing accuracy, declaring ourselves satisfied

if the errors are smaller than the chemical accuracy.

2.2 Asymptotic short-range behavior

The behavior Ψ(λ ,µ) for small r = |r1 − r2| and large µ is known,4,8

Ψ(λ ,µ) = ∑
ℓ,m

Nℓ,m ϕℓ(r;λ ,µ)Yℓ,m(Ω), for r → 0,µ → ∞. (11)

Nℓ,m depends on all space and spin variables, except r = r1 − r2. In particular, it does not depend

on λ and µ; it is related to the exact wave function (µ = ∞).8 Yℓ,m are the spherical harmonics,

Ω is the solid angle associated with r = r1 − r2, not to be confused with that associated to ri in

systems with spherical symmetry. Furthermore,

ϕℓ(r;λ ,µ) ∝rℓ
[

1+
λ r

2ℓ+2
+

1−λ

2ℓ+2

(
r erf(µr)+

2ℓ+2
2ℓ+1

e−µ2r2

µ
√

π
(12)

+
Γ(ℓ+3/2)−Γ(ℓ+3/2,µ2r2)√

π(2ℓ+1)µ2ℓ+2r2ℓ+1

)]

The incomplete gamma function is:

Γ(a,z) =
∫

∞

z
d t ta−1e−t

and Γ(a) = Γ(a,0). Eq. (11) satisfies Kato’s cusp condition9 for µ = ∞.

For the integrand appearing in the adiabatic connection, Eq. (10), it is useful to define the second

order reduced density matrix,

P2(r1,r2;r′1,r
′
2;λ ,µ) = N(N −1) ∑

σ1,...,σN

∫
R3N−6

dr3 . . .drN Ψ(r1, . . . ,rN ; µ)Ψ
∗(r′1, . . . ,r

′
N ; µ).

(13)
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as it gives

⟨Ψ(λ ,µ)|W(µ)|Ψ(λ ,µ)⟩= 1
2

∫
R6

dr1 dr2 P2(r1,r2;r1,r2;λ ,µ)w(|r1 − r2|;λ ,µ). (14)

For large µ , we can use Eq. (11), and Eq (13), to get the asymptotic (µ → ∞) expression

P2,asy(r1,r2;r′1,r
′
2;λ ,µ) = ∑

ℓ,m
∑
ℓ′,m′

Cℓ,m,ℓ′,m′ ϕℓ(r;λ ,µ)ϕℓ′(r;λ ,µ)Yℓ,m(Ω)Y ∗
ℓ′,m′(Ω′) (15)

Cℓ,m,ℓ′,m′ is produced by the integration over all variables except r1 − r2. Note that

P2,asy(r1,r2;r′1,r
′
2;λ ,µ) = (−1)ℓP2,asy(r1,r2;r′2,r

′
1;λ ,µ). (16)

For obtaining the expectation value of W(µ), Eq. (14), we also integrate over the angular variables,

and use the orthogonality of the Yℓ,m,

⟨Ψ(λ ,µ)|W(µ)|Ψ(λ ,µ)⟩= ∑
ℓ=0

cℓIℓ(λ ,µ) (17)

where

Iℓ(λ ,µ) =
∫
R

dr r2 |ϕℓ(r;λ ,µ)|2 w(r,µ). (18)

The coefficients cℓ come from the integration of ∑m Cℓ,m,ℓ′,m′Yℓ,m(Ω)Yℓ,m(Ω) over the angular vari-

ables, and are independent of λ and µ . Note that integration over Ω and the orthogonality condition

of the Yℓ,m eliminates the dependence on ℓ′,m′. The one-dimensional integrals, Eq. (18), have been

computed once and for all (see Eq. (25) and (26) of ref. 4).

The adiabatic connection, Eq. (10), requires the integration of Eq. (17) over λ . The integral of

Iℓ(λ ,µ), on the r.h.s. of Eq. (17), can be performed analytically.3,4 One has still to determine

the coefficients cℓ. To deal with this problem we choose, in this paper, to truncate the sum over

ℓ to some maximal value L. To justify it, we note that, for small r, ϕℓ is of order rℓ. Thus, for a

given short-range interaction, w(µ), Iℓ(λ ,µ) vanishes faster with increasing ℓ. By a change of
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the integration variable from r to µr in Iℓ(λ ,µ), Eq. (18), we find that the leading term of the

expansion in 1/µ is of order µ−(2ℓ+2).

The strongest cutoff in Eq. (17) corresponds to choosing L = 0,

⟨Ψ(µ)|W(µ)|Ψ(µ)⟩ ≈ c0I0(0,µ). (19)

We solve Eq. (19) for c0. The only integral needed is that on the l.h.s. of Eq. (19); it is already

used in the computation of the expectation value of H, Eq. (5).

For the less severe cutoff, L = 1, we first separate P2 into a singlet and a triplet part,10,11

Ps(r1,r2;r′1,r
′
2;λ ,µ) =

1
2
(
P2(r1,r2;r′1,r

′
2;λ ,µ)+P2(r1,r2;r′2,r

′
1;λ ,µ)

)
(20)

Pt(r1,r2;r′1,r
′
2;λ ,µ) =

1
2
(
P2(r1,r2;r′1,r

′
2;λ ,µ)−P2(r1,r2;r′2,r

′
1;λ ,µ)

)
. (21)

This defines

⟨Ψ(λ ,µ)|W(µ)|Ψ(λ ,µ)⟩s =
1
2

∫
R6

dr1 dr2 Ps(r1,r2;r1,r2;λ ,µ)w(|r1 − r2|,µ), (22)

⟨Ψ(λ ,µ)|W(µ)|Ψ(λ ,µ)⟩t =
1
2

∫
R6

dr1 dr2 Pt(r1,r2;r1,r2;λ ,µ)w(|r1 − r2|,µ). (23)

We can apply this also to the asymptotic expressions for the two-body density matrix, P2,asy,

Eq. (15). When using Eq. (16) for L = 1, Ps,asy retains the ℓ = 0 (singlet) component and Pt,asy

retains the ℓ= 1 (triplet) component,

1
2

∫
R6

dr1 dr2 Ps(r1,r2;r1,r2;λ = 0,µ)w(|r1 − r2|,µ)≈ c0I0(0,µ) (24)

1
2

∫
R6

dr1 dr2 Pt(r1,r2;r1,r2;λ = 0,µ)w(|r1 − r2|,µ)≈ c1I1(0,µ). (25)
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So, we obtain the approximation

⟨Ψ(λ = 0,µ)|W(µ)|Ψ(λ = 0,µ)⟩s ≈ c0I0(0,µ), (26)

⟨Ψ(λ = 0,µ)|W(µ)|Ψ(λ = 0,µ)⟩t ≈ c1I1(0,µ). (27)

Summarizing, the formulas used in this paper are

E ≈ EL=0(µ) = E(µ)+α0(µ)⟨Ψ(µ)|W(µ)|Ψ(µ)⟩ (28)

E ≈ EL=1(µ) = E(µ)+α0(µ)⟨Ψ(µ)|W(µ)|Ψ(µ)⟩s +α1(µ)⟨Ψ(µ)|W(µ)|Ψ(µ)⟩t , (29)

where we have introduced the prefactors α0(µ) and α1(µ),

αℓ(µ) =

∫ 1
0 dλ Iℓ(λ ,µ)

Iℓ(0,µ)
. (30)

Explicit expressions for αℓ are,4

α0(µ) =
0.319820+1.063846µ +µ2

0.487806+1.375439µ +µ2 (31)

α1(µ) =
0.113074+0.638308µ +µ2

0.122652+0.674813µ +µ2 (32)

Note that we can also add and subtract ⟨Ψ(µ)|W(µ)|Ψ(µ)⟩ from the expressions of EL=0, Eq. (28),

or EL=1, Eq. (29). This allows to express the same approximations as corrections to EH(µ),

EL=0(µ) = EH(µ)+ [α0(µ)−1]⟨Ψ(µ)|W(µ)|Ψ(µ)⟩ (33)

EL=1(µ) = EH(µ)+ [α0(µ)−1]⟨Ψ(µ)|W(µ)|Ψ(µ)⟩s +[α1(µ)−1]⟨Ψ(µ)|W(µ)|Ψ(µ)⟩t , (34)

As

α0(µ)≤ α1(µ)≤ 1 (35)
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,

EL=0(µ)≤ EL=1(µ)≤ EH(µ). (36)

It is important to emphasize that the parameters αℓ(µ) are solely dependent on the value of µ .

Nevertheless, the validity range of µ for the asymptotic approximation depends on the system or

the electronic state under study.

Furthermore, we would like to draw the attention to an inconsistency in our approximation. The

expression of α0(µ → ∞) is correct up to order µ−3. For α1(µ → ∞), the coefficients of the

expansion in 1/µ are zero for up to order µ−3, and we take into account corrections of order µ−4

and µ−5. orders that are not exactly described by α0. Going beyond the order µ−3 is possible for

α0 is feasible, but is not treated in the present paper.

3 Numerical results

3.1 Computational details

We consider N electrons confined by a harmonic potential,

V =
1
2

ω
2

∑
i=1,N

r2
i (37)

and the potential W (µ), Eq. (3), for all electron-electron interactions. We present here results

obtained for ω = 1/2.

Recall that in the non-interacting system, that is the harmonic oscillator, the orbital energy ordering

is given by n+2ℓ, where n= 0,1, . . . . Within this framework, the minimum energy configuration is

attributed to an s-state (n = 0), highlighting the principle that the p orbitals (n = 0, ℓ= 1) are filled

prior to the occupancy of the first excited s-state (n = 1, ℓ = 0). Consequently, for a system with

N = 3 electrons, the ground state configuration diverges from a 2S symmetry, instead manifesting
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a 3P symmetry.

Calculating the expectation values ⟨Ψ(λ = 0,µ)|W(µ)|Ψ(λ = 0,µ)⟩s and ⟨Ψ(λ = 0,µ)|W(µ)|Ψ(λ =

0,µ)⟩t , as required in Eqs. (28) and (29), is rather straightforward within conventional codes. In

a basis of orbitals φi, and with P2 normalized to N(N − 1), the two-particle density matrix in this

basis can be expressed as

P2(r1,r2;r′1,r
′
2;λ = 0,µ) = ∑

i, j,k,l
Pi, j,k,l(λ = 0,µ)φ

∗
i (r

′
1)φ

∗
j (r

′
2)φk(r1)φl(r2), (38)

leading to the following formulations for the expectation values for singlet and triplet contributions:

⟨Ψ(µ)|W(µ)|Ψ(µ)⟩s,t =
1
4 ∑

i, j,k,l

[
Pi, j,k,l(0,µ)±Pi, j,l,k(0,µ)

]
⟨i j|kl⟩µ (39)

=
1
4 ∑

i, j,k,l
Pi, j,k,l(0,µ)

(
⟨i j|kl⟩µ ±⟨i j|lk⟩µ

)
, (40)

where the integrals

⟨i j|kl⟩µ =
∫
R6

dr1 dr2 φ
∗
i (r1)φ

∗
j (r2)w(|r1 − r2|,µ)φk(r1)φl(r2). (41)

represent the electron-electron repulsion integrals within the modified potential w(r,µ).

Eqs. (28) and (29) were implemented in the QUANTUM PACKAGE 12 program, which served as the

computational platform for our calculations.

In this paper we aim only to study the effect of our approximation. Thus, we have not made any

attempt to reduce the computational cost of the calculation. In the computational studies detailed

herein, our objective has been to achieve the full configuration interaction (FCI) level of accuracy

utilizing a 9s7p5d3f3g1h1i even-tempered Gaussian basis set as shown in Table 1. For N = 2,

FCI calculations were performed for all values µ . For systems with (2 < N ≤ 6) electrons, we

employed the Configuration Interaction using a Perturbative Selection made Iteratively (CIPSI)

algorithm,12,13 aiming to attain the highest feasible approximation to FCI while maintaining a

11



Table 1: Exponents of the 9s7p5d3f3g1h1i Gaussian basis set.

Angular momentum Exponent
s 0.0395061728

0.0592592593
0.0888888889
0.1333333333
0.2
0.3
0.45
0.675
1.0125

p 0.0888888889
0.1333333333
0.2
0.3
0.45
0.675
1.0125

d 0.1777777778
0.2666666667
0.4
0.6
0.9

f 0.3333333333
0.5
0.75

g 0.4
0.6
0.9

h 0.7
i 0.8

12



minimized computational cost.

The adopted computational protocol involved initially performing a CIPSI calculation with µ = ∞,

using Hartree-Fock orbitals. The determinant selection continued until the second-order perturba-

tive correction (EPT2) decreased to less than 1 mEh, or until the number of selected determinants

exceeded 100 000. The natural orbitals derived from this wave function were used in a subsequent

CIPSI calculation, until EPT2 was reduced to less than 0.1 mEh, or the determinant count surpassed

the 10 million threshold. This final computation yields three critical outcomes: the extrapolated

FCI energy (EexFCI), a basis of Slater determinants in which a wavefunction nearly equivalent to

the FCI wave function is expanded, and its associated variational energy ECI.

The choice of different µ values leads to distinct sets of Hartree-Fock or natural orbitals. To obtain

the best possible accuracy, a new calculation should be made from the start when the value of µ

is changed. To reduce the computational cost of our calculations, we take advantage of the fact

that the FCI wave function can be expressed using any set of orbitals. As we are close to the FCI,

we can keep the orbitals and the set of selected determinants fixed for all values of µ , and obtain

the wave function Ψ(µ) by diagonalizing H(µ) in the basis of selected determinants obtained at

µ = ∞. We choose the particular value of µ = ∞ as it is the value that generates the largest set of

determinants with non-negligible coefficients.

3.2 Checking the approximation of the scaling factors α(µ)

We start by analyzing some results for a system with N = 2 electrons. In this system, the equation

for r1−r2 can be separated. Furthermore, as the potential depends only on r, the wave functions are

eigenfunctions of the angular momentum, and only one term (with the corresponding ℓ) remains

on the r.h.s. of Eq. (17). Thus, the prefactors of ⟨Ψ(µ)|W(µ)|Ψ(µ)⟩ that reproduce the exact

energies are given by

αℓ,exact(µ) =
E −E(µ)

⟨Ψ(µ)|W(µ)|Ψ(µ)⟩
(42)

13
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Figure 1: The expressions of the prefactors of αℓ, as functions of µ; exact, Eq. (42), full curves,
and asymptotically correct, Eq. (30), dashed curves; for ℓ = 0 (red), ℓ = 1 (blue), ℓ = 2 (orange),
ℓ= 3 (green). The horizontal gray line shows the value that is chosen for obtaining the expectation
value of H.

(The dependence of α on ℓ appears here through the dependence of Ψ on ℓ.) Fig. 1 compares

αℓ,exact with the approximations αℓ of Eq. (30) for the lowest energy states for ℓ = 0,1,2,3.

ℓ= 0, or 2 correspond to singlets, ℓ= 1, or 3 correspond to triplets (ℓ= 2, or 3 are non-natural ac-

cording to the terminology of ref. 2). Of course, αℓ(µ)→αℓ,exact(µ) as µ increases. As ℓ increases

αℓ,exact(µ),αℓ(µ) approach the constant value 1 corresponding to ⟨Ψ(µ)|H|Ψ(µ)⟩. However, as µ

decreases, there is a change of the behavior of αℓ,exact that is not captured by the asymptotic form.

3.2.1 Behavior of αℓ for µ → 0

To understand why the large µ limit of αℓ fails as µ → 0, let us consider the exact behavior of

αℓ(µ) for small µ . Expanding w(r,µ), Eq. (4) for µ → 0, we get

w(r,µ) =
2√
π

µ +O(µ3r2) (43)
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With errors to order µ3 (when the expectation value of r2 does not diverge), the expectation value

of W and the energy are shifted for all ℓ,

⟨Ψ(µ)|W(µ)|Ψ(µ)⟩ → ⟨Ψ(0)|W(0)|Ψ(0)⟩− N(N −1)√
π

µ + . . . (44)

E(µ)→ E(0)+
N(N −1)√

π
µ + . . . (45)

Thus, using Eq. (42),

αℓ(µ → 0) =
E −E(µ)

⟨Ψ(µ)|W(µ)|Ψ(µ)⟩
(46)

→ E −E(0)
⟨Ψ(0)|W(0)|Ψ(0)⟩

+
N(N −1)√

π

E −E(0)−⟨Ψ(0)|W(0)|Ψ(0)⟩
⟨Ψ(0)|W(0)|Ψ(0)⟩2

µ + . . . (47)

As E ≤ EH, the slope of αℓ(µ → 0) decreases with µ , while for µ → ∞, αℓ increases with µ .

3.2.2 Errors produced by the cutoff at L

In order to study the importance of using a cutoff in L, Eqs. (28) and (29), let us again consider

harmonium for the states of lowest energy with given ℓ= 0,1,2,3. We compare in fig. 2 the errors

of E(µ)+αℓ(µ)⟨Ψ(µ)|W(µ)|Ψ(µ)⟩ with those produced when we replace the large µ form of αℓ,

Eq. (30) by 1 (that is, use E ≈ EH(µ)), or that corresponding to a different ℓ. We notice that using

the incorrect αℓ brings larger errors for ℓ= 0 or ℓ= 1, but not for the higher values of ℓ. The errors

are showing up at small µ , because of using the form of α valid only for large ℓ. In the top panel

we compare the results using αℓ, Eq. (30) with those obtained using a µ-independent value, α = 1,

that is, using the expectation value of the Hamiltonian. There is a significant effect for ℓ = 0, but

the effect is reduced when increasing ℓ. This is consistent with the result shown in fig. 1 where αℓ

approaches 1 as ℓ increases. The middle panel shows the same curves with αℓ(µ) but compares

them with the results obtained by using α0(µ) for all states. Of course, there is no change for the

ℓ = 0 state, and we see some worsening for ℓ > 0, especially for ℓ = 1. The bottom panel makes

now the comparison with the results obtained by using α1(µ). Of course, there is no change for
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Figure 2: Energy errors as function of the model parameter, µ for the lowest energy state for ℓ= 0
(red curves), ℓ= 1 (blue curves), ℓ= 2 (orange curves), and ℓ= 3 (green curves). The full curves
show the results using the correct αℓ. In the top panel, the dashed curves show the errors produced
using α = 1, i.e., while the middle panel shows those produce by using α0(µ), and the bottom
panel those produced by using α1(µ). The horizontal dashed lines indicate the range of chemical
accuracy.
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the ℓ = 1 state, but there is some significant worsening for ℓ = 0. Strangely, there is even some

improvement for ℓ= 2 in a region around µ = 0.3. The results for harmonium thus tend to support

the limitation of the sum over ℓ to L = 1, as proposed in Eqs. (26) and (27).

3.3 Total energy errors

We analyze in this section the errors EL=0(µ)−E(µ = ∞) and EL=1(µ)−E(µ = ∞) produced

within the large basis set for 2 ≤ N ≤ 6.

Table 2: Extrapolated FCI energy (EexFCI), CI energy (ECI) and number of Slater determinants at
ω = 1/2 and µ = ∞. Values from the literature are used as a reference.

N State Number of determinants EexFCI ECI Reference
2 1S 4364 2.00018 2.00018 2.0000014

3P 3912 2.35967 2.35967 2.3596614

1P 4482 2.50028 2.50028 2.5000014

3 2P 52833 4.01355 4.01355 4.0132215

4P 22048 4.31073 4.31073 4.3106915

2D 30025 4.36665 4.36665 4.3663916

4 3P 82929 6.34939 6.34939 6.3488317

1D 165444 6.38642 6.38643 6.3855417

1S 189780 6.44643 6.44644 6.4453218

5S 75842 6.58730 6.58730 6.5871917

5 4S 1797043 8.99575 8.99577 8.9948419

2D 568582 9.05031 9.05034 9.0488319

2P 1036673 9.08937 9.08938 9.0877519

6 3P 5148761 12.03326 12.03328 12.0306820

1D 7123185 12.06863 12.06865 12.0654020

In Table 2, we present the estimated FCI energy obtained by extrapolating to EPT2 → 0 from the

CIPSI calculation (EexFCI), and the variational energy associated with Ψ(µ = ∞), denoted as ECI,

in comparison with the most accurate values we found in the literature.14–20

We plot the errors EL=0(µ)−E(µ = ∞) and EL=1(µ)−E(µ = ∞) as functions of µ , usually in the

range around chemical accuracy. All generated plots share a notable characteristic: the accuracy of

the approximations significantly deteriorates when the parameter µ is small. This outcome aligns

with expectations, as the approximations are designed to become exact in the limit of large µ , as

17



discussed in subsection 3.2.1. Another recurrent observation is that the model energies, E(µ), are

poor estimates of the exact energy E, particularly in scenarios involving paired electrons. In certain

cases, the magnitude of these errors is so large that E(µ) doesn’t appear in the plots. In contrast,

EH, presents a marked improvement over E(µ) by incorporating a first-order correction to E(µ).

Moreover, it is consistently observed that the difference EH(µ)−E is always non-negative.

3.3.1 Two electrons

Due to the separability in this particular case, other states with the same ℓ present the same errors,

e.g., the first excited 1Pu, the third 1Sg state presents the same error as the 1Sg ground state, or the

first excited 3Pu,
3 Sg,

3 Pg,
3 Dg have all the same error. (The first excited 1Dg, not shown here, is a

non-natural singlet, as it has ℓ = 2.) We see in fig. 3 that the errors due to the basis set are very

small. (They are very close to values produced on a grid, see ref. 4.) For the singlet states, EH(µ)

is within chemical accuracy only for µ > 1.5 bohr−1. Using EL=0(µ) significantly improves the

range of accuracy in the singlet case. Using EL=1(µ) has no effect on the singlet state, as there is

only one singlet electron pair: the EL=0(µ) and EL=1(µ) curves are superimposed. For the triplet

state, fig. 3 (bottom), there is a difference between EL=0(µ) and EL=1(µ). In this case, ⟨W⟩s = 0,

and ⟨W⟩t = ⟨W⟩. However, we note that the error made by EL=0(µ) is not very large. Furthermore,

for the triplet state, the improvement over EH is minimal, as electrons are already kept apart, as

discussed above. We do not show here results for non-natural states (ℓ > 1), for example the second

1S state, but they can be found in ref. 4. One can see there that the trend seen for triplets is further

enhanced for ℓ > 1, singlets, or triplets.

3.3.2 Three electrons

For N = 3, we consider the lowest three states. The ground state 2P has a dominant s2p configu-

ration, while the two excited states (4P,2 D) correspond to a high- and low-spin configuration sp2.

The 4P presents curves with features similar to those for the N = 2, 3P. The advantage of of using
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Figure 3: Energy errors (in mEh) for Harmonium, ω = 1/2, N = 2, ground state singlet (1S, top
panel), and first excited triplet state (3P, bottom panel). Error of the model energy, E(µ), gray
curve; EH(µ), Eq. (1), black curve; of EL=0(µ), Eq. (28), blue curve, covered by that of EL=1(µ),
Eq. (29), red curve. The inset zooms into the region of chemical accuracy, marked by horizontal
dashed lines. The horizontal dot-dashed line shows the difference between the most accurate value
in the literature energy and the FCI estimate of E in the basis set we use.
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EL=1 becomes clear for the doublet states, where both singlet and triplet pairs are present: it lowers

the value of µ for which chemical accuracy is reached.

3.3.3 Four electrons

For N = 4 we consider the states dominated by an s2p2 configuration (the ground state, 3P, and

the excited 1D and 1S states), and the 5S state, dominated by the sp3 configuration (fig. 5). Again,

there is no surprising effect for the state where all spins are parallel (5S): the curves are similar to

those seen for N = 2 or N = 3. However, we start seeing clearly a new effect for the other states.

For systems with N = 2 or N = 3 electrons, the energies EL=1(µ) exhibit poor accuracy at low

values of µ . Nevertheless, as µ increases, a convergence point is reached where the curves ap-

proximate the exact energy, obtained from a complete basis set, and then remain flat beyond this

point. This pattern of behavior is also observed for N = 4 in the 5S state. However, for other states,

the plateau effect is absent. Instead, there exists a specific µ value at which EL=1(µ) approaches

the complete basis set estimate. Beyond this value, a gradual, albeit slow, increase in error occurs

as µ continues to increase, attributable to the basis set’s inability to fully capture the short-range

correlation effects.

For states with higher spin, the basis set proves sufficiently accurate, yielding minimal error when

µ approaches infinity. Conversely, for states with lower spin, the basis set incurs an approximate

error of 1/2 kcal/mol at µ = ∞. As the value of µ is reduced, the results appear to align more

closely with the exact results, effectively mitigating the basis set error. This improvement, however,

begins to compete with the limitations inherent to approximations that are primarily valid in the

regime of large µ .

3.3.4 Five and six electrons

For N = 5, as shown in Fig. 6, and N = 6, depicted in Fig.7, an improvement is observed across all

states by employing EL=1(µ) over EL=0(µ). This improvement follows patterns similar to those
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Figure 5: Energy errors (in mEh) for Harmonium, ω = 1/2, N = 4. From top to bottom:
3P,1 D,1 S,5 S. Color codes as in fig. 3. Except for the 5S state, the curves of E(µ) is outside
of the plotting window.
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Figure 6: Energy errors (in mEh) for Harmonium, ω = 1/2, N = 5. From top to bottom: 4S,2 D,2 S.
Color codes as in fig. 3. The curves of E(µ) are outside of the plotting window.
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24



previously identified. It is notable that the basis set errors in the FCI calculations are larger than for

N = 4, reaching 1-2 kcal/mol. Consequently, the benefits of selecting a lower µ value become more

pronounced, as illustrated in Fig. 7. At a µ value of approximately 0.9 bohr−1, the difference to

the FCI energy in the chosen basis set surpasses the threshold of chemical accuracy. Nonetheless,

when compared to the most accurate calculations available in the literature,20 these errors remain

within the bounds of chemical accuracy.

In all examples shown, the errors increase rapidly as µ drops below a value lying between 0.5 and

1.0 bohr−1. This value depends on the system and the state. To be safe, one would prefer to choose

a larger value for µ . However, this does not only make the calculation more costly, but, in order to

have a small basis set error, it is preferable to choose a small µ .

Not treated in this paper are more compact, or more diffuse systems. This can be analyzed in a

similar way, by changing ω .21 Fortunately, one is often interested in properties describing changes

in the outer valence shell, and in such cases, smaller values of µ are sufficient.

3.4 Errors in energy differences

Typically, there is a greater interest in energy differences than in absolute total energies. It is often

observed that due to error compensation, results for energy differences are more accurate than those

for total energies. For instance, in the case of Harmonium with two electrons, the errors for systems

possessing the same quantum number ℓ are identical, leading to exact error cancellation. However,

this exact compensation does not hold for excitation energies between states with different ℓ, such

as the transition from 1S to 3P for N = 2, as illustrated in Fig. 8. Although exact error cancellation

may not occur, it is possible that the range of µ values within which errors remain minimal could

be broader, for example, in the 2P →2 D excitation for N = 3, shown in Fig. 8.

Overall, as evidenced in Figs. 8-11, energy differences stay reliable down to approximately µ =

0.5 bohr−1. Beyond this, particularly at lower µ values, the substantial deterioration in accuracy

renders the excitation energies unreliable.
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Figure 8: Errors in excitation energies, N = 2, and N = 3. The transitions are indicated above the
plots. The color code and the horizontal lines have the same meaning as in fig. 3. For the 2P → 4P
transition, the curve of E(µ) is outside of the plotting window.

26



0.0 0.5 1.0 1.5 2.0 2.5 3.0

-0.003

-0.002

-0.001

0.000

0.001

0.002

0.003

μ (bohr
-1)

Δ
E

(h
a

r
tr

e
e
)

N=4, 3P →
1D

E (μ)

EH

EL=0

EL=1

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-0.003

-0.002

-0.001

0.000

0.001

0.002

0.003

μ (bohr
-1)

Δ
E

(h
a

r
tr

e
e
)

N=4, 3P →
1S

E (μ)

EH

EL=0

EL=1

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-0.003

-0.002

-0.001

0.000

0.001

0.002

0.003

μ (bohr
-1)

Δ
E

(h
a

r
tr

e
e
)

N=4, 3P →
5S

E (μ)

EH

EL=0

EL=1

Figure 9: Errors in excitation energies, N = 4. The transitions are indicated above the plots. The
color code and the horizontal lines have the same meaning as in fig. 3. For the 3P → 5S transition,
the curve of E(µ) is outside of the plotting window.
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Figure 10: Errors in excitation energies, N = 5 and N = 6. The transitions are indicated above the
plots. The color code and the horizontal lines have the same meaning as in fig. 3.
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The results for the total energy of N = 2 using EL=1 proved to be superior to those obtained with

EL=0 for the 3P state, whereas the choice between L = 0 and L = 1 did not affect the results for the

1S state. Interestingly, around µ ≈ 0.5 bohr−1, an error compensation phenomenon is observed,

making EL=0 marginally better.

It is evident across all scenarios that both EL=0 and EL=1 not only surpass the model energies but

also offer more accurate excitation energies than those derived from EH. It’s important to note

that EH does not provide a bound for energy differences. As illustrated in Fig. 9, the excitation

energy calculated using EH can vary, being either higher or lower than the precise value depending

on the specific excitation being examined. This variability is also seen in the FCI calculations.

Nonetheless, a certain level of error compensation occurs due to the basis set incompleteness,

which tends to shift both states to higher energies.

This pattern of observations regarding excitation energies and their relative accuracy extends to

systems with N = 4, N = 5, or N = 6 electrons, as demonstrated in Figs. 9 and 10.
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Figure 11: Errors of "ionization energies". The numbers of electrons and states are given above the
plots. The color code and the horizontal lines have the same meaning as in fig. 3. For the ionization
of the N = 6 ground state, the curve of E(µ) is outside of the plotting window.
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We now consider energy differences between states with different number of electrons. We call the

difference between the energy of the ground state with N − 1 electrons and that with N electrons

"ionization potential", although electrons cannot escape the potential given in Eq. (37). We see in

fig. 11 that the errors of the "ionization potentials" follow the trends mentioned for the excitation

energies, and do not need a further discussion.
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Figure 12: Errors of "band gaps". The numbers of electrons and states are given above the plots.
The color code and the horizontal lines have the same meaning as in fig. 3.

We can also look at "band gaps", E(N − 1)− 2E(N)+E(N + 1), from the ground state energies

for systems with different N, fig. 12. We see that in two of the three cases considered, N = 3,

and N = 4, EH is much better than we observed for excitation energies. However, this observation

cannot be made for N = 5. It is much safer to compute with the same computational effort EL=0.

4 Summary and perspectives

This papers proposes EL=1, eq. (29), to approximate ground state energies. The computational

effort is not much larger than that needed to compute expectation values of the Hamiltonian, EH,

eq. (1) while we obtain a significant improvement. The method requires first solving accurately
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the Schrödinger equation with a model, long-range operator for the interaction between electrons.

A system-independent correction is applied. It does not use any empirical parameter, and becomes

exact as the physical (Coulomb) interaction is approached (is valid when the parameter µ charac-

terizing the model is large). It uses system-independent prefactors α0 and α1 to the singlet and

triplet components of the repulsion between the electrons. They depend on the range-separation

parameter, µ , but not on the system or state under consideration; they are universal (in the language

of density functional theory).
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Figure 13: Total energy errors in Eh (w.r.t. the best estimate from literature) for µ = 1 with different
methods (FCI, green bars; EL=0, blue bars; EL=1, red bars; with α1 = 1, gray bars; the horizontal
dashed lines indicate the domain of chemical accuracy (±1 kcal/mol).

Numerical results are obtained for N = 2 to 6 electrons in a quadratic confinement. Although we

have treated in this paper only systems with spherical symmetry, we would like to stress that the

method presented is generally applicable. The results are summarized in fig. 13 showing the errors

in the total energies. As the method is approaching the FCI result as µ →∞, but the basis set effects

diminish with µ , we present in this figure the results for a compromise value, µ = 1. The errors

of the model energies, E(µ) and EH(µ) are not shown, being much larger in all cases. We see that

the errors are, for all systems studied, within chemical accuracy, and very often smaller that the

FCI calculation used to generate them.
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The errors in energy differences sometimes are often better than those of the total energies through

compensation. Although there is no guarantee for improvement, we find in general some improve-

ment. For example, the 4S →2 D excitation energy for five electrons, fig. (8) is within chemical

accuracy down to µ ≈ 0.4 bohr−1 while the the total energies are within chemical accuracy only

down to µ ≈ 0.7 bohr−1. However, one can consider the improvement for energy differences mod-

est. The explanation is that large µ dependence of the prefactors αℓ is different at small µ from that

at large µ , fig. 1 and eq. (47). This brings a rapid worsening of the results as µ diminishes, and this

worsening is reflected also in energy differences: there is a change of regime in αℓ. Furthermore,

we would like to point out that the FCI property of providing exact upper bounds to the energies is

lost with EL=1. However, even for FCI, the bounding property is lost for energy differences.

Fig. 13 shows also the effect of modifying the corrective prefactor α1, eq. (32). It lies between α0,

eq. (31) and 1, eq. (35). Choosing the lower bound corresponds to treat triplet electron pairs (often

called parallel electron pairs) the same way as singlet electron pairs (often called anti-parallel

electron pairs). In choosing the upper limit (α1 = 1) one ignores corrections to EH for triplet

electron pairs. The bounds to α1 also bounds EL=1, see eq. (36). We see in fig. 13 that the difference

between them can give an idea about the error of EL=1 without any additional computational effort.

This estimate can be understood seen as a detector for the change of regime. In the same way,

one can also consider EL=1 −EL=0 as a measure of accuracy. However, these estimators of the

accuracy are not guaranteed. In the case when the triplet component of the repulsion between

electrons vanishes these estimators are 0. This can be also the case for energy differences where

the triplet components compensate, such as the 2P →2 D excitation energy, for N = 3, fig. 8.

A few important problems remain to be studied, but this will become the object of a different paper.

Here we only mention them. The most important is the choice of the model system, that is, of the

parameter µ . It has the dimension of an inverse distance. In a compact system, the change of

regime occurs at larger values of µ than for diffuse systems. This impacts the correct treatment of

size-consistency, the core and the valence part of a given system, etc. A solution to this problem

may be to make µ locally dependent (see, e.g., refs. 22,23). Another important effect is to treat the
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basis set errors (as can be seen in the FCI errors in fig. 13). In fact, this can be also treated with a

local µ .24–27

Eq. (10) assumes that the derivative of E(λ ,µ) with respect to λ exists. However, discontinuities

may appear in particular cases, although in our numerical examples we have not noticed such a

phenomenon. A possible explanation for not observing such cases is that we modify only the short

range behavior of the wave function, which is universal, as long as µ is large enough. When µ

becomes small, the approximations we introduce become less sensible, and a drastic change of

the wave function between λ = 0 and λ = 1 could have an additional impact on the accuracy of

the results. Assume now that two eigenvalues Ei(λ ,µ) corresponding to eigenfunctions Ψi(λ ,µ)

cross at some value of λ . As our method is not limited to the ground state, and only the interaction

term is changed along the adiabatic connection, the symmetry of the two states is not changed.

Thus, states of different symmetry are allowed to cross. When an avoided crossing occurs (one is

interested in states of the same symmetry), it may be useful to extend the procedure to a matrix

formalism, treating both states simultaneously.

Another, less important limitation is that through the asymptotic form of the wave function, eq. (12),

the short-range repulsion is described correctly to orders µ−2 and µ−3 for singlet pairs, and to or-

ders µ−4 and µ−5 for triplet pairs.3 Thus, it may be useful to also consider orders µ−n,n = 3,4 for

singlet pairs.
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