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Abstract

In liquid composite molding processes, variabilities in material and process conditions can lead to distorted flow patterns

during filling. These distortions appear not only within the same part but also from one part to another. Notably,

minor deviations in the dry fibrous textiles cause local permeability changes, resulting in flow distortions and potential

defects. Traditional permeability models fall short in predicting these localized fluctuations, especially for anisotropic

textiles, whereas reliance on homogeneous permeability models creates substantial discrepancies between forecasted and

observed filling patterns. This study presents a self-supervised framework that determines in-plane permeability tensor

field of textiles from an image of that textile in dry state. Data from central injection experiments is used for training,

including flow images and pressure inlet data. This work demonstrates that this model proficiently predicts flow patterns in

unobserved experiments and captures local flow distortions, even when trained on a relatively small dataset of experiments.

Keywords: flow in porous media, permeability field, macroscopic porous media, physics-informed neural networks,

convolutional neural networks.

1. Introduction

1.1. Motivation and outline

Liquid Composite Molding (LCM) is a set of manufacturing techniques wherein a dry fibrous reinforcement undergoes

impregnation by a liquid resin within a sealed cavity [1]. The flow of resin within the fibrous medium is described by

Darcy’s law, given by:

v = −
1

µ
K · ∇p (1)

where v represents the volume average flow velocity, µ is the viscosity of the liquid, ∇p denotes the pressure gradient, and

K is the second-order permeability tensor of the textile which is related to the pore-scale microstructure geometry of the

structure. Properly estimating this permeability tensor is pivotal for accurate predictions of the filling pattern, defining

the evolution of the flow front within the fibrous reinforcement. Such precise predictions are instrumental in preempting

the onset of structural flaws in the final product, such as incomplete filling and dry spots.

Variabilities within and between textile samples can arise due to fabric intrinsic geometrical defects, mishandling,

misalignment, operator errors, and other factors. These inconsistencies can result in marked deviations between the actual

and anticipated filling patterns, subsequently leading to variations in the quality of the manufactured parts. Two reviews

list potential variabilities and defects occurring during structural composite manufacturing [2, 3].

Moreover, the existing experimental measurement techniques show inconsistencies among each other. Several interna-

tional benchmarks have shown significant discrepancies between experimental measurements from different test benches



[4, 5, 6]. The reasons of variations can come from the geometrical control of the cavity, the sensors, the fluid used, the

operator and the 1D, 2D, transient or steady nature of the injection. Following these investigations and recommendations,

an experimental ISO standard has been very recently released [7] in order to measure an average permeability of anisotropic

fibrous textiles. In addition, an international benchmark, entirely dedicated to numerical predictions from 3D tomographic

images, was published and shows variations in results depending on the numerical approaches used to simulate the flow

and to extract the average value of the permeability [8].

Most existing techniques for determining permeability provide average approximations over the studied domain, disre-

garding local effects. Alternatively, some methods focus on identifying permeability at the fiber scale, which is impractical

to use for macro-scale porous media due to computational limitations. Therefore, there is a need for approaches that can

capture the local variations in permeability within the porous media while still being applicable at a macroscopic scale.

Previous studies identified local isotropic permeability fields for random mats [9, 10].

The methods to characterize the permeability can be roughly divided into four major groups: 1. Analytical models, 2.

Experimental techniques, 3. Numerical homogenization and up-scaling techniques and 4. Machine learning techniques.

Empirical analytical models exist to estimate the permeability based on the geometry of the reinforcement. One of the

most famous models is the Kozeny-Carmen model [11, 12]. The permeability tensor is estimated as follows:

K =
R2

4k

(1− Vf )
3

V 2
f

I, (2)

where Vf is the fibre-volume fraction, R is the fiber radius, k is called Kozeny constant and I is the identity tensor. The

predicted permeability is isotropic, which is an oversimplification for most fibrous structures. A modification was proposed

by [13] where different k constants are chosen for different directions adding the anisotropy into the model.

The previously mentioned models only have the fiber radius as a geometry parameter, while the rest of the geometrical

features are taken into account through empirical constants in the model that need to be identified using a fitting procedure

on experimental data. This issue was dealt with by [14] where they developed a more inclusive model for unidirectional

reinforcement. The issue still prevails for other types of fibrous media whose relevant features are not easily identified.

The empirical laws suffer from not being tailored to the specificity of each reinforcement and do not offer an estimation of

the permeability as a field, indeed, most of the local defects in a textile cannot be described using the same geometrical

features as in the standard models.

Experimental methods are commonly employed to identify the permeability for each specific reinforcement [15]. These

methods typically involve controlling either the pressure or velocity and measuring the other. Average values are then

calculated, and the permeability is evaluated using Darcy’s law. In the context of resin transfer molding, two main categories

of experiments are typically conducted: unidirectional flow experiments [16, 17] and radial (central injection) experiments

[18, 19]. A 3D central injection framework along with an optimization technique to measure the 3D permeability tensor was

developed [20]. However, these experimental techniques have limitations, including being time-consuming and challenging

to perform. Furthermore, the resulting permeability values obtained from these experiments represent average values over

the entire domain, disregarding local effects within the fibrous media as in the case of empirical laws.

Numerical homogenization methods offer an interesting alternative to experimental techniques, as they are typically

less complicated and time-consuming, compared to the latter. These methods aim to virtually replicate the experimental

setup in a representative volume element (RVE) by fixing either the pressure or velocity and performing a high-fidelity

simulation at the microscopic scale to estimate a proper average of the other parameter over the RVE. Numerical solvers,
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based on Computational Fluid Dynamics [14, 21, 22] or the Lattice Boltzmann Method [23, 24], are commonly employed.

However, these techniques are more applicable to identifying the permeability of microstructures and become computation-

ally complex when dealing with macroscale fibrous media. Additionally, obtaining knowledge of the porous media domain

is crucial, which can be acquired through imaging techniques like tomography. Alternatively, a virtual reconstruction of

the porous media can be employed to establish the relationship between the porous media properties and permeability.

Machine learning can certainly be used to address the discussed challenges due to its powerful prediction capabilities.

Recently, machine learning techniques have been successfully applied to solve diverse problems in sciences and engineering

[25, 26]. One of the fast-growing techniques is Physics-Informed Neural Networks (PINN) which was developed by [27].

PINN merges the physics and data knowledge in a combined loss function which offers a solution to problems with low-data

regimes. It has been applied to problems involving solid mechanics [28], fluid mechanics [29], magnetic problems [30], and

flow in porous media [31, 32]. The related literature is presented in more detail in the forthcoming section 1.3.

1.2. Scope of the current work

The present study tackles the challenge of estimating the permeability tensor field of a dry 2D plain-weave textile

using neural networks based on its image representation. Notably, the prevailing body of literature primarily emphasizes

the employment of convolutional neural networks (CNN) trained on extensive datasets of labeled images, either authentic

or synthetic. These labels, representing the permeability values, are generally derived either through experimental mea-

surements or by leveraging high-fidelity CFD solvers coupled with adequate homogenization techniques. Conversely, the

methodology developed in this paper deals with a more constrained dataset, encompassing only 34 unlabelled experimen-

tal images. Since the used approach does not necessitate permeability labeling, it avoids the need for prior assumptions

regarding the flow model at the microscopic scale. The model introduced in this paper is trained with an objective to

minimize the distance between predicted and actual filling patterns, relying solely on flow imagery and pressure data from

a single sensor located at the flow inlet. This intrinsic label estimation during training categorizes the methodology as

self-supervised. The framework proposed in this manuscript relies on two separate fitting stages. Initially, permeabilities

are estimated by addressing an inverse problem through PINNs, utilizing flow front imagery stemming from radial flow

experiments coupled with inlet pressure measurements. Afterwards, a second regressor model (CNN) is trained on smaller

crops of the original images correlating the permeability tensor with the local textile configuration. After the training

phase is done, prediction of the permeability field can be done using only an image of the fabric in the dry state. The full

training procedure along with the explanation of the model deployment is shown in figure 1.
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Figure 1: Diagram explaining the training stages of the model along with the deployment methodology.

1.3. Related work

1.3.1. Inverse problems with PINN

PINN have garnered significant attention for their efficacy in addressing inverse problems pertaining to systems governed

by PDEs. Uncertain or latent parameters can be identified, including material properties that are not directly measurable.

Central to this approach is the treatment of these unknown properties as trainable parameters within the neural model.

Through simultaneous minimization of both the residual of the governing PDEs and the data discrepancy, PINNs not only

learn the solution of the PDE system but also identify the missing parameters of the governing equations. PINN was

introduced to solve a generic PDE with an unknown homogeneous material parameter with the knowledge of the solution

on scattered points in the domain [27]. Using this methodology, several inverse problems have been solved. The technique

was applied to solve for the density in high-speed flows [33]. It was also applied to obtain the hydraulic conductivity in

unsteady 1D groundwater flows [34]. In another work, the authors obtained the permeability field in steady 2D natural-

state geothermal system using pressure and temperature generated data [35]. This was done by having a neural network

to approximate the permeability as a function of space. Other problems were solved in nano-optics [36], heat transfer [37],

transport in porous media [38], and supersonic flows [39].

1.3.2. Image-based permeability identification

Some novel research work has a similar framework to the one adopted in this paper. However, it must be noted

that all the former work deals with microscopic scale porous media images. Whereas, in this paper, the methodology

is developed for macroscale fibrous porous media images. It was shown that feedforward neural networks and CNN are

capable of directly calculating permeability where the inputs to the feedforward neural network are geometric properties

of the porous media and the input to the CNN is porous media images [40]. In another work, a framework is developed

to predict the porosity, permeability, and tortuosity of microstructure porous media from images using a CNN [41]. The

authors built 100,000 virtual porous media generated by the random deposition method [42, 43]. LBM simulations are

then performed on all the images to provide an estimation of the porosity, permeability, and tortuosity. A CNN is finally

used for the supervised learning task. In this sense, the CNN learns to map images to the simulation results in a way that

is computationally inexpensive and much faster than the original model used to generate the dataset.
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A similar framework is presented but is applied to predict the diffusivity of porous media [44]. The authors generated

a big dataset of virtual porous media images, and then performed LBM simulations to calculate the diffusivity. Finally,

they trained a CNN using the generated dataset.

In another work, the authors developed a physics-informed CNN to predict the permeability from microstructure porous

media images [45]. The framework is similar to that of [41] where porous media images are generated using the Voronoi

tessellation algorithm. This is followed by LBM simulations of the porous media images. Finally, a physics-informed CNN

is used for the supervised learning task. This is done by including porosity and specific surface area as inputs to the neural

network along with the images. It was shown that this modification to the CNN provided better results than applying a

regular CNN.

The same methodology of using a high-fidelity simulation applied to many porous media images to build an image-

permeability dataset, then training a CNN was adopted in many applications involving porous media. The methodology

was applied for gas diffusion layer materials [46], rock mechanics [47, 48, 49], and to fibrous porous media [50].

2. Experimental setup and available Data

2.1. Foreword

The present data were produced through 2D central injection experiments that were performed by Comas-Cardona at

CACM (Centre for Advanced Composite Materials) at the University of Auckland (NZ) [51, 52].

2.2. Materials of the study

2.2.1. Liquid

The liquid used in this study is a mineral oil whose viscosity is 0.15 Pa.s at 20oC and has been measured on a Brookfield

viscometer.

2.2.2. Textile

The textile of interest is a glass fiber plain weave (PW) whose areal weight has been measured and is 822 g/m2. It

should be noted that the same fabric was used to produce the samples of all the experiments.

At first, an image of the dry fabric (2D plain weave) is taken using a lightbox setup [51]. An example of the image is

shown in figure 2. In the lightbox setup, white light is transmitted through the textile. Light intensity is proportional to

the areal weight of the textile. Two images are taken, the first one corresponds to the transmitted light without the textile

and the second one corresponds to the transmitted light with the textile sample. Then, a difference is made pixel-wise

between both images. Therefore, in white one can see the fiber tows at 0o and 90o of the weave, and in black the holes

(opened areas) between the tows. The liquid resin will flow in the darker areas (opened areas). The calibration of the

images has been done and is 0.2338 mm/px.
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Figure 2: Lighbox image of the 2D plain weave textile used in the experiment. The image size is 1155× 1155 pixels corresponding to 27× 27

cm2.

The porosity of the tested textile is calculated for each sample using the mass of the ply m, the area of the ply A, the

thickness of the ply h (measured as the cavity height between the compression platens), and glass density ρf = 2.6 g/cm3.

According to the calculations, the samples have an average porosity of 0.45.

2.3. Injection Bench

The apparatus for the experiments is shown in figure 3 [52]. The apparatus consists of a fixed bottom transparent glass

plate, a top moving stainless steel platen, a textile fabric, a tilted mirror, a camera, a pressure bucket, and an injection

gate equipped with a pressure transducer. The top and bottom platens are mounted into a universal testing machine.

After closing the top platen on the textile fabric at a given thickness, the resin inlet valve at the pressure bucket is opened.

The resin will flow from the central injection point into the textile as the time goes on. For more details on the injection

bench, the reader can refer to the work by Swery et al. [52].
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Figure 3: Apparatus used for the central injection experiments [52].

2.4. Monitoring and acquisition

The camera is used to take images of the flow at specified times to identify the location of the flow front. These raw

images are saved and treated to produce black and white images which can then be used to extract the location of the

interface that will be used for later analysis. An example of the raw images showing the flow front evolution is shown in

figure 4. The calibration of the camera has been made to correct optical barreling distortion and relate the pixel size to

the material size.

Figure 4: Raw flow front images at 3 different time instants of one of the central injection experiments. As time goes on, the liquid (grey central

ellipse) flows into the porosity of the textile.

The corresponding treated segmented images are shown in figure 5.
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Figure 5: Treated flow front images at 3 different time instants of one of the central injection experiments, where the white part referred to resin

impregnated textile and the black refers to dry textile.

A pressure sensor is located at the inlet that is used to measure the inlet liquid pressure profile as a function of time.

This data will also be used in the algorithm for permeability predictions.

To summarize, the data from 34 central injection experiments includes

• flow front images with time (≈ 30 images per experiment),

• inlet pressure as a function of time,

• textile porosity and resin viscosity data,

• and a lightbox image of the fabric (2D plain weave) taken prior to injection.

2.5. Average permeability calculation

The average permeability of the textile samples (single plies) was measured following the procedure given by Swery et

al. [52]; the mean and standard deviation of the measured values are shown in table 1.

Table 1: Mean and standard deviation of the permeability of the plain weave fibrous media used in the central injection experiments. These

values are calculated by averaging the measured permeability values over the textile samples.

kxx kyy kxy

Mean (10−10 m2) 0.69 3.28 0.078

Standard deviation (10−10 m2) 0.12 0.57 0.054

Coefficient of variation 0.173 0.173 0.69

3. Governing equations

The problem at hand is an unsaturated flow in porous media problem in which the flow is governed by Darcy’s law (1).

During the mold filling process, the resin is injected into the mold displacing air outside. The outlet is designated with zero

pressure, allowing air to escape freely. Additionally, the viscosity of air is much smaller than that of the resin, preventing

any pressure buildup in the air region and thus fluid compressibility is negligible. As a result, the mass conservation

equation simplifies to:

∇ · v = 0 . (3)
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Inlet and outlet pressure boundary conditions are assigned as follows:

p(xinlet, t) = pin(t) on Γin (4)

p(xoutlet, t) = pout(t) on Γout (5)

To localize the interface (flow front), the volume of fluid (VOF) method [53, 54] is used. The method is based on

defining a fraction function c, which is a scalar function that takes a value of 1 in the domain where resin exists, zero for

the air, and values ranging from 0 to 1 near the interface between the phases. The interface is defined as the 0.5 level-set

of the fraction function c. The more accurate the numerical method is, the smaller the interface region will be leading to

a discontinuous fraction function in the ideal case. Using this definition, the viscosity µ in equation 1 can be rewritten as:

µ = cµr + (1− c)µa (6)

where µr and µa are the viscosities of the resin and air, respectively. c evolves with time according to the following

advection equation

∂c

∂t
+

1

φ
v · ∇c = 0 (7)

where ∂c
∂t

is the time derivative of the fraction function c, ∇c its gradient in space and φ is the porosity of the porous

medium.

Initial and boundary conditions need to be defined for the VOF advection equation. The initial condition is written as:

c(x, t = 0) = c0(x) . (8)

The mold is assumed to be completely filled with air at t = 0; thus, c0 = 0 for all x.

Inlet flow also requires the assignment of boundary conditions for c:

c(xinlet, t) = 1 on Γin (9)

4. Methods

4.1. Neural network approximation of fields

The velocity v, pressure p and resin volume fraction c fields for each experiments are approximated by feed forward

neural networks having 5 hidden layers each with 20 neurons.

v(j) ≈ v̂(j)(x, y, t; θ(j)v ) ; p(j) ≈ p̂(j)(x, y, t; θ(j)p ) ; c(j) ≈ ĉ(j)(x, y, t; θ(j)c ) (10)

where j denotes the experiment index, while θ
(j)
v , θ

(j)
p and θ

(j)
c are the trainable parameters of the networks. The

hyperbolic tangent activation function is used for all the hidden layers of all the used networks. The output layer of v̂(j)

has two units since the velocity field is a 2D vector field. Moreover, since the resin volume fraction c is naturally bounded

between 0 and 1, a sigmoid activation is applied following the output layer of ĉ(j).
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The permeability tensor is approximated using a CNN architecture:

K ≈ K̂(I; θK) (11)

Contrarily to velocity, pressure and resin fraction, the permeability model receives an s× s grayscale image I ∈ Rs×s

of the local textile configuration as an input and all the experiments share the same permeability model. The images I

are obtained by cropping the original textile image T ∈ RS×S at centers specified by collocation points. In this work,

s = 50 px and S = 1150 px. The model outputs the three independent components of the 2D second order symmetric

permeability tensor.

The CNN consists of convolutional, pooling, and fully-connected layers ending by the output, which is the permeability

in this case. Batch normalization layers can also ensure that the inputs are well-normalized which improves the network

performance. The trainable parameteres of the network are denoted by θK . The following CNN architecture is adopted:

• Input layer of images having a size of 50× 50 pixels,

• A convolutional layer with 8 filters of size 3× 3,

• A Batch Normalization layer,

• An Average pooling layer of size 2× 2,

• A convolutional layer with 16 filters of size 5× 5,

• An Average pooling layer of size 2× 2,

• A fully connected layer with 64 neurons and tanh activation function,

• An output layer with 3 neurons corresponding to kxx, kyy, and kxy.

4.2. Choice of the collocation points

Collocation points are selected for residual evaluation of the PDEs at the centers of each pixel and at time frames given

in the sequence. Therefore, the following notation is adopted:

xl = (l − S/2) ·∆x ; ym = (m− S/2) ·∆y ; tn = n ·∆t ; (12)

where ∆x = ∆y = 0.23mm, ∆t = 2s, l,m = 0, 1, . . . , S − 1 and n = 0, 1, L − 1 (L = 30). The global collocation index is

also introduced as:

i = l +m× S + n× L . (13)

Note that given a set (l,m, n) there is a unique corresponding global collocation index and vice versa, any i can be mapped

back to a unique set (l,m, n). Using i allows to introduce the following naming convention:

xi , yi , ti = xl , ym , tn , (14)

leading to a simplification in the notation, allowing for the following expression:

v̂
j
i = v̂(j)(xi, yi, ti, θ

(j)
v ) = v̂(j)(xl, ym, tn, θ

(j)
v ) . (15)
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Similarly, the notation for p̂ji and ĉji can be simplified, indicating the evaluation of the pressure and resin fraction models

at collocation point i for the j-th experiment.

Finally, denoted as

K̂
j
i = K̂(Cs(T

j , xl, ym), θK) (16)

are the permeability values obtained by evaluating the CNN model at collocation point i for the j-th experiment, where

Cs(T
j , xl, ym) is the s× s cropping operator acting on the j-th textile image and centered at (xl, ym). It should be noted

that a smaller random subset of the collocation points was used in practice.

4.3. Loss function

The loss function to be minimized includes both the physics loss from the governing equations and the data loss

evaluated at a subset of Ntc collocation points across a number Nte of selected experiments for model training. A special

treatment is due for the pressure boundary conditions as they must be enforced on a separate set of Nbc collocation points

(xī, xī, t̄i) located on the domain boundaries. The loss can be formulated as follows:

L(θ(j)v , θ(j)p , θ(j)c , θK) =
1

Nte

Nte−1
∑

j=0

(

λc Lj
c(θ

(j)
c ) + λp Lj

p(θ
(j)
p ) + λ1 Lj

f1(θ
(j)
v , θ(j)p , θK) + λ2 Lj

f2(θ
(j)
v ) + λ3 Lj

f3(θ
(j)
c , θ(j)v )

)

(17)

where

Lj
c(θ

(j)
c ) =

1

Ntc

Ntc−1
∑

i=0

(

cji − ĉji

)2

(18)

is the training mean squared error (mse) of the j-th resin volume fraction model;

Lj
p(θ

(j)
p ) =

1

Nbc

Nbc−1
∑

ī=0

(

pj
ī
− p̂(j)(xī, yī, t̄i; θ

(j)
p )
)2

(19)

is the training mse of the j-th pressure model;

Lj
f1(θ

(j)
v , θ(j)p , θK) =

1

Ntc

Ntc−1
∑

i=0

(

v̂
j
i +

1

µ
K̂

j
i · ∇p̂ji

)2

(20)

is the training mean squared residual (msr) associated to the Darcy’s law applied to the j-th model;

Lj
f2(θ

(j)
v ) =

1

Ntc

Ntc−1
∑

i=0

(

∇ · v̂j
i

)2

(21)

is the training msr associated with mass conservation of the j-th model and

Lj
f3(θ

(j)
c , θ(j)v ) =

1

Ntc

Ntc−1
∑

i=0

(

∂ĉji
∂t

+ v̂
j
i · ∇ĉji v̂

j
i

)2

(22)

is the training msr associated with the VOF transport equation applied to the j-th model. In practice, it was observed that

any attempt to minimize the loss function in a monolithic way was leading to poor convergence regardless of the choice

of the weighting coefficients λi. Therefore, a segregated sequential training strategy was devised, which is detailed in the

next subsection.
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4.4. Sequential training

The point of departure of the training strategy is to replace the permeability model evaluations K̂
j
i with as many

trainable parameters K̃
j
i . As a consequence of this choice, the loss function introduced in the previous section can

be minimized over each experiment separately. Segregating flow experiments and training the corresponding networks

separately leads to a remarkably superior convergence. Namely, for the j-th experiment, the set of K̃j
i , i = 0, 1, . . . , Ñtc

trainable permeabilities is denoted as Kj . In doing so, only a fraction of the original collocation points is considered (i.e.

the pixel centers) in order to avoid overfitting due to introducing too many new trainable parameters. The modified loss

functions can be rewritten as :

Lj(θ(j)v , θ(j)p , θ(j)c ,Kj) = λc Lj
c(θ

(j)
c ) + λp Lj

p(θ
(j)
p ) + λ1 L̃j

f1(θ
(j)
v , θ(j)p ,Kj) + λ2 Lj

f2(θ
(j)
v ) + λ3 Lj

f3(θ
(j)
c , θ(j)v ) (23)

with the modified Darcy loss

L̃j
f1(θ

(j)
v , θ(j)p ,Kj) =

1

Ñtc

Ntc−1
∑

i=0

(

v̂
j
i +

1

µ
K̃

j
i · ∇p̂ji

)2

. (24)

Minimizing the loss function in equation (23) over the parameters θ
(j)
v , θ

(j)
p , θ

(j)
c and Kj is equivalent to solving an inverse

problem using PINN to determine the permeability values. These values can be gathered from all the experiments to create

a data set consisting of image-label pairs (Iji ; K̃
j
i ) and use this to train the CNN model to predict permeabilities from

local textile structures. A second and most important advantage offered by the sequential training strategy is that proper

filtering and augmentation techniques can be applied to the data, leading to improved accuracy and generalization of the

CNN model. Ultimately, the model is evaluated using an unseen flow experiment left out of the training set. For this new

case, the permeability is predicted based from the evaluation of CNN model on the dry textile image, then PINN is used

as a forward solver to compute the flow variables and finally the predicted filling pattern is compared to the experiments

using the metrics defined in section 5. To summarize, the training strategy consists of the following steps, also shown in

figure 6:

1. Training PINNs for the permeability identification inverse problem followed by data filtering and augmentation.

2. Training a CNN model to learn the mapping from the porous media images to the identified permeability.

3. Assessing model accuracy through comparison of predicted and experimental filling patterns for new test data.
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Figure 6: The full sequential training methodology to predict the permeability tensor field from textile images.

4.4.1. Identifying permeabilties using PINN

To solve the identification problem problem using PINN, different feedforward neural networks are used to approximate

the pressure, fraction function, and the velocity, simmilar to the framework given by [31]. The computational domain is

split into a grid of size 25 × 25, in which each subdomain will have an unknown permeability tensor, hence in this case

Ñtc = 625. The subdomains’ size is chosen to be small enough to capture the locality of the flow, however, a too-small

subdomain size will create too many degrees of freedom and overfitting can easily take place. The chosen size is based on

having at least one plain-weave periodic pattern (1 : 2 tows per warp and weft direction) in each crop, and when trying it

in practice it provided good results. These unknown permeabilities are treated similarly to the network parameters: after

initialization, values are updated using the minimization algorithm. The collocation points will have different permeabilities

according to the subdomain they belong to.

Adam optimizer is used for 5000 iterations which is followed by 500 BFGS iterations. Figure 7 shows the full PINN

framework to solve the inverse problem.

13



Figure 7: The framework to identify the permeability field by solving an inverse problem with PINN. The trainable parameters are identified in

red.

An example of the identified permeability map is shown in figure 8 for one of the experiments.

Figure 8: Example of the identified permeability field obtained by solving an inverse problem with PINN. The permeability component kxx,

kyy , and kxy are plotted from left to right, respectively. The x and y axes have been normalized; the real material size is 27× 27cm2

It is important to note that only a portion of the permeability field is utilized in generating these flow-front predictions,

and there are certain regions within the field that cannot be considered trustworthy. Hence, a process of data cleaning is

conducted, which will be elaborated upon and discussed in the subsequent section.

4.4.1.1 Permeability data cleaning

To enhance the reliability of the permeability data, a data cleaning procedure is implemented to eliminate information in

which there is less confidence. One such type of data is associated with the porous media locations where the resin did not

reach during the experiment. Consequently, the inferred permeability data in these regions cannot be considered valid.

After excluding these unreliable data points, the resulting trustworthy areas are displayed in figure 9.
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Figure 9: Example of the identified permeability field after trimming the regions where the resin did not reach. The permeability component

kxx, kyy , and kxy are plotted from left to right, respectively.

There is another category of data that is deemed untrustworthy, which pertains to the locations along the x and y

axes. Specifically, in the case of kxx, the data along the y-axis is considered unreliable since kxx does not play a role in

determining the flow in that direction. Similarly, for kyy, the values along the x-axis are not trusted. The resulting version

of the data that is considered trustworthy, after removing these unreliable values, is presented in figure 10.

Figure 10: Example of the identified permeability field after all the trimming of the untrusted data. The permeability component kxx, kyy , and

kxy are plotted from left to right, respectively.

It should be noted that even though the data of kxx along the x-axis and kyy along the y-axis are trustworthy, in fact

the most trustworthy in the data, they were removed so that each location have full permeability tensor information; so

that one convolutional neural network can be used for the permeability tensor prediction.

4.4.1.2 Permeability data augmentation

The data that will be used in training the convolutional network is the lightbox images as in figure 2 and the cleaned

permeability data as in figure 10. The lightbox images are cropped in 50× 50 pixels images, where each crop corresponds

to a permeability region. The data is, then, organized as a list of image crops and corresponding permeability tensors.

Data augmentation is used in order to increase the amount and variety of data used in the training. Rotation of 90o

and 180o is performed on the cropped images and the permeability tensor is rotated accordingly. The rotated permeability

is obtained through the following equation:
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Krot = RTKR, (25)

where R is a rotation tensor that reads as:

R =





cos(θ) − sin(θ)

sin(θ) cos(θ)



 (26)

and θ is the angle of rotation.

The original dataset form along with the augmented data is shown in figure 11.

Figure 11: A sample of the data to be used for the convolutional neural network training which includes a lightbox cropped image and the

corresponding permeability tensor labels. On top, one can find the cropped image and corresponding permeability tensor labels, and at the

bottom, the augmented data through applying rotation of 90o and 180o along with rotated permeability tensor data.

4.4.2. Training the CNN permeability model

The CNN is trained from scratch on the cleaned and augmented dataset obtained from the previous stage. The dataset

size obtained from 33 experiments (one experiment is left out for testing purposes) is about 18, 000. This is split into

training and validation sets with a ratio of 9 : 1. L2 normalization is applied to all the trainable parameters in the network

to avoid overfitting. Mean absolute error is used as the loss function to be minimized. Adam minimization algorithm is

used for 1000 epochs with an initial learning rate of 0.001, with a batch size of 128. In the training process, convergence

is determined upon observing a divergence between the training and validation errors for over 100 consecutive iterations.

The model associated with the minimal validation error is subsequently retained for testing.

4.4.3. Model evaluation

To validate the developed model, leave one out cross-validation (LOOCV) method [55] is used to ensure that the model

is not biased and the predictions are accurate regardless of the chosen test set. To this end, one of the 34 experiments is

left out for testing and the training procedure is done using the remaining 33 experiments. After the model is trained, it

is used to predict the permeability of the left-out test. The predicted permeability is used to perform forward simulation

using PINN and the results are compared to the existing experimental flow front images. The results of the simulation

using the CNN-predicted permeability field are also compared with the simulation using an average experimental measure

of the permeability. This process is repeated for all 34 tests, where the CNN is retrained from scratch every time using a

different test, and the training set is changed accordingly. The algorithm below clarifies the model evaluation process.
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Algorithm 1: Deatiled procedure for the leave one out cross validation methodology.

Leave 1 experiment as a test set;

i=0;

while (i < 34) do

- train the CNN using the rest 33 experiments;

- Make permeability prediction of the left-out test;

- Perform simulation using the predictions and compare with experiments;

- change the left-out test and change the training set accordingly;

- i=i+1;

end

Two different error measures are used to assess the performance of the model. The first is the absolute difference

between the experimental flow front image at the final time step and the simulation results which measures the percentage

of the mispredicted pixels, referred to as ep and defined as:

ep =

∫

Ω
2|c− cexp| dX

∫

Ω
c dX+

∫

Ω
cexp dX

, (27)

where c is the fraction function solution using the permeability prediction method and cexp is the fraction function

from the experiment.

The second error uses the Hausdorff distance [56] which is a measure of the distance between two shapes (set of points),

in this case the predicted flow front shape compared to the experimental flow front shape. The Hausdorff distance between

two sets X and Y is defined as:

dH(X,Y ) = max

{

sup
x∈X

( inf
y∈Y

d(x, y)), sup
y∈Y

( inf
x∈X

d(x, y))

}

, (28)

where sup represents the supremum, inf the infimum, and where d(x, y) quantifies the distance from a point x ∈ X to

a point y ∈ Y . Figure 12 can help to visually understand the two error definitions given two curves (flow front shapes), X

and Y .
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Figure 12: [a] A graphical representational of the error ep, where the shaded area between the two flow front shapes, X and Y , represents the

mispredicted pixels. [b] The Hausdorff distance between two curves, X and Y [57].

Following the definition of the Hausdorff distance, the second error measure, referred to as ed, can be defined as:

ed =
Hd

H0
(29)

where Hd is the Hausdorff distance between the model and experimental flow front, and H0 is the Hausdorff distance

from the experimental flow front shape to its center of mass which is used for normalization.

5. Results

The two error metrics distributions are plotted for all 34 tests in histograms (figures 13 and 14). The y-axis represents

the number of occurrences and the x-axis represents the error in percentage.

Figure 13: Histogram plot showing the number of occurrences in the y-axis and the mispredicted pixels error ep measure in percentage in the

x-axis for the simulation using CNN-predicted permeability and the simulation using the average permeability.
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Figure 14: Histogram plot showing the number of occurrences in the y-axis and the shape error ed measure in percentage in the x-axis for the

simulation using CNN-predicted permeability and the simulation using the average permeability.

Regarding the first error metric ep, the developed CNN model produced prediction errors in the 34 tests with a mean

of 12% and a standard deviation of 5%. While the uniform permeability model produced errors with a mean of 16% and a

standard deviation of 6%. Concerning the second error measure ed, the CNN model produced errors in the 34 tests with

a mean of 11% and a standard deviation of 3%. While the uniform permeability model produced errors with a mean of

15.6% and a standard deviation of 6%. It can be seen from the two error figures that CNN results have a high probability

of producing low errors (< 10%) and there is a low probability of having high error. For the results using an average

value of the permeability, there is a low probability of getting very low errors and the error distribution follows a normal

distribution trend with errors centered nearly 15% for the 2 error measures. It can be concluded that using the CNN

predicted permeability field there is a higher probability that the predicted flow front matches the reality as compared to

using a single average value.

In general, the central injection of plain-weave fabrics results in an anisotropic elliptical flow behavior according to

experiments. In some of the test cases, the experimental injection front has a shape close to an ellipse, meaning that there

are low local defects or variability. Both the CNN and the average permeability produced comparable results as in test case

number 21 plotted in figure 15. In this test, the CNN produced an error of 6.6%, while the average permeability produced

an error of 12.1% using the mispredicted pixels error. Using the shape error, the CNN produced an error of 5.8%, while

the average permeability produced an error of 9.0%.
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Figure 15: Flow front positions at three different time instants for the experimental, simulation using the CNN-predicted permeability, and

simulation using average permeability for test number 21.

If there is high local variability, it is expected that the experimental flow will not follow the ideal elliptical shape.

Two test cases are shown where the experimental flow fronts are not elliptical and exhibit less anisotropic behavior. It

could be due to local features such as gaps or misorientation between tows in the samples. The two tests, numbers 24

and 26, are plotted in figures 16 and 17, simultaneously. The CNN managed to accurately capture these features from the

images producing a good prediction for the permeability which was proven by the accurate flow simulation that matched

the experimental flow front shape. As opposed to the results using an average permeability which, by essence, could not

capture this effect.

Figure 16: Flow front location at 3 different time instants of experiments number 24. The figures show the experimental flow front along with

the simulated flow front using the CNN predicted permeability and the measured average permeability value.

For test number 24, the CNN produced an error of 5.3%, while the average permeability produced an error of 20.5% using

the mispredicted pixels error. Using the shape error, the CNN produced an error of 7.4%, while the average permeability

produced an error of 16.0%.
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Figure 17: Flow front location at 3 different time instants of experiments number 26. The figures show the experimental flow front along with

the simulated flow front using the CNN predicted permeability and the measured average permeability value.

For test number 26, the CNN produced an error of 6.9%, while the average permeability produced an error of 26.2% using

the mispredicted pixels error. Using the shape error, the CNN produced an error of 9.2%, while the average permeability

produced an error of 24.2%.

6. Conclusion and perspectives

6.1. Conclusion

A method to predict the permeability field from macroscale fibrous porous media images is introduced. This in turn can

be used to perform accurate simulations for flow in porous media capturing flow effects due to local permeability variations.

The results obtained in this study are promising and can easily be transferred to a different field with different types of

porous media. Extension to 3D porous media is an expected evolution of the presented work, although data acquisition

might be more difficult for this case.

Two main advantages of the present technique can be concluded. The first is the ability to make predictions of the

permeability field capturing the local effects within one part and also capturing the variability from one part to another.

The second is the possibility of using the same trained CNN to predict the permeability field of any 2D geometry since the

training is performed on image crops of the big macroscale image. Even though this needs experimental testing but it is

an obvious possible advantage to the method.

6.2. Perspectives

This work opens three main potential perspectives. The first perspective is the possibility of generalizing the technique

to predict the permeability for any planar geometry. The second is applying the technique to a different thin fibrous textile

other than the plain weave which was used in the data generation and model training. The third is the extension of the

method to thick or curved textiles.

6.2.1. Training and Prediction for planar geometries

The primary advantage and strength of the presented technique lie in establishing a connection between the macroscopic

geometry image and the localized small image crops. Through training the CNN on these image crops, the model gains

the ability to predict the permeability field for any 2D planar geometry with any injection strategy.
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The image crops, irrespective of the macroscopic geometry, exhibit consistent characteristics. This consistency enables

the prediction of the permeability field for an arbitrary 2D planar geometry, making it independent of the specific geometric

configuration. In essence, the presented method is local and therefore ”geometry agnostic,” meaning it can potentially

handle diverse geometries without requiring specific adaptations or modifications.

Moreover, in this article, the training has been performed with central injection experiments. But any other injection

strategy (peripheral, multi-gates...) could be used during the training phase.

6.2.2. Generalization for other thin textiles

In this study, the training of the CNN involved utilizing data obtained from experiments conducted on a plain weave

textile. To enhance the data set and improve the model’s ability to generalize, data augmentation techniques were employed.

However, a crucial question remains regarding the model’s performance when applied to different fibrous media structures

such as, for instance, twill weaves, braided architectures, or even in-plane sheared materials. Verifying this generalization

necessitates conducting experiments specifically designed to test for these materials.

By training the model on different fibrous textiles, the generalization of the model will be enhanced. In addition,

it will be valuable in the future to expand the training set by incorporating data of textiles in unsheared and sheared

configurations. This broader training approach would allow the model to learn and adapt to the features present in

different fibrous textiles and deformation configurations.

Finally, for structural composite applications many plies of textiles are laid-up. Depending on the nature of the textiles,

more or less nesting takes place. For theses configurations, the model can be trained with the superposition of the local

areal weights from the images of each single plies and injections of the corresponding multiple ply-stacks.

6.2.3. Extension to thick or curved textiles

The method presented in this work could be extended to thick textiles. The training procedure can be numerically

extended to thick textiles and 3D flows. However, the bottlenecks will mostly rely on the experimental testing procedures

in 3D domains in which data acquisition in the 3D volume is needed. Moreover, expensive 3D imaging techniques will be

required (such as X-ray tomography) so as to have a proper textile geometrical description and dedicated sensing for flow

front evolution.

For deployment on curved thin shell-like structures, the model does not require further training. We would need images

from multiple points of view of the curved textile to identify the “flattened” textile crops [58, 59, 60]. Once this is addressed,

the proposed framework in this paper could be developed to curved thin structures. Of course, for highly curved textiles,

the latter could exhibit in-plane deformations such as shearing. For the scenario, further training in sheared configuration

will have to be performed. One option is to train in planar and sheared configuration or to train in curved configuration.

For training in curved configuration, we would have to ensure that the flow images can be mapped back to the curved

geometry. There has been work in the literature considering the extension of PINN to curved thin structures for solid

mechanics applications [61].
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