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aNantes Université, École Centrale Nantes, CNRS, GeM, UMR 6183, F-44000, France
bCenter for Composite Materials, University of Delaware, Newark, Delaware 19716, USA

Abstract

In the Resin Transfer Molding (RTM) process, a polymeric resin is injected inside a dry

preform to fill the gaps around and inside the fiber tows. Simulating this process at the

scale of the tows is challenging because of the computational cost associated to solving

a three-dimensional dual-scale flow problem. In this work, a novel Dual-Scale Skeleton

model (DSS) is introduced, capable of solving a dual-scale flow problem at an affordable

computational cost. The three-dimensional geometry of a multi-layer layup, consisting

of inter-tow channels and permeable tows, is replaced by a skeletonized representation

of the original subdomains. Dual-scale flow is modeled using a Reynolds-Darcy finite

elements formulation. The model is validated numerically and its application is demon-

strated over a few test cases. The adoption of the DSS model allows one to simulate

complex dual-scale flow problems over large domains at a reduced computational cost

when compared to full 3D solutions.
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1. Introduction

Resin Transfer Moulding (RTM) is a family of Liquid Composite Moulding (LCM)

processes used to produce net shape composite structural parts in which a fibrous pre-

form is compressed inside a rigid mould and impregnated with a thermoset resin. After

the resin cures, the solidified part is demoulded [1]. When manufacturing parts using

the RTM process, engineers are interested in predicting the filling pattern to ensure

no defects such as dry preform regions or voids will occur due to insufficient infiltra-

tion. This is typically explored using numerical simulations to model the macroscopic

flow inside the fibrous material using Darcy’s law [2, 3]. Such simulations can also

be used to design and introduce flow control in the process to prevent defects [4, 5]

However, simulations rely on assigning the preform permeability values that quantify

the resistance of the microstructure to resin flow. This upscaled tensorial quantity can

be estimated by experimental characterization on a flat sample material [6, 7], or can

be analytically or numerically characterized [8]. In recent years, significant efforts have

been devoted to the numerical characterization of permeability. By simulating Stokes

flow at the mesoscale inside a digital Representative Volume Element (RVE) of the ma-

terial [9, 10, 11], the pressure drop in the domain can be measured and the macroscale

permeability tensor of the sample can be calculated. However, the high computational

cost associated with the simulation of a 3D dual-scale flow limits the size of the domain

to a few centimeters and is not representative of the complex preform microstructure

[12]. As of today, 3D mesoscale simulations allow one to estimate the permeability of a

material but simulating the filling of an entire part at that scale is unfeasible and cannot

be used to optimize the process[13]. Due to this limitation, long range features (local

defects, ply drop-offs, change in fiber orientations) and their effect on the filling process

cannot be taken into account. In the attempt to expand the domain size, researchers

look at alternatives to solving a full Stokes flow and reduce the computational cost of
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the problem. Examples applied to textiles are the Pore Network Model (PNM) [14] or

the Lattice-Boltzmann method (LBM) [15], with the advantage of a lower number of

unknowns to be resolved than the number of DOFs required by a detailed mesh. In

the present work, the approach known as skeletonization is explored: the topological

medial skeleton of a three-dimensional geometry is extracted, and then the flow problem

is solved on a new two-dimensional space at a reduced computational cost.

Skeleton-based models. Medial skeletons of shapes were historically introduced by Blum

in 1967, defined as the ”locus of centers of maximal spheres bi-tangent to the shape

boundaries” [16]. The geometrical nature of the skeleton is dependent on the topological

dimension of the original geometry: the medial skeleton of a three-dimensional set

of boundary surfaces is built as a set of surfaces described by the points equidistant

from the boundaries. In its numerical form, such geometrical object is discretized as

a surface mesh of two-dimensional elements. Today a number of numerical algorithms

have been developed for the extraction of medial skeletons from complex shapes, such

as the Voronoi method [17, 18], the Grassfire method [19], the sequential Betti-number

based algorithm [20], the extended shrinking algorithm [21], and distance-transform

(DT) based algorithms [22]. A comprehensive review of skeletonization algorithms was

realised by Saha et al. [23].

Casting a three-dimensional problem onto a two-dimensional space requires making

some assumptions about the governing equations. Typically, for the case of creeping

flow inside narrow gaps, lubrication theory is used [24]. The transverse velocity of the

fluid is neglected and the local gap height is captured in the hydraulic permeability

term h2/12 contained in the Reynolds equation. Lubrication has been historically

employed to model flow in bearings [25] and in porous rocks containing a network

of fractures [26, 27, 28]. Flow models in porous media based on medial skeletons

and lubrication have been developed before, for example in [29, 30, 31]. Random
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porous media structures were reduced to skeleton representations using Voronoi diagram

method [32]. Wong et al. [11] solved lubricated flow on a 1D medial axis mesh to

compute the upscaled permeability of textiles. They anticipated the possibility to

extend the approach to three-dimensional space, proposing to solve a lubricated flow

problem on a ”stream surface” mesh. In [33] lubricated flow on the Medial Surface

skeleton mesh was tested against full-dimensional Stokes flow for several test cases,

including calculating the permeability of selected textiles. To the best of the authors’

knowledge, all of the skeleton-based models proposed so far are based on single-scale

flow. Defining a medial skeleton for a dual-scale domain is challenging since adjacent

subdomains are reduced to non-connected skeletons. Formulating a dual-scale flow

model based on skeleton domains requires a new definition of a dual-scale skeleton.

Objective. In this work a novel Dual Scale Skeleton (DSS) model is introduced: a

skeleton-based model to address dual-scale flow typically encountered in RTM processes.

First, a new definition of dual-scale skeleton domain is presented. Then the DSS model

is formulated and validated by comparison with a full-dimensional solution. Finally,

a series of filling simulation test cases are presented to showcase the potential of the

model for next generation RTM process simulations.

2. Methodology

2.1. Medial Skeleton mesh

The classical definition of a medial skeleton mesh, which is limited to single domain

geometries, needs to be adapted for dual-scale flow models. When adjacent subdomains

in a dual-scale input geometry (channels and yarns) are reduced to their skeleton form,

their physical connection at the interface is lost because two separate skeleton subdo-

mains are obtained. To address the interaction between channels and yarns, some form

of connectivity must be reintroduced between these separated skeletons. A modified
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Figure 1: Illustrated definition of geometrical quantities in the hybrid skeleton mesh; a) element size, 2D example; b)
definition of cross-section area assigned to 1D elements

definition of medial skeleton mesh is proposed, named hybrid skeleton mesh: channels

and yarns are generated as independent skeleton meshes, and then assembled into one

global skeleton mesh by addition of interface elements. The hybrid skeleton mesh can

be obtained from any 3D elements mesh which presents at least two separate volume

subdomains. These correspond to the channels and the yarns subdomain, which will be

referred to as Ω1 (channels) and Ω2 (yarns) respectively. An example of input mesh is

shown in Fig. 2a, which represents a porous yarn immersed in a channel. Subdomains

Ω1 and Ω2 are reduced to their skeleton meshes Ω̂1 and Ω̂2 respectively (triangular

elements). At every vertex i the distance di between the node and the input geometry

boundary is calculated and each 2D element is assigned a scalar value he that quantifies

the local gap of the position occupied by that element, expressed as the averaged nodal

gap value:

he =
1

3

3X

i=1

2di (1)

The geometric meaning of Eq. 1 is illustrated in Fig. 1 (a 2D medial axis representation

is used for simplicity). Skeletons Ω̂1 and Ω̂2 are then linked through a set of 1D interface
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elements, denoted as Ω̂3, to restore the original connectivity. For each 1D element

connecting the sets of triangular meshes, a cross-sectional area Ae is assigned, which

is approximated as an average between the areas of all the triangles connected to the

element (as illustrated in Fig. An example of geometry with labeled domains is shown

in Fig. 2. All skeleton meshes presented in this work are generated numerically using

the Voronoi method, starting from an input mesh created through Gmsh [34] or TexGen

[35]. The open-source library QHull [36] is used to compute Voronoi diagrams from a

set of input points. The input nodes used to generate the skeleton mesh are the ones

belonging to the surfaces where a channel/yarn interface or a no-slip velocity condition

occurs. Inlet and outlet regions do not participate in the generation of the skeleton

mesh. This avoids the generation of spurious branches in the skeleton.

(a) Input geometry (b) Dual-scale medial skeleton (hybrid skeleton mesh)

Figure 2: Yarn immersed in a channel: a) original three-dimensional geometry b) corresponding hybrid skeleton mesh

2.2. Dual Scale Skeleton model

In the input 3D domain, subdomains Ω1 (channels) and Ω2 (yarns) are continuous

at the interface. At any point, for an incompressible fluid with constant density, the

continuity equation is expressed as:

r · u = f (2)

where u is the three-dimensional velocity and f indicates a point-wise source term.
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By assumption, introducing the test function v, Eq. 2 is transformed in its weak form

to take advantage of the additive property of integrals:

Z

Ω

r · u v dx =

Z

Ω

f v dx (3)

Z

Ω1

r · u v dx+

Z

Ω2

r · u v dx =

Z

Ω1

f v dx+

Z

Ω2

f v dx (4)

The terms in Eq. 4 can be isolated and treated separately based on separation of

domains.

2.2.1. Channel domain

The terms in Eq. 4, defined in the channel domain Ω1, are expressed as:

Z

Ω1

r · u v dx =

Z

Ω1

f v dx (5)

To take advantage of the skeleton mesh, lubrication approximation is adopted in the

channels, similarly to what was done in [37]. The three-dimensional domain Ω1 is

replaced by its two-dimensional skeleton Ω̂1 by substituting the point-wise velocity

field u with the gap-averaged velocity hui. This operation is possible by applying the

spatial averaging theorem of the divergence operator [38], which states:

hr · ui = r · hui+ q (6)

where the term q = 1
V

R

Γw
n? · u dx will be used to represent the fluid traveling across

the interface and introduce the coupling between the two domains. By assumption, the

Reynolds gap-averaged velocity related to the lubrication approximation is adopted.

For creeping flow inside a gap of thickness h, the averaged velocity is expressed as:
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hui =
h2

12µ
rp (7)

Eq. 5 is expressed in its weak form over one single 2D element Ω̂e of the channel’s

skeleton mesh:

Z

Ω̂e

he

µ

h2
e

12
rprv dx

| {z }

a.1

�

Z

∂Ω̂e

he

µ
gv dx

| {z }

a.2

+

Z

Ω̂e

heqv dx

| {z }

b

=

Z

Ω̂e

hefv dx

| {z }

c

(8)

where the terms in Eq. 8 refer to: a.1) internal element flux balance; a.2) Neumann

flux boundary condition with g = h2

12
rp ·n on element boundary ∂Ω̂e; b) interface flux

term; c) external source term. Test function v = ηi, and trial function p = piηi are

adopted, where ηi designates linear shape functions. Following the classical theory of

finite elements Eq. 8 is expressed in matrix-vector form:

2

6
6
6
6
4

K
Ω̂1

3

7
7
7
7
5

2

6
6
6
6
4

p

3

7
7
7
7
5

+

2

6
6
6
6
4

q

3

7
7
7
7
5

=

2

6
6
6
6
4

b
Ω̂1

3

7
7
7
7
5

(9)

in which [b
Ω̂1
] represents imposed fluxes (terms a.2 and c in Eq. 8), [q] represents the

volumetric flux flowing to another domain (term b in Eq. 8), and the local element

stiffness matrix of the system is:

[Ke] =


1

µ

Z

Ω̂e

h3
e

12
rηTrη dx

�

(10)

2.2.2. Yarn domain

The terms in Eq. 4 that apply to the yarn domain are:

Z

Ω2

r · u v dx =

Z

Ω2

f v dx (11)
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By the spatial averaging theorem on operators [38], the point-wise velocity in Eq. 11

is replaced by the corresponding volume-averaged velocity hui, plus an interface term

q, as done for the domain Ω̂1. Following the same derivation, the same matrix-vector

assembly form of Eq. 9 is obtained:

2

6
6
6
6
4

K
Ω̂2

3

7
7
7
7
5

2

6
6
6
6
4

p

3

7
7
7
7
5

+

2

6
6
6
6
4

q

3

7
7
7
7
5

=

2

6
6
6
6
4

b
Ω̂2

3

7
7
7
7
5

(12)

Here, Darcy’s law is adopted as the governing equation to describe the velocity in the

domain Ω̂2, expressed as:

hui =
Kk

µ
rp (13)

where Kk is the longitudinal permeability assigned to the yarn. The transverse perme-

ability of the yarn will be handled separately, by the interface elements Ω̂3. The local

element stiffness matrix of the system is now:

[Ke] =


1

µ

Z

Ω̂e

heKkrηTrη dx

�

(14)

2.2.3. Interface domain

The subdomains Ω̂1 and Ω̂2 are interconnected by an array of 1D elements, labeled

as Ω̂3, representing the interface in between. These elements cannot be related to some

physical space, but merely represent a connection between interacting nodes between

which an exchange of fluid is allowed. Fig. 3 shows a typical interface element from

Ω̂3. The internal flux in the element can be expressed as:

qint = (u · n)Ae = uAe (15)
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Figure 3: Interface element and the internal fluxes

where u is the axial velocity of the flux, in direction of the rod, and Ae is the cross-

sectional area associated with the element. Local conservation of mass can be expressed

as:

node (i) : qi + qint = 0

node (j) : qj � qint = 0

(16)

To close the system, a definition of flux velocity u in the interface element is needed.

In the hybrid skeleton representation, the element spans inside both the channel and

the yarn domains, always sharing one node with Ω̂1 and one node with Ω̂2. A modeling

choice is made: the flow velocity in the interface is modeled using Darcy’s law in the

portion of the element inside Ω2, and u = 0 is assumed in the portion of the element

inside Ω1 (no transverse flow in the channel region to be consistent with the lubrication

approximation). Darcy’s velocity in the 1D element is expressed as:

u = �
Kt

µ

∂p

∂s
(17)

where Kt is the yarn transverse permeability and s denotes the curvilinear coordinate

of the 1D element. To be consistent with the assumptions made about the velocity, it

is necessary to properly define the pressure derivative ∂p/∂s of Eq. 17 so that only the

yarn region is taken into account. This can be achieved by assuming a linear pressure

gradient:

∂p

∂s
=

pi � pj
Le δe

(18)
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Figure 4: 1D interface element Ω̂3 connecting the domains Ω̂1, Ω̂2. A linear pressure gradient is assumed in the yarn
section of the element

where Le is the total length of the element, and δe is a scalar coefficient corresponding

to the fraction of the element length which is immersed in the yarn domain Ω1 in the

input geometry. A schematic representation of the pressure field as modeled on the

interface elements is shown in Fig. 4. Adopting this expression, the linear system from

Eq. 16 becomes:

qi �
Kt

µ

pi�pj
Le δe

Ae = 0

qj +
Kt

µ

pi�pj
Le δe

Ae = 0
!

�
�
�
�
�
�
�

qi

qj

�
�
�
�
�
�
�

=



Ke

�

�
�
�
�
�
�
�

pi

pj

�
�
�
�
�
�
�

(19)

with

[Ke] =
Kt Ae

µLe δe

2

6
4

1 �1

�1 1

3

7
5 (20)

This system expresses the local net flux balance for a 1D interface element 2 Ω̂3

between nodes i and j. A global system of equations can be formulated by assembling
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all Ω̂3 elements, to create a system of nDOFs equations:

2

6
6
6
6
4

q

3

7
7
7
7
5

=

2

6
6
6
6
4

K
Ω̂3

3

7
7
7
7
5

2

6
6
6
6
4

p

3

7
7
7
7
5

(21)

2.2.4. Global assembly

Finally by assembling Eqs. 9, 12 and 21, a global form of nDOFs equations is

obtained: 2

6
6
6
6
4

K
Ω̂

3

7
7
7
7
5

2

6
6
6
6
4

p

3

7
7
7
7
5

=

2

6
6
6
6
4

b

3

7
7
7
7
5

(22)

where [K
Ω̂
] = [K

Ω̂1
]+[K

Ω̂2
]+[K

Ω̂3
] is a n⇥n global stiffness matrix, [p] is the n⇥1 nodal

values vector and [b] is the n ⇥ 1 right-hand side vector of Eq. 3, n being the number

of DOFs. The system of equations in Eq. 22 can be solved for the nodal coefficients [p]

provided that some boundary conditions are prescribed.

2.3. Model validation

The DSS model is validated numerically by comparing it with a reference model. A

Stokes-Brinkman (SB) solution computed on a full-dimensional domain is adopted as

reference and compared with the DSS solution computed on the corresponding skeleton

mesh. The numerical solution of the SB model is computed using the FEniCS finite

element library [39, 40] by solving a mixed formulation problem composed of three

equations, respectively Stokes equation on Ω1, Darcy-Brinkman equation on Ω2 and

continuity equation on Ω1,Ω2:
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µr2
u�rp = 0 on Ω1 (23)

�φrp+ µr2hui �
µ φ

K
hui = 0 on Ω2 (24)

r · u = 0 on Ω1,Ω2 (25)

For simplicity, a scalar permeability termK was adopted in Eq. 24, but this could be

replaced by a tensorial term to reflect anisotropy in the porous domain. At the current

level of development, this possibility has not been explored yet. The test geometry

is composed of two layers: a channel domain Ω1 on top, and a porous domain Ω2

underneath it. The geometry is shown in Fig. 5 in which dimensions and boundaries

are indicated. Boundary conditions of unitary pressure difference between inlet Γin and

outlet Γout is imposed. For the solution of Brinkman’s equation, material parameters

φ = 0.3, µ = 1 Pa s and K = 1E-04 m2 are used.

Figure 5: The geometry used for DSS model test and validation

The DSS model solution is computed using an in-house written Matlab solver. So-

lutions are computed on a machine equipped with an Intel Core i5-6500 CPU 3.20GHz

and 16 GB of memory. To be coherent with the SB model, Kk = Kt = K are se-

lected in the DSS formulation. Solutions fields of pressure and velocity are computed.

Mesh parameters and solution values are provided in Table 1. The solutions of veloc-
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Model Nelem CPU t [s] uΩ1 [m/s] uΩ2 [m/s]

SB (ref.) 63316 97 7.72E-04 2.00E-05
DSS 9354 0.04 6.75E-04 2.02E-05

Table 1: Results of dual-scale validation test case described in Fig. 5

ity field in the channel direction (u1) are shown in Fig. 6 for both models. One can

observe the typical velocity profile from Stokes-Brinkman model: the parabolic profile

in the channel region and the plug flow profile in the porous region, connected by the

characteristic boundary layer near the interface. To extract some values that can be

compared with the DSS model, velocities from the SB solution are phase-averaged (uΩ1 ,

uΩ2). A series of considerations can be drawn by examining the velocity results in

Figure 6: DSS model validation: velocity comparison between SB and DSS models

the two domains individually. In the channel domain (Ω1), the DSS model yields a

relative error of ξ = 12.5% from the reference value. This error arises due to the no-slip

interface boundary condition adopted in the DSS model (Poiseuille velocity profile),

while in the SB model an interface-slip velocity is present [41, 42, 43]. This results

in an underestimation of the velocity field in the channel domain in the DSS model.

In the porous domain (Ω2), a much closer agreement between the velocity solutions

is observed (ξ = 1%). This suggests that away from the interface, when the Darcy

velocity is stabilised, the DSS model agrees well with the SB model. The CPU time

needed to compute solution according to the models is different. One must remark
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that the number of elements is also different. Even so, the DSS model shows a large

advantage in CPU time. In the light of the errors on velocity, the DSS model yields

reasonable results, especially with regard to CPU time gains. However, this single test

case should not be considered exhaustive for the quantification of the DSS model ap-

proximation: additional validations should be carried out over more complex domains

in order to properly assess the potential and limitation of the model. In particular, a

DSS/SB transient flow simulation would be valuable to assess the applicability of the

model to filling simulations by comparing the evolution of velocities throughout the

process. However, at the current state of development such validation was not carried

out. In the remainder instead, transient flow simulations using the DSS model alone

are presented.

2.4. Filling simulation

Representative test cases are presented in which a dual-scale filling simulation is

carried out at the mesoscale using the DSS model. To do so, the FE/CV software LIMS

was used [44]. The capability of LIMS to support mixed 2D and 1D element meshes has

already allowed one to simulate the dual-scale impregnation of tows [45, 46]. The DSS

model can be implemented in LIMS by assigning the material and process variables via

the input file, so that the same form of equations as in section 2.2 are preserved. A

detailed explanation of the implementation of the DSS model in LIMS can be found in

[33]. For all cases, the procedure followed is: a 3D input textile geometry is generated,

its hybrid skeleton mesh is created and the dual-scale filling is simulated using LIMS.

Boundary conditions of inlet pressure (pin = 1.0E + 03 Pa on Γ̂in) and outlet pressure

(pout = 0 Pa on Γ̂out) are used. The inlet pressure value, not representative of real

processing conditions, is chosen to avoid a too fast filling of the mesh, since the domain

lengths are in the order of centimeters. All test cases were run on the same machine as

indicated in Section 2.3. LIMS uses a direct solver on a single CPU core to solve the
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pressure field at each time step.

Case Description Nelem Memory CPU t

A Yarn immersed in channel 19456 33 MB 19 s
B a) Yarns array - high yarn perm. 383273 0.99 GB 3323 s
B b) Yarns array - low yarn perm. 383273 1.22 GB 3608 s
B c) Yarns array - transversely isotropic yarn 383273 1.29 GB 4020 s
B d) Yarns array - central racetrack 402404 1.11 GB 3748 s
C Multi-layer - central racetrack 643323 1.56 GB 4280 s

Table 2: Dual scale filling test cases using DSS model: numerical solution values

2.4.1. Test case A

For this case, the input geometry used is the one studied in Section 2.2, shown in

the figure 7a. The purpose is to demonstrate the dual-scale filling mechanism using

the simplest scenario: one yarn immersed in an empty channel. The yarn is assigned

an isotropic permeability value Kk = Kt = 1.0E � 11 m2. Boundary conditions are

applied, the DSS filling is computed by LIMS and shown as a time sequence in Fig. 8.

One can notice that the faster flow in the channels Ω̂1 is ahead of the slower flow front

(a) Input geometry
(b) Hybrid skeleton mesh

Figure 7: Test case A: geometry

within the yarn Ω̂2 and fills the channels before the yarn is fully impregnated. The role

of the interface elements is evidenced by the partially-saturated region that is ahead of

the saturated flow front in the yarn. This is the effect of the transverse flow coming

into the yarn from the already filled channel regions above and below. One can also
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notice the concave shape of the flow front in the yarn, which is due to the elliptical

cross-section of the yarn with higher thickness in the middle (more volume to fill). The

CPU cost needed to compute the dual-scale filling is of the order of seconds (Table 2).

Figure 8: Test case A: result filling sequence

2.4.2. Test case B

The purpose of this test case is to study how the dual-scale filling of an array

of yarns is affected by local features: in particular, the yarn permeability and the

presence of racetracks. An array of four yarns are lined up in a channel defined by

two parallel plates, as shown in Fig. 9a. The dimensions of gaps surrounding the

yarns have been exaggerated on purpose to highlight the fluid transfer phenomenon

from the resin channels to the yarns. In particular, thin channel slits are modeled

above and below tows so that they may be filled with resin and trigger a transverse

impregnation of the tow. These channels may not exist in a real material and their

presence is not necessary for the model. Flow is prescribed in the direction along the

yarns. Four different scenarios are considered: a) the yarns are assigned the same

isotropic permeability value as in case A (Kk = Kt = 1.0E � 11 m2); b) the yarns

permeability is decreased by one order of magnitude (Kk = Kt = 1.0E � 12 m2); c)

a transversely isotropic permeability is assigned to the yarns, with a lower transverse

permeability than in direction of the fibers (Kk = 1.0E � 12 m2, Kt = 1.0E � 13 m2) ;

d) a racetrack gap of size d = 0.5 mm is introduced in the middle of the array. For each
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of these scenarios an input mesh is created, its hybrid skeleton mesh is extracted and

the filling is simulated. The hybrid skeleton mesh from scenario a) is shown in Fig. 9b.

The results from the four scenarios are displayed in Fig. 11 at an arbitrary simulation

(a) Input geometry (b) Hybrid skeleton mesh

Figure 9: Test case B: Input geometry and hybrid skeleton mesh

Figure 10: Test case B: close-up view of the solution features and visualisation cut of the inter-layers channel domain

time of t = 16s. For the visualisation of results, the top of the mesh has been hidden to

show both channels and yarns underneath at the same time as illustrated in Fig. 10. In

all scenarios, the flow front proceeds faster in the inter-yarn channels, and follows after

some lag distance in the yarns. Upstream of the fully saturated flow front in the yarns is

a partially-saturated region caused by the transverse flow from the filled channels. The

variation of isolated parameters has an observable effect on the flow. In Scenario b), the

yarn permeability, both longitudinal and transverse, is one order of magnitude lower
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than in Scenario a). As a consequence, the resin advances more slowly in the yarns, the

lag distance from the flow front in the channels is increased and the partially-saturated

region is longer. In Scenario c) the lower transverse permeability assigned to the yarns

limits the flow rate of resin coming from the channels. As a consequence, the filling of

the yarns is mainly longitudinal, with a distinct separation between the saturated and

partially-saturated regions. In Scenario d) the larger racetrack between the two central

yarns has a trailing effect on the entire flow front pattern. As the central channel is

filled first, the transverse impregnation of the yarns originates from the center. Thus

the DSS model is able to capture these local flow anomalies. All simulations require a

higher CPU time to carry out than case A because of higher number of elements used

and larger domain (20 ⇥ 15 mm). Values are reported in Table 2.

Figure 11: Test case B: result filling sequence

2.4.3. Test case C

In this test case the DSS model is used to simulate a more complex scenario: a four-

layer quasi-UD layup with through-thickness interaction between layers. The layup

follows the sequence of orientations (from the bottom): θ = [�45�, 0�, 45�, 0�]. The

domain has a size of 35 ⇥ 35 mm. As with the previous Test case B, the width of the

fluid gaps between the tows has been exaggerated with respect to a real material. Thin

gaps have been modeled between adjacent layers to allow some flow of resin between

them and highlight the transverse impregnation of tows. However these inter-layer gaps

do not typically exist within a preform in compacted state. The presence of these gaps
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is not necessary for the model and a more realistic geometry with locally touching tows

could equally be used. Furthermore, one single central racetrack is designed in the

middle of the second layer in the stack. This local feature was included to add further

complexity to the domain. The input geometry is shown in Fig. 12a. The hybrid

Figure 12: Test case C: a) input geometry and b) hybrid skeleton mesh

skeleton mesh is extracted and shown in Fig. 12b, where inlet and outlet regions are

also indicated. The two main components of the hybrid skeleton, the channel domain

mesh Ω̂1 and the yarn domain mesh Ω̂2, have been isolated in the figure. The flow front

patterns in each layer are displayed in sequence in Fig. 13. For each layer, it is possible

to see the yarns being progressively filled with the flow front preceded by the usual

partially-saturated region as a result from the transverse infiltration. As expected the

flow front in the channels is more advanced. The effect of the racetrack on the flow

front can be observed in layer 2. Its influence can be observed also in the adjacent

layers 1 and 3, less in layer 4 (the most distant). In particular, a yarn region which

is located just above the racetrack is highlighted in layer 3: this unfilled yarn area is

entrapped between the advancing flow front saturating the yarn and the transverse flow

infiltrating from the racetrack. Such a flow pattern represents a potential risk of air

entrapment and dry spot formation. CPU time with respect to number of elements is

reported in Table 2.
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Figure 13: Test case C: result fill sequence

3. Conclusions

A new model was proposed which can handle the dual-scale flow onto a novel hybrid

skeleton mesh. The accuracy of the DSS model was assessed by comparison against

a full-dimensional Stokes-Brinkman solution, showing a maximum error of less than

15%. The model was implemented in a commercial software to simulate the dual-

scale filling of dry textiles. A series of test cases were presented in which the filling

of increasingly complex dual-scale porous domains was carried out on their hybrid

21

Accepted Manuscript



skeleton representation, at the benefit of the computational cost. At the current level

of development, these test cases require further validation, which could be achieved

only by either experimental measurement or by numerical comparison with reference

solutions to assess the expected gain in computational time. It is worth to note that

experimental validation is still very challenging because the dual scale flow in fabrics is

difficult to monitor and subjected to experimental errors. Similarly, solving the same

test cases numerically using a 3D Stokes-Brinkman transient flow solver on domains as

large as the cases presented is a challenge pertaining to high-performance computation,

which is out of scope. For these reasons, a rigorous validation of the DSS model has

still to be improved and will be subject of future works. However, the results in all

test cases show good qualitative agreement with how the flow is expected to behave in

presence of their distinctive features (racetracks, low/high yarn permeability...). The

approximations introduced by the DSS model are well balanced by the computational

efficiency: filling simulations for all test cases were carried out in a CPU time of about

one to two hours, over larger domains than typical RVEs. However, at the current

state of development, only the SB/DSS validation case in Section 2.3 can provide some

quantification of the computational savings that can be expected using this model,

for a single time step (fully saturated flow). It is reasonable to believe that the same

difference would apply when executing a transient flow simulation, where the problem

of solving for pressure/velocity must be repeated at each time step, as in test cases A,

B and C. However, at the moment, this still needs to be proven through further work.

The model proposed demonstrates potential for simulating the dual-scale filling of

a textile directly at the mesoscale, taking into account any local features modeled in

the input geometry. At the current state of development, the size of domains simu-

lated is larger than typical RVEs but still far from the size of real parts. Therefore,

the DSS model cannot be considered a replacement of macroscale Darcy models yet.
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Future works will likely explore alternative methods to generate larger skeleton meshes

efficiently, thus opening the way to simulate the filling of larger and larger parts using

the DSS model.
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[42] A. Mikelic and W. Jäger, “On the interface boundary condition of beavers, joseph,
and saffman,” SIAM Journal on Applied Mathematics, vol. 60, no. 4, pp. 1111–
1127, 2000.

[43] Y. Cao, M. Gunzburger, F. Hua, and X. Wang, “Coupled stokes-darcy model with
beavers-joseph interface boundary condition,” Communications in Mathematical

Sciences, vol. 8, no. 1, pp. 1–25, 2010.

[44] P. Simacek and S. G. Advani, “Desirable features in mold filling simulations for
liquid composite molding processes,” Polymer Composites, vol. 25, no. 4, pp. 355–
367, 2004.

26

Accepted Manuscript



[45] P. Simacek and S. G. Advani, “A numerical model to predict fiber tow saturation
during liquid composite molding,” Composites science and technology, vol. 63,
no. 12, pp. 1725–1736, 2003.

[46] S. Facciotto, P. Simacek, S. G. Advani, and P. Middendorf, “Modeling of
anisotropic dual scale flow in rtm using the finite elements method,” Composites

Part B: Engineering, vol. 214, p. 108735, 2021.

27

Accepted Manuscript


