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ARTICLE INFO ABSTRACT
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Tailored Fibre Placement
Modelling

Tailored Fibre Placement (TFP) allows manufacturing net shape preforms with continuously varying orienta-
tions and thickness. This additive technology, combined with forming, enables the design of fibre reinforced
composite parts with optimized fibre orientations. A new modelling strategy to simulate the forming of thin dry
TFP preform without backing material is proposed. The finite element model is based on an embedded element
formulation, which assumes the stitching yarn to act as a bond between fibre tows of adjacent layers. Fibre

tows are modelled with 2-node beam elements having independent generalized stress stiffnesses. The forming
of a tetrahedral shape with orthotropic final configuration is addressed both experimentally and numerically to
validate the proposed approach. The tetrahedral shape has a direct industrial application since it corresponds
to corner brackets. This study also demonstrates the ability to improve the mechanical properties of engineered
part using the hybrid TFP-forming process.

1. Introduction

Additive manufacturing of continuous fibre-reinforced composites
consists in depositing fibres only where needed (or desired) with the
possibility to prescribe curvilinear paths. Continuous Filament Fabri-
cation (CFF) technologies consist in depositing a continuous fibre tow
using a specific 3D printer. Filament Winding, Automated Tape Laying,
Automated Fibre Placement (AFP), Continuous Tow Shearing (CTS)
and Tailored Fibre Placement (TFP) are tow placement technologies
which can also be considered as additive manufacturing processes.
As AFP, CFF can directly manufacture 3D parts. However, depositing
fibres directly on highly double-curved parts without defects can be
challenging for these technologies. A two-step approach was recently
proposed in [1], where a flat preform is made using CTS before be-
ing transformed into a 3D shape via forming. This solution enables
lowering cost-production and reducing defects.

A flat TFP preform is made of one or several continuous tows laid
down on a flat backing material. Fibres are steered using numerical
control to follow prescribed curvilinear paths. The fibre tow remains in
place thanks to a zigzag stitching (Fig. 1). TFP offers a large choice of
combinations for the backing material, fibre tows and stitching yarn.
A single TFP preform can be made of several tow materials and the

backing material can be any thin material tolerant to stitching such as
a polymer film, a non-woven fabric or a conventional textile. Dry or
commingled tow is used depending on the subsequent forming process
involved. The stitching yarn material is usually polyester. TFP allows a
whole preform to be manufactured or can be used to locally reinforce
a conventional textile for instance.

Previous work on TFP focused on aligning fibres with the principal
stress directions in 2D parts [2-4]. In particular, the stress concen-
tration in notched plate can be smoothed out by using curvilinear
path circumventing the discontinuities [5-8]. Uhlig et al. [9] demon-
strate that TFP and Non-Crimp Fabrics (NCF) open-hole laminates have
similar strength using cyclic and tensile tests. Continuously varying
orientations is a degree of design freedom which allows taking benefit
of the intrinsic anisotropy of fibrous reinforcements. However, in case
of 3D part manufacturing, the principal stress directions in the part are
determined on its 3D final state. The forming process causes a change
in fibre orientation and can create defects, especially for complex
shaped parts. As a consequence, it is necessary to develop an accurate
and efficient model to simulate the forming of TFP preforms which
provides information about the final fibre orientation and density.
Only few works were dedicated to the manufacturing of 3D parts
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Fig. 1. TFP principle: (a) schematic representation and (b) example of preform.

using TFP. Moreover, they investigated the experimental folding of
flat TFP preforms or the influence of cuts in the backing material
to avoid formability issues for complex orientations on doubly-curved
shapes [10-12]. However, to the best of the authors’ knowledge, the
numerical modelling of TFP preforms during forming has not been
investigated yet.

In this paper, a hybrid solution combining the TFP technology and
forming to manufacture highly doubly-curved parts with orthotropic
fibre orientations is proposed. A new numerical modelling strategy
to simulate the forming of TFP preforms without backing material is
proposed for the first time. It aims at demonstrating the advantages
of using TFP in 3D composite parts manufacturing and raises the
challenges to be addressed to fully exploit the TFP technology in this
field.

Various finite element models have been proposed that mainly differ
from the scale used to represent the fibrous reinforcement and its
behaviour [13-15]. A TFP preform is made of several constituents
including the fibre tows, stitching yarn and backing material. In this
work, the backing material was removed from the preform prior to
forming. The multi-material architecture of TFP preforms inherently
makes its modelling complex and time consuming if all the constituents
and their interactions are taken into account. Therefore, some as-
sumptions have been made and will be discussed in the remainder
of this paper. The TFP modelling strategy proposed herein focuses
on tracking the fibre tow orientations and distribution during form-
ing. Since continuously varying orientations can be achieved in a
TFP preform, a semi-discrete approach, where fibre tows are repre-
sented explicitly using 1D beam elements is developed. The model
is based on an embedded element formulation which assumes the
stitching yarn to act as a perfect bond between intersecting fibre tows
of adjacent layers. The embedded element strategy has already been
used to model fibre-reinforced concrete [16-18] or forming of 3D
interlocks [19]. In this work, the embedded element approach allow
simplifying the interactions such as frictional contact between the
constituents of TFP preforms and in particular, avoids developing a
realistic but time-consuming modelling of the stitching yarn.

To validate the proposed modelling strategy, experimental and nu-
merical forming on a tetrahedral shape are addressed. This shape has
a highly double curvature and corresponds to a corner bracket widely
used to design composite structures. This case study will demonstrate
the ability of manufacturing 3D orthotropic parts from specifically
designed flat TFP preforms which cannot be achieved by forming
conventional textiles.

In this paper, Section 2 describes the architecture of TFP preforms
and investigates their kinematics during forming through experimental
forming on a tetrahedral shape. In Section 3, the objectives and the
fundamental hypothesis of the model, required to simplify the complex-
ity of the TFP preform architecture, are presented. The finite element
model whose main feature is the use of embedded elements will be
described as well as the finite elements implemented to model the

different features of the semi-discrete model. Finally, Section 4 presents
the forming simulation results of flat TFP preform designed to obtain
final composite parts with orthotropic properties. Comparisons with the
experimental results of Section 2 are drawn followed by a discussion on
the developed TFP preform modelling strategy.

2. TFP preform architecture and deep drawing

2.1. TFP preform deformation mechanisms

As described in Section 1, a TFP preform is made of fibre tows
placed on a backing material and remained in place thanks to a zig-
zag stitching. Non-Crimp Fabrics (NCF) are conventional textiles whose
architecture is most similar to TFP preforms, as they are made of several
UD plies stitched together with a through-thickness stitching yarn. TFP
preform can be approximately considered as a generalization of NCF to
multi-directional plies with the difference that an additional backing
material is necessary for the stitching. Besides, this backing material
can remain during forming to add polymer matrix or in the case where
TFP is used to locally reinforce another conventional textile. In this
work, the backing material is removed prior to forming.

During forming, the overall behaviour of a TFP preform will strongly
depend on the individual properties of the fibre tows, the stitching yarn,
the way they interact with each other as well as the curvilinear path
followed by the fibres. Moreover, the stitching parameters, i.e. stitch
length, width and tension represented in Fig. 2, strongly influence
the behaviour of the TFP preform. The shorter the stitch length, the
higher the friction between fibre tows and the stiffer the preform. On
one hand, the influence of the stitching parameters over the whole
preform behaviour allows varying the stitching parameters inside the
preform to overcome forming issues. On the other hand, it increases
the architectural complexity of these tailored preforms. Consequently,
the behaviour of TFP preforms is inherently complex.

2.2. TFP preform manufacturing

TFP preforms have been manufactured at IRT Jules Verne using the
TFP ZSK © CMCW 0200-900D-2500 embroidery machine. A control
system for the tension of the upper stitching yarn has been added
and the tension of the lower stitching yarn is set via the bobbin’s
mechanism. The design of the TFP preforms used in the forming exper-
iment was carried out using a Python script that generates the stitch
coordinates. This method allows the TFP preform drawing to be set up
and the stitch coordinates to be accessed to create the corresponding
digital twin.
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Fig. 2. Stitching process parameters: (a) Stitch length d;, (b) width w, and (c) tension 7.

2.3. Choice of the formed part geometry

To demonstrate the ability of 2-layer TFP preforms to be formed
on highly double curved shapes, a tetrahedral shape has been chosen.
The tetrahedral shape is a doubly curved shape which corresponds
to angle brackets for instance. Therefore, it shows a great interest in
industries such as aeronautics. Forming using conventional textiles such
as woven fabrics or interlocks on such a shape is possible but requires
a specific design of the blank-holders and a control of the pressure
applied on them to avoid wrinkles [20-22]. However, if wrinkles can
be eliminated from the tetrahedral shape which is the useful part of
corner brackets, they cannot be avoided in the flat areas surrounding
it [20]. Moreover, the high shear angles (around 60°) weaken the part
in those regions. Consequently, forming of tailored 2-layer TFP preform
to achieve 0/90° fibre orientations in the final tetrahedral part using
basic blank-holders will greatly improve the manufacturing process and
the final mechanical properties of the part.

2.4. TFP preforms’ materials

The forming experiments are carried out at ambient temperature
and require high deformation of the TFP preforms. Rotation between
the dry fibre tows of the different layers, known as in-plane shear
for conventional textiles, is the main deformation during forming.
Consequently, it is difficult to find a backing material able to deform
accordingly at room temperature without creating defects. As a result,
the backing material has been removed prior to forming. To this end,
a PolyVinyl Alcohol (PVA) water soluble film was used as backing
material. After manufacturing, the TFP preforms were washed and then
dried in an oven at a temperature of 60 °C. The 2690 tex PET/E-glass
continuous tow (from P-D-Glasseiden GMBH, Oschatz, Germany) was
stitched onto the PVA film (Gunold® Solvy film 80, Stecker) using a 24
tex PET stitching yarn (Serafil fine, Amman). The stitching length and
width were set to 2.5 mm and the stitching tension to 5 1072 N. The
stitching length is reduced in U-turn and highly curved paths.

2.5. TFP preform forming on a tetrahedral punch with 0/90° final orienta-
tions

The forming on a tetrahedral shape aims at demonstrating the
ability to achieve 0/90° final orientation in the whole part without
defect using a minimalist forming set-up. The 2D displacement field
(orthogonal to the punch displacement) and the final angles between
the layers on one face of the formed part have been measured for quan-
titative analysis of the results. Besides, the punch force vs displacement
is monitored.
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Fig. 3. Example of orthotropic design for a structural part with a triple point.

2.5.1. TFP preform design

Fig. 3 shows an example of structural part having a triple point at
the vertex and the desired fibre orientations. Some fibres are parallel
to the corner’s edges while other are orthogonal to them. As shown in
Fig. 4(a), the angle between the edges of one face of the tetrahedral
shape is equal to 90°. Their projection in the plane whose normal is
parallel to the tetrahedral shape axis gives an angle of 120° (Fig. 4(b)).
Consequently, placing fibres parallel to the edges for each face leads
to the TFP pattern shown in (Fig. 4(c)) whose fibre orientation will
have to change by 30° during forming. Figs. 4(d) and (e) illustrate a
possible combination of two layers to obtain the flat pattern presented
in Fig. 4(c). Therefore, this design is supposed to lead to the targeted
3D orientation via 30° in-plane shear of the flat TFP preform. Layer
1 is obtained from a spiral equation with points placed every 60° to
achieve a hexagonal shape. The number of fibre tows from the centre
to the outer edge is equal to 50. Layer 2 is built by offsetting the curve
linking the edges of a face for each face with 50 fibre tows. In Fig. 4(d)
and (e), the number of tows has been divided by a factor of two for the
sake of clarity.

2.5.2. Forming device

The forming device shown in Fig. 5 is composed of a tetrahedral
punch mounted on the cross head of a universal testing machine (AG-
Xplus by Shimadzu). Two square plates (550 mm x 550 mm X 10 mm)
made of poly(methyl methacrylate) were used as blank-holder. One
plate is fixed to a metallic frame and the other is placed directly onto
the preform. A pin system prevents the movable plate of the blank-
holder from moving in the plane. No pressure is applied on the movable
plate so that only its weight is distributed on the TFP preform at the
contact surface. The punch consists of a tetrahedral part, which is
120 mm high, and a 20 mm thick base. The punch controlled by the
testing machine has a stroke of 140 mm with a speed of 15 mm/min.

2.5.3. Optical measurements and post-processing
Quantitative measurements were carried out to compare the re-
sults with the forming simulations presented in Section 4. A camera
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positioned along the displacement axis of the punch takes a picture
every 2 mm. The camera allows visualizing the 2D displacement field
orthogonal to the punch displacement. An EOS Canon Mark II camera
was used with a constant focal length of 15 mm and initially set at
520 mm from the TFP preform. At the end of the experiment, a picture
was taken after placing the camera according to the normal of one of
the face of the tetrahedral punch. This picture allows to measure the
final angles between the two layers on one side of the part.

Prior to forming, red-ink markers were drawn on the TFP preform
in order to compute the 2D displacement field. The post-processing was
achieved using a Python script and the open-source image-processing
library OpenCV. Fig. 6 presents the flowchart of the 2D displacement
field calculation algorithm. The initialization of the post-processing
consists in identifying the markers on the first image (frame 0). From
the identified markers, the pixel located at the centre of each marker
is stored in the array p, which is given as input of a sparse optical
flow algorithm. A mesh is built from the triangulation of p, for the
post-visualization of the 2D field displacement. This algorithm is able

to track the motion of a set of pixels from an image to another
assuming that intensity variations are negligible between two succes-
sive frames and that neighbouring pixels have similar motion. The
function “calcOpticalFlowPyrLK” from OpenCV was used and is based
on Lucas-Kanade method. The array p, represent the position of the
pixel p, in the ith frame given as second input. Then, the increment of
displacement dU is simply computed as the difference between the old
(py) and the new position (p;).

2.5.4. Results

Final angle between layers on a face. The final configuration of the TFP
preform is shown in Fig. 7. Neither wrinkle nor fibre tow slippage were
observed in the formed part.

The angles between the layers on one face have been computed
and are shown in Fig. 8. First, the fibre tows were drawn on an open-
source software Inkscape and exported into a svg file (Fig. 8(a)). Then,
a python script extracts the fibre tows defined as a list of points in
the svg file and computes the intersections between the fibre tows of
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Fig. 7. Final configuration of tetrahedral forming.

the different layers. A mesh is generated from the triangulation of the
intersection points and the angles between the layers at the mesh’s
nodes are computed and displayed (Fig. 8(c)). Fig. 8(b) shows the
distribution of angles around 90°. Considering a normal distribution
of the angles, a mean angle of 90.72° with a standard deviation of
4.31° is obtained. Due to the chosen design of the layers, the fibres
between layers are parallel in the centre of each face. It was noticed
too late that this orientation defect can be eliminated by modifying the
deposition strategy without impacting the initial orientations in the rest
of the preform.

2D displacement field. The result of the marker tracking post-processing
to calculate the 2D displacement field is shown in Fig. 9(a). The bottom
part of the TFP preform slightly left the camera window during the
experiment. Consequently, the markers that are not present during the
whole experiment were not processed. This 2D displacement field will
be used for comparison with the simulation in the last section of this
paper. In particular, this post-processing gives the final contour of the
TFP preform which is usually used for comparison with simulation
results.

Punch force vs displacement curves. The punch force vs displacement is
given in Fig. 9(b). The punch force-displacement has a strong non-
linear behaviour. It is composed of a first part from 0 to 120 mm
where the punch force increases slowly until the punch stroke reaches

the height of the tetrahedral shape (120 mm). Then, the force in-
creases rapidly due to the contact of the TFP preform with the 20 mm
thick punch base. The force required during forming is quite low and
the movable part of the blank-holder stayed in place. Therefore, the
minimal blank-holder setup used is sufficient.

3. Formulation of the TFP preform models

To manufacture flawless 3D parts from TFP preform without trial
and error methods, it is necessary to simulate the forming process. This
section presents the formulation of the different features of the TFP
preform model. First, the objectives to be fulfilled by the modelling
strategy are briefly described before choosing the one that is more
likely to meet them among the existing ones, i.e. continuum, discrete
and semi-discrete modelling strategies. Next, the general principle of
the chosen modelling strategy is presented along with its fundamental
assumptions. In this study, quasi-static analysis is performed using
explicit time integration. Therefore, the finite element formulations are
limited to the determination of the internal force vector expression.

3.1. Objectives of the modelling and choice of the strategy

The modelling of TFP preform forming has to provide information
on the fibre orientation and distribution in the final 3D part obtained
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Fig. 9. (a) 2D displacement field (mm): last frame and superimposed wireframe mesh displaying 2D displacement magnitude, (b) Punch force-displacement curve for the tetrahedral

forming experiment.

elements was considered more appropriate than using a continuum
approach requiring robust homogenization procedures. The modelling

after forming. Besides, the occurrence of defects must also be predicted,

such as wrinkles observed in conventional textile forming.

of the stitching yarn is reduced to the minimal for the sake of effi-

ciency. Obviously,

TFP inherently offers a high degree of freedom for the design of
tailored preforms. Therefore, the model must allow for all the capa-

other modelling strategies are possible. However,

as a first contribution to the simulation of TFP preform forming, this
approach was deemed a good compromise between model accuracy and

simplicity of development.

bilities of TFP, such as curvilinear fibre placement and heterogeneity

of the fibre tow distribution. With this philosophy in mind, a semi-

discrete model where fibre tows are modelled explicitly using 1D
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Fig. 10. Influence of the overstitching on the cohesion between fibre tows.

3.2. Semi-discrete modelling and fundamental hypothesis

The first step is to distinguish between weak and strong deformation
modes and interactions. To this end, the elementary behaviour and the
role of each component of the TFP preform are first described.

3.2.1. Fibre tows

Fibre tows are the main component of a TFP preform that con-
stitutes the core of the reinforcement. Continuous fibre tows have
predominant axial stiffness and a generally low bending stiffness. How-
ever, as mentioned in [23], the bending stiffness strongly influences the
shape of wrinkles and is therefore required for a good prediction of this
forming defect.

3.2.2. Stitching yarn

The stitching yarn allows the fibre tows to be precisely placed and
maintained on the backing material during the manufacturing of the
flat preform. It is responsible for the cohesion between the fibre tows
and the backing material, as well as between the fibre tows within
the same layer or between adjacent layers. The stitching parameters,
i.e. the length, width and tension of the stitches, as well as the spacing
of fibre tows, directly influence this cohesion. As shown in Fig. 10,
overstitching within a layer or between layers increases the cohesion of
the TFP preform. The stitching yarn material can be a polymer that can
be melted during forming. In this case, it can be very complex to control
and predict the motion of the fibre tows. As noticed in the forming
experiments, the stitching yarn ensures a strong cohesion between the
layers, even after removing the backing material, due to overstitching
between layers.

3.2.3. Fundamental hypothesis of the modelling

Continuously varying orientations is the main feature of TFP pre-
forms. Therefore, it was chosen to explicitly model the fibre tows
using 1D finite elements to track these orientations during forming.
Beam elements are required to take into account the axial and bending
stiffness of fibre tows. Fibre tows of the next layer lie on top of the fibre
tows of a previous layer and remain there thanks to the stitching yarn.
The stitching yarn is the constituent most likely to be difficult to model.
In NCF, it has been shown that the stitching yarn has a strong influence
on the shear behaviour [24,25]. When stacking several layers in TFP
preforms, the stitching yarn over-stitches the tows of the previous
layers. Consequently, considering the fibre tows of the next layer as
being fixed on those of the previous layer seems to be a reasonable
assumption. In other words, it is considered that the stitching yarn acts

Composites Part A 158 (2022) 106952

as a bond between intersecting fibre tows of adjacent layers. This means
that slippage between the fibre tows of different layers is neglected.
Therefore, the stitching yarn is not modelled explicitly but involves a
transfer of forces between the fibre that cross each other in the adjacent
layers. For the case where the stitching yarn is melted, it would be
necessary to model the contacts between all the fibre tows, which
would be very expensive. In addition, the preform cohesion would be
very low and could lead to many defects in the case of complex parts.
Therefore, it is assumed that the stitching yarn remains and ensures the
preform cohesion during forming.

Although fibre tows between layers exhibit interactions due to
friction and overstitching, it is not realistic to consider them as perfectly
bound to each other. The rotation of intersecting fibre tows, known
as in-plane shear in conventional textiles, is not free. For simplicity, a
linear elastic torsional spring is added to each fibre tow intersection,
which only takes into account the frictional resistance as well as the
stitching yarn deformation due to the rotation of the crossing fibre
tows.

3.3. TFP preform model representation

Finally, the fibre tows are modelled using beam elements. The
stitching yarn is modelled implicitly by embedding the fibre tows of
the next layer in the fibre tows of the previous layer. In the following,
the beam element used to model the fibre tows is formulated. Next,
the formulation of the embedding constraint modelling the action of
the stitching yarn is detailed. Fig. 11 illustrates the definition of the
model from a 3D representation of two intersecting fibre tows using
the open-source software Texgen. In this figure, a virtual offset is used
for clarity only, which means that fibre tows are connected at their
neutral axis in the model.

3.4. Fibre tow modelling: Formulation of a beam element

Fibre tows are modelled with beam elements to take into account
the different deformation modes and not only the high tensile stiff-
ness. A 2-node flexible shear beam element, which has been widely
studied [26-28], is formulated. Therefore, the major key points are
presented and references for further computation details are given.

3.4.1. Assumptions

In this formulation, the cross sections of the beam remain plane and
do not deform during elastic deformations. Strains are small and finite
rotations are allowed.

3.4.2. Kinematics

The beam element has two nodes and each of them has three
displacement degrees of freedom (dofs) and three rotation dofs. The
position of a point in the initial and current configurations is defined
as:

X = SE, + X,E, + X;E; (Initial) €}
% = ¢(S) + X,8, + X;&; (Current) )

S is the curvilinear abscissa of the beam axis in the initial configu-
ration and (X,, X3) are the coordinates of the cross section plane. As
the cross section does not deform (no warping), the plane coordinates
(X,, X3) are unchanged in the deformed configuration. ¢, corresponds
to the position of a point located on the neutral axis. E and e define
respectively the initial and current orientations of the cross section
(Fig. 12). Since transverse shear is allowed, the tangent vector to the
centroid line g, might be different from the cross section normal ¢;.
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Fig. 11. TFP preform model.

Fig. 12. Initial (£,) and current (£2,) beam configurations.

3.4.3. Finite rotation parameterization

The current orientation of the cross section e results from applying
the rotation operator R(y) to the initial orientation cross section E
(Eq. (3)). The Cartesian rotation pseudo-vector y = yii where y is the
rotation amplitude and # is the rotation axis, is used and computed from
the rotational degrees of freedom of the beam.

e=RE 3

In addition to the rotation operator R, the tangent rotation operator
T and its vector derivative T' = DT [Z—g] are required. R, T and T’
are computed using the family of trigonometric functions established
in [28].

3.4.4. Strain and curvature vectors

Strains and curvatures are computed from the displacement gradi-
ent, more precisely through the difference between the deformation
position gradient in the current and initial configurations brought back
to the material frame:
D(S.X,.X;) = RT;’—g - %

gy dR [\ = | o >
= RT <E —e1> +RTE (Xz@z +X3€3)

From this expression, the strain and curvature vectors are identified.

4

f:RT<%-a> E:vec(RTﬂ) _qrd¥ (5)
s s s
E Kr
=|r =K
I, K

In Eq. (5), E is the longitudinal strain component, I'; and I, are

the transverse shear components. The matrix K = RT‘;—E is the skew

symmetric matrix of the curvature vector K. Ky is the torsional strain

of the neutral axis whereas K, and K, are the bending strains along the
cross section axis.

3.4.5. Equilibrium equations, internal virtual work and strain-curvature
variations

The quasi-static equilibrium equations in the material frame are
given hereafter for both forces (Eq. (6)) and moments (Eq. (7)):

d ﬁ g TZ7 =

— +KF+R f5;=0 6
s I3 (6)
=0 @)
F=[N 0 QZ]T and M = [M; M, MZ]T are respectively
the force and moment vectors in the material frame. N is the tensile
force, O, and Q, are the transverse shear forces of the cross section.
My is the torsional moment, M, and M, are the bending moments. f;
and imj are external distributed forces and moments in the spatial frame
brought back to the material frame by applying R”.

Using the weak form of the equilibrium equations in the material
frame, the internal virtual work can be expressed as:

L
Wiy = / (F&F + M&I?) s (8)
0

where L is the initial length of the beam.

To compute the internal forces, expressions for the strain and cur-
vature variations are required. They can be derived by differentiating
the expressions for the strain and curvature vectors given in Eq. (5):

-/
B — lsd,
SI| _|RT 0 RTG,T"
[ a] = Rido TN 55 ©
5K o0 1T KTT+T'|| .
oy
D

Then, the relationship between the variations of (50,,17/',17/) and the
variations of the nodal parameters can be expressed using the interpo-
lation shape function of the beam. In this study, a linear interpolation
is performed leading to Eq. (10).

, 5
sg | [NI 0 NI 0 jﬁ”
%

si'[=| 0 N1 o0 Na|l 10)

5
s 0 NI 0 NI ¢f2
217}
Q

Combining Egs. (9) and (10), the strain-displacement matrix B is
obtained:

B=DQ an
Then, the expression of the internal forces vector can be deduced:

- L [F
r= [ o[ 1] as
0 M

12)
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3.4.6. Constitutive law
The forces and moments vectors are related to the strains and
curvatures vectors by the following equation:

F r
|:_) =C|:_‘:| (13)
M

K
As a tow is not a continuum, independent section stiffness are used.
Moreover, couplings between the deformation modes are neglected.
Therefore, the constitutive matrix C is a diagonal matrix given by:

C=diag(Cy Cr; Cp, Cg, Cgy Cgs)

Cy is the tensile stiffness, C; and C, are the transverse shear
stiffnesses. Cy is the torsional stiffness, Cy, and Cg; are the bending
stiffnesses.

3.5. Stitching yarn modelling: Formulation of the embedding constraint

3.5.1. Embedded element approach: general definition

The embedded element approach consists in embedding elements
into other elements of higher dimension called host elements. The
embed of 1D elements into 2D elements and 3D elements has been
used in reinforced concrete simulations [16-18]. De Luycker et al. [19]
embedded 1D elements into 3D elements to model the forming of 3D
interlocks. The embed of a 2D membrane into a 3D solid is also a
possible option. The embedding constraint means that the kinematic
variables, i.e. displacement, velocity and acceleration, at embedded
nodes are computed from those defined at the host nodes. Therefore,
there is no relative movement between a host element and the elements
it embeds.

The embedded element approach generalized the strategy devel-
oped in [29,30] where 1D elements are placed either on the edges or
on the diagonals of the 2D elements, which in both cases means that
the nodes of the embedded element are located on the nodes of the
host elements. In the general case, the nodes of the embedded element
can be placed anywhere on the host element. However, an embedded
element cannot cross the boundaries of a host element, which means
that all the nodes of the embedded element are located either inside or
on the edges of the same host element.

In the TFP preform model, at each crossing of fibre tows, a node
is required in the mesh of the next layer (embedded layer). This
node, considered as a 0D element, is embedded in the 1D element
of the previous layer (host layer). The embedding of the next layer
into the previous layer allows for an independent meshing of both
layers, except for some nodes in the embedded layer that are needed
at the intersections with the host layer. Since the TFP constituents are
supposed to lie on the same plane in the flat configuration, this model
might only be valid for thin preforms.

3.5.2. Finite element model generation

Once the host layer has been meshed, the embedded layer is meshed
independently, except for some nodes that are required at the inter-
sections between the fibre tows of the host layer and those of the
embedded layer.

For each embedded node, the natural coordinates (@) in the host
element are computed by solving Eq. (14) using the Newton-Raphson
method:

I = 3 N (&) <M =0 a4

where x is the position of the embedded node and (&,) are the natural

coordinates of this node in the host element. N :h and xf’ are respectively
the shape function and the position of the ith node of the host element.
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3.5.3. Embedded formulation

Kinematics. The embed of a node into a host element is achieved by
computing the position of embedded node from the position of the
nodes of the host element:

%= Y NI (&) <t 15)

In this model, only the displacement degrees of freedom of the
embedded node of a beam are driven by the host beam element. In
fact, adding the embed of the rotational degrees of freedom would weld
the beams together. As mentioned earlier, the resistance to rotation
between intersecting fibre tows is taken into account through a linear
elastic torsional spring.

Internal forces contribution. As a consequence of this kinematic con-
straint, the internal forces of an embedded node are transferred to
the nodes of the host element. Therefore, the internal forces of a host
element at node « are composed of the internal forces F;, f resulting
from the host element behaviour and the internal forces Fi(’r’”e due to
the embedded nodes (Eq. (16)):

F* =F% +F¢ (16)

int inty int,

The internal forces due to the embedded nodes are computed from
the internal forces F¥, at the k-nodes which are embedded, as given by
Eq. (17):

Fj = X NJEOF, an
k

Fig. 13 illustrates the transmission of the internal forces from one
embedded node k; to a host element. The red and solid arrows corre-
spond to the internal forces of the embedded node which are transmit-
ted to the host element. The green arrows correspond to the contribu-
tion from the embedded node and adds up to the internal forces of the
host element (light blue arrows) to form the total internal forces at the
host nodes (dark blue arrows).

Mass contribution. Regarding the computation of the mass matrix, the
contribution of the embedded nodes to a host element is computed
according to Eq. (18) established in [31].

M = N EIM Ny&) (18)
k

In Eq. (18), Greek superscript refers to the nodes of the host element,
whereas Latin superscript refers to the embedded nodes. As explicit
time integration is performed in the present study, a lumped mass
matrix is used. Therefore, M* is the lumped mass of the kth embedded
node. Although lumping the mass matrix in the presence of embedded
elements is not straightforward, it is done by summing the columns of
the mass matrix (sum over f index). In the case of quasi-static analyses,
this approximation is supposed to have minor effects on the results.

Fig. 14 describes the general workflow of an explicit finite element
solver under embedding constraints.

4. Simulation of TFP preform forming

This section investigates the validity of the proposed TFP preform
model through forming simulation on the tetrahedral shape. The 2D
displacement field and the angles between layers on one face are
compared with the measurements shown in the previous section. Fi-
nally, the major results of this study are discussed as well as future
challenges.

4.1. General settings

4.1.1. Material parameters

The TFP preform model depends on seven material parameters. The
beam element required six material parameters, namely, the tensile
stiffness (Cj), the transverse shear stiffnesses (Cr, Cr»), the torsional
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Fig. 14. Flowchart for an explicit finite element solver including embedding constraints.

Table 1
Material parameters for the simulation.
Element Parameter Value Unit
Cp 1400 kN
Cry 700 kN
C 700 kN
B r2
eam Cxi 1 kN mm?
Cka 0.1 kN mm?
Cis 1 kN mm?
Torsional spring Cr, 1 N mm

stiffness (Cg,) and the bending stiffnesses (Cg,,Ck3). Besides, the
linear coefficient of the torsional springs at intersections between fi-
bre tows of different layers is Cr,. Due to a lack of resources, the
characterization of these material parameters has not been carried out.
Consequently, the values of the material parameters given in Table 1
have been estimated and are supposed to give an acceptable order of
magnitude. In particular, the tensile stiffness C; is estimated from the
Young’s modulus of E-glass fibres taken equal to 72.5 GPa. The value
of the transverse shear stiffness is taken as half the value of the axial
stiffness. The torsional and bending stiffness have non zero but low
values.
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4.1.2. Finite element solver

A research finite element code based on explicit time integration
scheme has been developed especially for this study. The contact inter-
actions between the forming tools (blank-holders, punch) and the TFP
preforms are solved using the forward increment Lagrangian multipliers
method [32]. Forming tools are modelled using discrete rigid surfaces.
A constant time step of 10™* s is used for the simulations.

4.2. Tetrahedral shape forming

4.2.1. Finite element model

Layer 1 is first meshed with an element size of 2.5 mm. Then, layer
2 is meshed with the same element size and nodes are appended at
intersections with the first layer. These additional nodes are embedded
in the corresponding host elements of layer 1. The adjacent nodes of
the nodes located at the intersections are deleted if the element size is
lower than half the initially prescribed size. The total number of beam
elements is 22190 and the simulation runs in 12 h using four cores of
an Intel(R) Core(TM) i7-8750H CPU 2.20 GHz processor. The friction
coefficient between the fibre tows and the forming tools is equal to 0.2,
even though it might be different since the blank-holders are made of
PMMA and the punch of PLA. A displacement of 140 mm is imposed to
the punch. Regarding the blank-holder, the fixed part is clamped and
the movable part can only move along the punch axis.
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Fig. 15. Top and side views of the tetrahedral shape forming simulation at different instants.
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Fig. 16. (a) Comparison between experimental and numerical results: experimental preform contour (dotted line) and simulation (dashed line) (left) and superposition of the final
configurations of experimental (picture) and simulation (green wireframe mesh) (right), (b) Final angles between layers on one face: the surface displaying the smooth angle field
was built by triangulation of the intersections between the fibre tows.
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4.2.2. Results and comparison with experiments

Fig. 15 shows the configuration of the TFP preform at different times
from top and side views. In Fig. 16(a), the final configuration of the
simulation is superimposed on the experimental result. The predicted
contour matches well the experimental one. In the TFP path of the
simulation, the curved paths connecting the straight ones have been
removed for simplicity. It might contribute to the differences observed
between the contours.

Fig. 16(b) shows the final angles between the two layers on a face of
the tetrahedral shape. The angles are very close to 90° at every position
on the face.

4.3. Discussions and extension of the proposed modelling strategy

As a first attempt, the proposed TFP preform model is quite efficient
and gave satisfactory results. The numerical tool developed in this work
aims at helping the mechanical designer to predict the formability of
flat TFP preforms.

However, to improve the prediction of this model when the fibre
tows density in the layers is higher, the lateral contact between the
fibre tows has to be taken into account. This could be achieved by
adding contact interactions between the beam elements. Moreover,
the stitching yarn, which was supposed to act as a hinge connection
between intersecting fibre tows, could be modelled differently to take
into account slippage between fibre tows. The linear elastic torsional
springs at intersections could also be modified to account for non-linear
behaviour.

The modelling strategy proposed in this paper allows the modelling
of TFP preforms without backing material. However, it would also
be interesting to investigate the forming of preforms made from con-
ventional textiles that are locally reinforced with TFP. For instance,
continuous tows can be added in some regions to remove stress concen-
tration, especially around holes. Stitching a continuous tow on top of
conventional textiles will modify their behaviour during forming and
could lead to defects. Consequently, extending the proposed work to
TFP preforms with backing material is a challenge to be addressed.

In the example addressed in this work, the determination of the flat
TFP pattern leading to an orthotropic configuration in the final 3D parts
was achieved intuitively. To address the orthotropic design of parts
with even more complex geometries, a numerical method performing
the “flattening” of the 3D orthotropic design needs to be developed.
An interesting approach has been proposed in [1] which is based on
the reverse numerical modelling of double diaphragm forming and was
applied to a single layer CTS preform.

5. Conclusions

The forming of dry and thin TFP preforms without backing mate-
rial has been investigated both experimentally and numerically on a
tetrahedral shape. It was shown that an orthotropic final configuration
(90.72°+4.31), which cannot be achieved using conventional textiles,
can be obtained with TFP preforms. The tetrahedral shape has a direct
industrial application since it corresponds to corner brackets. There-
fore, this work demonstrates the ability to improve the mechanical
properties of structural part using TFP preform forming.

A finite element model of TFP preforms is proposed and based on
an embedded element formulation where the stitching yarn acts as a
bond between intersecting fibre tows of adjacent layers. The fibre tows
are modelled using beam elements with independent generalized stress
stiffnesses. The fibre tows of the next layer are embedded in the tows
of the previous layer. The model assumes quasi-inextensibility of the
fibre tows and no slip between the components of the TFP preform.
The forming simulations of the tetrahedral shape gave results in good
agreement with the experimental ones. Lateral contact between fibre
tows of the same layer and slippage between tows of adjacent layers
could be incorporated in case of higher fibre density preforms.
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Finding a suitable backing material that allows for very large de-
formations and stitching is difficult. In future works, modelling the
forming of TFP preforms with backing material should be investigated.
This model could take into account tow-to-backing material slippage,
while keeping an embedded element formulation. This new model will
allow simulating the forming of TFP preforms with conventional tex-
tiles as backing material and therefore addressed another application
of the TFP technology, namely local reinforcement.
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