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ABSTRACT

The Lip-field approach was introduced in [1] as a new way to regularize softening material models.
It was tested in 1D quasistatic in [1] and 2D quasistatic in [2]: this paper extends it to 1D dynam-
ics, on the challenging problem of dynamic fragmentation. The Lip-field approach formulates the
mechanical problem to be solved as an optimization problem, where the incremental potential to be
minimized is the non-regularized one. Spurious localization is prevented by imposing a Lipschitz
constraint on the damage field. The displacement and damage field at each time step are obtained
by a staggered algorithm, that is the displacement field is computed for a fixed damage field, then
the damage field is computed for a fixed displacement field. Indeed, these two problems are convex,
which is not the case of the global problem where the displacement and damage fields are sought at
the same time. The incremental potential is obtained by equivalence with a cohesive zone model,
which makes material parameters calibration simple. A non-regularized local damage equivalent to
a cohesive zone model is also proposed. It is used as a reference for the Lip-field approach, without
the need to implement displacement jumps. These approaches are applied to the brittle fragmen-
tation of a 1D bar with randomly perturbed material properties to accelerate spatial convergence.
Both explicit and implicit dynamic implementations are compared. Favorable comparison to several
analytical, numerical and experimental references serves to validate the modeling approach.

Keywords Fragmentation, Damage, Fracture, Dynamic, Lipschitz, Lip-field

1 Introduction

Fragmentation is a challenging application for failure modeling approaches, as failure is pervasive through the domain.
It is indeed a multiscale problem, balancing the localization processes that lead to fracture surfaces with a significant
interactivity between the multiple failure points. Accordingly, these competing physics lead to a material response
varies which significantly with loading rate; with quasistatic and low-velocity loadings, a small number of dominant
cracks is sufficient to relieve the structure; in contrast, strongly dynamic loadings lead to rate-dependent multiple
fragmentation [3].

Much study on fragmentation has been motivated by military application, with foundational studies performed by
Mott [4], supplemented by a number of experimental studies (e.g. [5]), analytical models (e.g. [6, 7]), and numerical
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models (e.g. [8, 9, 10, 11]). The original motivation persists (e.g. [12, 13]), and the topic has additional relevance in
such diverse fields such as ice-sheet morphology (e.g. [14, 15]), geophysics (e.g. [16, 17]), and nuclear reactor fuels
(e.g. [18]).

Fracture of softening materials is physically characterized by a process zone ahead of the cracks tips where micro-
cracking nucleate and coalesce to give macro-cracks. Taking into account the characteristic length of this process zone
is a key point in numerical modelling of softening materials.

A first and very popular model to consider this characteristic length is the cohesive zone model (CZM) [19, 20, 21, 22].
It consists in modeling the macro-cracks by displacement jumps, with cohesive forces acting on the crack lips over a
certain distance before the crack tips. These cohesive zones are usually introduced at the boundaries between finite
elements, which make them very dependent on the mesh orientation. Despite this limitation, this cohesive element
approach has been advanced for fragmentation studies, especially for quasi-one-dimensional problems [8, 9, 10, 11,
23]. Some approaches like the eXtended finite element method (X-FEM) [24] alleviate the mesh dependency by
allowing the introduction of cohesive cracks inside the finite elements, however modelling complex crack patterns like
branching or coalescence remains challenging from a geometry perspective.

Other means of discrete fracture representation that have been used to model fragmentation include various meshfree
and particle methods, such as: smooth particle hydrodynamics [25, 26], material point method [27], discrete element
method [28], reproducing kernel particle method (RKPM) [29], and peridynamics [30]. There an impressive diversity
in these approaches, and an exhaustive review is beyond the scope of this work. However, it bears mention that
several meshfree methods have been proposed that integrate aspects of cohesive modeling in order to represent Griffith
failure. Exemplars include the virtual internal bond method [31], RKPM with cohesive tractions [32, 33], cracking
particles method [34], cohesive molecular dynamics methods [35], bond-based peridynamics with energetic criteria
[36], multiscale cohesive atomistic methods [37], and the optimal transport method coupled with eigenerosion [27].

An alternative class of numerical failure modeling is continuum damage models. These models represent the influence
of micro-cracks by means of some internal damage variable [38, 39]. With this approach complex crack morphol-
ogy (e.g. branching, networks, fragmentation) is handled natively, even if the exact position of macro-cracks is not
available anymore. The failure of the material is represented by a softening constitutive model; however, local damage
models suffer from the well-known problem of spurious mesh dependency [40], that is a dissipated energy which tends
to zero when refining finite element meshes.

These models need a length scale `c to recover well-posedness. This problem has been widely studied, see for instance
higher-order gradient models [41, 42] or regularization of internal variables [43, 44, 45, 46, 47]. Alternatively, a local
damage model can be regularized by introducing a characteristic time instead of a characteristic length [48, 49, 50, 51].
Delay damage models and nonlocal integral models are compared in [52]; it seems that even if both models can
regularize local damage models, their validity domain depends on the strain rates. A recent assessment of the delay
damage model in limit cases may also be found in [53].

Another approach of recent interest is the phase-field fracture model [54, 55], which derives from a smoothing of
fracture mechanics. Based on the variational approach to fracture [56], it uses a smoothed representation of the
macro-cracks to get a process zone with a finite thickness and can deal with complex crack topologies. It was initially
developed for brittle fracture, but more recent works have extended it to cohesive fracture [57, 58], enabling application
to ductile fracture [59]. The phase-field approach has also been applied to dynamic brittle fracture [60, 61, 62, 63].

The Thick Level Set (TLS) approach introduced by [64, 65] defines the damage variable as a user-defined function of
a level-set function corresponding to the distance to the damage front (boundary between the damaged and undamaged
material). In this framework, the iso-`c of this level-set function gives the crack position, which can be enriched to
introduce displacement jumps [66]. Complex crack patterns can be captured using specific element cutting algorithms
[67]. The TLS has been applied to dynamic fracture [68] and fragmentation [69].

A new regularization method, called the Lip-field approach, was introduced in [1]. It is based on formulating the
mechanical problem to be solved as an optimization problem, where the unknowns are the displacement field and
the damage variable (with eventually other internal variables like plastic deformation for instance). The expression
of the potential to be minimized is exactly the same as the non-regularized problem, however a Lipschitz constraint
is applied on the damage variable to keep its gradient bounded. The idea is similar to the graded damage model
from [70, 71], where some constraints are applied to the damage variable and its gradient through some Lagrange
multipliers. However, the implementation is different; the Lip-field approach does not need the gradient of the damage
variable, which can be kept at the integration points. This makes the implementation of Lip-field in a standard finite
element code easier. Also, [1] demonstrated the existence of bounds which can be used to decrease the size of the
domain where the damage variable has to be computed, reducing computing times. Note that the idea of keeping the
gradient of some problem variable that Lip-field and graded damage have in common is not new, see for instance slope
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constrained topology optimization [72]. This approach was tested in 1D and 2D on quasistatic simulations [1, 2],
with damage and softening plasticity (1D case) models. Compared to the TLS approach, the Lip-field approach does
not require the level-set technology and yields a convex optimization on the damage variable. Also, as for the phase-
field approach the Lip-field solution proceeds with a staggered scheme in which each step is rather straightforward to
implement in the finite element framework (a Python Lip-field implementation is provided in [2]).

In this paper, the Lip-field is extended to 1D dynamics on the aforementioned fragmentation problem. The paper is
organized as follows. Section 2 describes the mechanical formulation of the 1D fragmentation problem. Section 3
focuses on the Lip-field regularization. Section 4 explains how to get a Lip-field model equivalent to a linear CZM.
It also gives a simplified implementation of a CZM which can be used as comparison. Details about the numerical
resolution are given in Section 5. Some numerical results are presented in Section 6. These results are discussed in
Section 7. Section 8 concludes the paper.

2 The 1D fragmentation problem

We consider the deformation with respect to the time variable t of a 1D bar Ω = [0;L], represented by its elongation
u(x, t) for (x, t) ∈ Ω× [0;Tmax]. In the framework of small-strains assumption, the uniaxial strain ε writes

ε = u,x (1)

We look for the bar displacement u ∈ U such that∫ L

0

σε(u∗) dx =

∫ L

0

ρüu∗ dx, ∀u∗ ∈ U∗ (2)

where σ is the uniaxial stress and ρ the density. U(t) is the space of the kinematically admissible solutions

U(t) =
{
u ∈ H1(Ω) : u(0, t) = 0, u(L, t) = ε̇0Lt

}
(3)

and U∗ the test functions space

U∗ =
{
u ∈ H1(Ω) : u∗(0) = 0, u∗(L) = 0

}
(4)

ε̇0 is the initial, uniform strain rate that is imposed on the bar as initial condition:

u(x, 0) = 0, ∀x ∈ Ω (5)
u̇(x, 0) = ε̇0x, ∀x ∈ Ω (6)

Imposing experimentally such an initial velocity condition in Ω can be done, among others, by pulsed magnetic fields,
see for instance the work of [73, 74] who used such an experimental setup to study the fragmentation of metal rings.
The bar is made of a brittle material characterized by a free energy

ϕ(ε, d) =
1

2
g(d)Eε2 (7)

where d is a damage variable and E the Young modulus. g(d) is a decreasing function such that g(0) = 1 (undamaged
material) and g(1) = 0 (fully damaged material). The state equations are

σ =
∂ϕ

∂ε
= Eg(d)ε, Y = −∂ϕ

∂d
= −1

2
g′(d)Eε2 (8)

where the prime indicates a derivative with respect to d. The evolution laws are chosen as

ḋ ≥ 0, Y − YcH(d) ≤ 0, (Y − YcH(d))ḋ = 0 (9)

where Yc is the critical energy release rate and H is an increasing function such that H(0) = 1, called the “softening
function” in what follows. Note that the energy release rate is symmetrical in tension/compression. Asymmetry did
not seem necessary to obtain good results as it will be shown in Section 6, but could be easily implemented if needed,
see [2].

Solving the fragmentation problem described by the above equations requires to determine, at each time tn, the dis-
placement field un and the damage field dn. In what follows, we will assume that (un, dn) are known, and we seek to
compute (un+1, dn+1) at time tn+1 = tn + ∆t (the “n + 1” indexes are hereafter dropped for simplicity). It can be
formulated as an optimization problem:

(u, d) = arg min
ũ∈U,d̃∈D

F (ũ, d̃) (10a)

F (u, d) =

∫ L

0

1

2
ρ

(u− up)2

β∆t2
+ ϕ(ε(u), d) + Ych(d) dx (10b)

3
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where

h(d) =

∫ d

0

H(d̃) dd̃ (11)

and

U =
{
u ∈ H1(Ω) : u(0) = 0, u(L) = ε̇0Ltn+1

}
(12)

D = {d ∈ L∞(Ω) : dn ≤ d ≤ 1} (13)

The way the Dirichlet boundary conditions that appear in (12) are applied is detailed in Section 5. Note that the
definition of D automatically ensures the irreversibility of the evolution of d. The predictor up is defined by

up = un + ∆tvn +
∆t2

2
(1− 2β)an (14)

vp = vn + (1− γ)∆tan (15)

with v the velocity and a the acceleration. The numerical parameters β and γ determine the type of numerical in-
tegration (explicit or implicit). Then, a is computed (see detail in Section 5) and gives the final values for u and
v

u = up + β∆t2a (16)
v = vp + γ∆ta (17)

The choice β = 0 corresponds to the explicit dynamics (central difference method). The new displacement is found
by u = up and thus will not depend on the coming value of damage. The case β = 1/4, γ = 1/2 corresponds to the
implicit Newmark scheme (undamped trapezoidal rule). Note that for the explicit scheme, it is common to consider a
lumped mass matrix, whereas for the implicit scheme, an exact mass matrix integration is performed. Also, taking the
variation of (10b) with respect to u gives the time discretization of the weak form of the equilibrium (2), where the
acceleration is obtained by equation (16) :

∫ L

0

σε(u∗) dx =

∫ L

0

ρ
(u− up)

β∆t2
u∗ dx, ∀u∗ ∈ U∗ (18)

while the variation of (10b) with respect to d and the constrain d ∈ D gives equations (9).

Solving (10) in space D is an ill-posed problem, which leads to solutions exhibiting spurious mesh dependency.
Therefore, the Lip-field approach [1] introduces an alternative problem

(u, d) = arg min
ũ∈U,d̃∈D∪L

F (ũ, d̃) (19)

where
L = {d ∈ L∞([0, L]) : |d(x)− d(y)| ≤ |x− y|/`, ∀x, y ∈ [0, L]} (20)

The only difference between problems (10) and (19) is the space where the solution d is computed: by enforcing that
d must belong to L, we prevent the gradient of d to go to infinity, thus avoiding spurious localization. In practice, this
problem is not convex with respect to (u, d), therefore, it is solved with a staggered iterative process2:

uk+1 = arg min
ũ∈U

F (ũ, dk) (21a)

dk+1 = arg min
d̃∈D∪L

F (uk+1, d̃) (21b)

Problem (21a) is trivially convex with respect to u for a fixed d, whereas problem (21b) is convex provided that h(d)
is convex and g(d) convex, both bounded from below, so that it has a unique solution for a given u.

3 Lip-field regularization

In this section, we focus on the minimization problem with respect to d given by equation (21b), finding a solution
d which is in space L. Detailed explanation and demonstration can be found in [1]. In 1D, the domain is discretized

4
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Figure 1: Discretization of a 1D bar. Displacements are stored at nodes, and damage variables at the integration points,
located at center of each element.

with Ne linear finite elements of equal size he, where the displacement u is stored at each finite element node, while
the damage d is stored at the element integration points (element centroids), as illustrated on Figure 1.

In this case, the Lipschitz constraint on the damage variable simply writes

di − di+1 − he/` ≤ 0, i = 1, ...Ne − 1 (22a)
di − di−1 − he/` ≤ 0, i = 2, ...Ne (22b)

The above condition can be provided to any optimizer to solve (21b). This problem can be solved in the entire
computation domain, however [1] proposed an efficient way to reduce the size of the domain where problem (21b)
needs to be solved, which is used in this paper. The first step is to solve (21b) without the Lipschitz constraint:

d = arg min
d̃∈D

F (uk+1, d̃) (23)

This provides a prediction d of the damage field. If it satisfies the Lipschitz constraint, then dk+1 = d (see Figure 2).
Otherwise, it was shown by [1] that dk+1 can be bounded by a lower projection π` and an upper projection πu

π`d(x) = min
y∈Ω

(
d(y) +

1

`
|x− y|

)
(24a)

πud(x) = min
y∈Ω

(
d(y)− 1

`
|x− y|

)
(24b)

such that
dn ≤ π`d ≤ d ≤ πud ≤ 1 (25)

and
π`d ≤ dk+1 ≤ πud (26)

An important consequence is that
π`d(x) = πud(x)⇒ dk+1(x) = d(x) (27)

We can make use of this property to solve (21b) only where π`d(x) 6= πud(x), thus reducing the size of the problem
to be solved.

4 Equivalence with a cohesive zone model (CZM)

In this section, we discuss the expression of the softening function, and in particular its primitive h, introduced in
equation (11). In [75], it was shown on a 1D case that for a particular choice of h, it was possible to mimic the
behavior of a linear cohesive zone model (CZM) (see Figure 4). The same reasoning is used in this paper.

Considering for g the following expression:
g(d) = (1− d)2 (28)

The expression of h which allows to mimic a linear CZM is

h(d) =
2d− d2

(1− d+ λd2)2
(29)

where
λ =

2Yc`

Gc
(30)

2Here, we distinguish between timesteps and iterations, with the former annotated as subscripts (e.g. dn) and the latter as
superscripts (dk).
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where dist(x , y) is the minimal length of the path inside ≠ joining x and y (the distance is
considered infinite if the two points cannot be connected inside≠). The dist function is a metric
since it satisfies for all x , y , z 2≠:

dist(x , y) = 0 , x = y (11)

dist(x , y) = dist(y , x) (12)

dist(x , y) ∑ dist(x , z)+dist(z , y) (13)

The value M defined above is denoted lip(d). We define the regularization space for the damage
field

L = {d 2 L1(≠) : lip(d) ∑ 1/l } (14)

where l is the regularizing length. The set L is convex. We seek the solution as "one" of the global
minima

(u,Æ,d) = arg min
(u ,Æ)2Un£An

d2Dn\L

F (u,Æ,d) (15)

We proceed by alternate minimization.

(uk+1,Æk+1) = arg min
(u ,Æ)2Un£An

F (u,Æ,d k ) (16)

d k+1 = arg min
d2Dn\L

F (uk+1,Æk+1,d) (17)

For the first minimization, the damage variable is frozen and the problem is thus identical to
problem (6). It is a classical non-softening step. The second minimization, (17), is less common.
The objective function is convex (and separable) as well as the constraint Dn . The Lip constraint
is non-local as it ties the damage variables between points. The optimization to find d is thus
potentially time-consuming when turning to a numerical implementation. The good news is
that the quest for d may be decomposed into three steps reducing dramatically the cost of
the optimization. The first step is to create a trial d field denoted d by ignoring the Lipschitz
constraint and performing a decoupled minimization at each point

d = arg min
d2Dn

F (uk+1,Æk+1,d) (18)

If the trial damage d satisfies the Lipschitz constraint, it is the solution we are looking for as
indicated in Figure 1 (left). If not, the optimal damage field will be different from d .

dn dn

d̄ = d k+1

d̄

L L

ºud̄

d k+1

ºl d̄

Figure 1. A sketch of the local update d from the previous known damage field dn . If the
update satifies the Lip constaint (left), we have directly the solution d k+1. Othewise (right),
the local update needs to be projected back to the Lip constraint while minimizing the
objective function F . The upper and lower projection give bounds to the solution.

—, 30th March 2021

Figure 2: Sketch of computation of local update dk+1 from dn [1]. If d is in L, then dk+1 = d. Otherwise, π`d and
π`d give bounds for the projection of d on L.

6 Nicolas Moës and Nicolas Chevaugeon

We can find an upper bound of the domain over which d k+1 will differ from d . We define two
projections onto L, a lower projection ºl and an upper projection ºu:

ºld(x) = min
y2≠

(d(y)+ 1

l
dist(x , y)) (19)

ºud(x) = max
y2≠

(d(y)° 1

l
dist(x , y)) (20)

We prove in the appendix that these projections satisfy the following inequality:

dn ∑ºld ∑ d ∑ºud ∑ 1 (21)

and provide bounds for the optimal damage

ºld ∑ d k+1 ∑ºud (22)

As an important consequence, the trial and optimal solutions coincide wherever the bounds are
equal

ºld(x) =ºud(x) ) d k+1(x) = d(x) (23)

A sketch of the projections is given in Figure 1 (right) and they are also illustrated on the one-
dimensional example, Figure 2.

0 a b 1

x/l

0.2

0.4

0.6

0.8

d

dn

�ud̄

�ld̄

d̄

dk+1

Figure 2. A sketch of the bracketing capability of the upper and lower projections. Outside
the interval [a,b], the projections are equal and thus d k+1 = d . Inside the interval [a,b], the
projections bracket d and d k+1.

4. Elastic and plastic softening models

Consider the one-dimensional model of a bar of length L and unit section attached at its left side
and pulled with an imposed displacement ud(t ) at it’s right end. The displacement at time t must
belong to the set

U (t ) = {u 2C ([0,L]) : u(0) = 0, u(L) = ud(t )}

whereas the set of admissible displacement variations is given by

U§ = {u 2C ([0,L]) : u(0) = 0, u(L) = 0}

We now detail several incremental potentials to be used in the simulation.

—, 30th March 2021

Figure 3: Illustration of the properties of the upper and lower projections [1]. Outside the interval [a, b], the projections
are equal and thus dk+1 = d. Inside [a, b], we have π`d ≤ dk+1 ≤ πud

Figure 4: Linear traction-separation law for cohesive zone

6
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where Gc is the material toughness. Note that h is convex provided that λ ≤ 1/2. Also, in the framework of the CZM
equivalence, the material must start breaking when the stress is equal to the critical stress σc, which imposes

Yc =
σ2

c

2E
(31)

In what follows, we will simply call “Lip-field” the Lip-field model associated with the above g(d) and h(d) functions.

We have explained how to get a Lip-field model equivalent to a linear CZM3, so it would be logical to compare the
results obtained with a true linear CZM. We implemented and alternate version of the CZM, inspired by the so-called
crack-band model from [76, 77]. It consists in using a damage model depending on the finite element size he. We
consider a purely local damage model, so that (u, d) is solution of the following problem

(u, d) = arg min
ũ∈U,d̃∈D

FCZM(ũ, d̃) (32a)

FCZM(u, d) =

∫ L

0

1

2
ρ

(u− up)2

β∆t2
+ ϕ(ε(u), d) + YchCZM(d) dx (32b)

where

hCZM(d) =
1

(1− λc)

(
1

(1− λc)g(d) + λc
− 1

)
(33)

with
λc =

σche

Ewc
(34)

The first difference with the Lip-field problem described by equations (19) is that d does not need to belong to L
anymore. Thus, the resolution algorithm used to solve (19) can also be used to solve (32), just by deactivating the
Lipschitz constraint on d. The second difference is the softening function hCZM, which is computed so that the
behavior of a single finite element of size he has the same behavior as a finite element modeled with a CZM. The
details of the derivation of hCZM can be found in the appendix. Note that a 1D bar finite element described with the
equations above has analytically the same “stress-displacement at the ends of the bar” behavior as a 1D finite element
modeled using a classical CZM. The only difference is the absence of displacement jump on the finite element, which
is in 1D not compulsory if the only quantity of interested considered is the dissipated energy, which is the case in this
paper. This alleviates the need to introduce new displacement degrees of freedom as cracks appear, and makes the
implementation more straightforward.

Note that in problem (32), d does not belong to L, so its gradient may eventually go to infinity. However, because of
the dependency of hCZM(d) on the finite element size he, the dissipated energy does not go to zero when the mesh is
refined.

In what follows, we will simply call “CZM” the local damage model associated with the above hCZM(d) function.

5 Numerical resolution

The displacement, speed, and acceleration fields are discretized using classical linear interpolation functions:

u(x, t) =
∑
i∈N

ui(t)Ni(x) (35)

v(x, t) =
∑
i∈N

vi(t)Ni(x) (36)

a(x, t) =
∑
i∈N

ai(t)Ni(x) (37)

whereN is the set of the finite element nodes, as illustrated on Figure 1, ui, vi, ai are the degrees of freedom associated
to node i and Ni the corresponding interpolation function. In what follows, we will note (Un,Vn,An) the vectors

3We note that the Lip-field model derived herein is equivalent to a linear CZM in the sense that it features the same parameters
as a linear CZM ({Gc, σc}) and produces the same crack-opening behavior in 1D quasistatics for a single flaw. This is analogous
to the derivation for TLS-CZM equivalence derived in [75]. For general application, such as the present focus on 1D dynamics with
multiple opening flaws, the behavior is expected to be similar, but not to correspond absolutely.

7
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containing the degrees of freedom of (un, vn, an). They follow the same naming convention (predicted values, iterate,
values at t, etc.). By injecting this discretization in equation (2), we get the following matrix system:

[M ]{An}+ [K(dn)]{Un} = {0} (38)

where

Mij =

∫ L

0

ρNiNj dx ∀(i, j) ∈ N ×N (39)

Kij(dn) =

∫ L

0

Eg(dn)ρNi,xNj,x dx ∀(i, j) ∈ N ×N (40)

Now we discuss how to solve (38). As stated in Section 2, the computation of u depends on the values of the parameters
β and γ.

Explicit dynamic : β = 0 and γ = 1/2. If β = 0, one can see from equation (10b) that the only solution of the
problem is

{U} = {Up} = {Un}+ ∆t{Vn}+
∆t2

2
{An} (41)

The predicted nodal velocity vector is

{Vp} = {Vn}+
∆t

2
{An} (42)

Knowing {U}, problem (21b) can be solved to compute d. Then, the nodal acceleration vector {A} is computed by
solving

[M̃ ]{A} = −[K(d)]{U} (43)

where [M̃ ] is the lumped version of operator [M ]. To impose the Dirichlet boundary conditions at x = 0 and x = L,
the first and last degrees of freedom of {An} are set to 0 (which gives the expected results, since their velocity
is imposed at the begining of the simulation from the initial conditions, and the velocity at both tips of the bar is
constant.). Finally, nodal velocity vector {V } is obtained by equation (17):

{V } = {Vp}+
∆t

2
{A} (44)

The explicit dynamics resolution is summarized in Algorithm 1.

Algorithm 1: Explicit dynamic resolution
1 Initialization: n = 0, {U0}, {V0}, {A0}, d0 ;
2 while n < nmax do
3 Compute nodal displacement {U} using (41) and predicted nodal velocity {Vp} using (42) ;
4 Solve (23) to compute damage prediction d ;
5 Compute projections πud and π`d using (24) ;
6 Solve (21b) where πud 6= π`d to find d ;
7 Compute nodal acceleration {A} by solving (43) ;
8 Set first and last values of {A} to 0 ;
9 Compute nodal velocity using {V } (44) ;

10 n← n+ 1 ;

Implicit dynamic : β = 1/2 and γ = 1/4. The first step is to compute the vector of nodal displacement prediction
{Up} using (14)

{Up} = {Un}+ ∆t{Vn}+
∆t2

2
(1− 2β){An} (45)

Then, unlike the explicit dynamics case, iterations are necessary to compute {U} and d. By injecting the expression
of up in (21a), we get the linear system that needs to be solved to find {Uk+1}:(

β∆t2[K(dk)] + [M ]
)
{Uk+1} = [M ]{Up} (46)

8
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Here the boundary conditions are classically applied on {Uk+1}, by proper modifications of the matrix and right-
hand side of (46). Problem (21b) is solved to compute dk. Alternate resolution of (46) and (21b) are performed until
convergence. Finally, the nodal acceleration vector is obtained by replacing in (16) the expression of up from equation
(14):

{A} =
1

β∆t2
({U} − {Up})−

1

β∆t
{Vn} −

(
1

2β
− 1

)
{An} (47)

and the nodal velocity vector by equation (17)

{V } = {Vn}+
1

2
(1− γ)∆t{An}+ γ∆t{A} (48)

The implicit dynamic resolution is summarized in Algorithm 2.

Algorithm 2: Implicit dynamic resolution
1 Initialization: n = 0, {U0}, {V0}, {A0}, d0 ;
2 while n < nmax do
3 Compute nodal displacement prediction {Up} using (45) ;
4 k = 0 ;
5 d0 = dn ;
6 while k < kmax and erru > tolu and errd > told do
7 Assemble matrix and right-hand side of (46) ;
8 Modify matrix and right-hand side of (46) to apply boundary conditions ;
9 Compute nodal displacement {Uk+1} by solving (46) ;

10 Solve (23) to compute damage prediction d
k+1

;

11 Compute projections πud
k+1

and π`d
k+1

using (24) ;

12 Solve (21b) where πud
k+1 6= π`d

k+1
to find dk+1 ;

13 Compute errors :

erru =

∣∣∣∣{Uk+1} − {Uk}
{Uk+1} − {Un}

∣∣∣∣ , errd =

∣∣∣∣dk+1 − dk

dk+1 − dn

∣∣∣∣ (49)

k ← k + 1 ;
14 Compute nodal acceleration {A} using (47) and nodal velocity {V } using (48) ;
15 n← n+ 1 ;

6 Numerical examples

In this section, we present the results obtained with the Lip-field and the CZM. The considered example is a 1D bar
of length L = 2 · 10−3 m and cross-sectional area A = 2 · 10−7 m2 from [9, 7] made of dense alumina (Al2O3).
The numerical values of the material parameters are given in Table 1 4. Following the reasoning of [69], the Lip-field
regularization length is set to ` = 2.21 · 10−6 m, which represents half the size of the expected fragment size from
Drugan’s analysis [7] for the highest strain rate of ε̇0 = 7.5 · 106 s−1 tested in [69]. Both will be tested with explicit
and implicit dynamic resolution, with a time step of ∆t = 0.99∆tc, where ∆tc = he/c with c =

√
E/ρ the elastic

wave speed in the same material. Note that the critical time step increases when damage increases, so using a time
step smaller than ∆tc ensures the stability of explicit dynamics resolution. The values of the numerical parameters for
the implicit dynamic resolution are kmax = 10, tolu = 10−6, told = 10−6.

A stochastic approach is employed in order to hasten mesh convergence of global quantities in the otherwise-uniform
fragmentation simulations, following the observations of Molinari et al. [78] (random mesh spacing) and Stershic
et al. [69] (random material properties). Here, the Young’s modulus follows a Weibull distribution, which can be
obtained as explained in [69] by:

E(r) = E0(− ln(r))1/m + Emin (50)

4Reproducing the approach of [69], an effective Young’s modulus is employed in the one-dimensional finite element analysis
to capture the plane-strain conditions from [9]. Note that [69] used an uniaxial-strain modulus, whereas [9] presents a plane-strain
geometry.

9
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Properties Units Symbol Value
Density kg·m−3 ρ 3.9 · 103

Young’s modulus Pa E 380 · 109

Fracture toughness N/m Gc 83.13
Critical energy release rate Pa Yc 820 · 103

Critical tensile stress Pa σc 1.0 · 109

Table 1: Material properties for numerical example

Where r ∼ U(0, 1) is a uniformey distributed random variable. The value of m is set to 2, which corresponds to a
Rayleigh distribution. The values of E0 and Emin are computed to get an average value equal to E and a coefficient
of variation equal to CV = 0.01, which gives

Emin = E(1.0− 1.9130584 · CV ), E0 = 2.1586552 · E · CV (51)

Finally, the minimization problem (21b) is solved with the scipy.optimize.minimize Python routine, using Sequential
Least Squares Programming.

In Figure 5, snapshots of the damage fields for the Lip-field and the CZM are given at different time steps, for ε̇0 =
1 · 105 s−1 and he = `/10. For the Lip-field, after a first stage where the damage evolves in a purely local way,
following the variations of the Young modulus, the Lip-field regularization activates itself in the zones were damage
localizes, materialized by the black, thick horizontal lines. The number and size of these zones increase, then decrease
until their number corresponds to the final number of cracks. One can observe that the CZM can create cracks with
only one finite element. On the other hand, the Lip-field tends to spread damage on zones with a width of about 20
finite elements (see for instance Figure 5 (g)), which is equal to 2`.

Note that in the case of the CZM, even if damage tends to localize in bands of one-element width, the dissipated energy
does not tend to zero with mesh refinement, as illustrated on Figure 6. This is of course expected from the crack-band
type model used for the CZM. On Figure 6 are also plotted the results obtained with the different approaches for
different mesh element sizes. On the left is plotted the dissipated energy D, computed as:

D = A

∫ L

0

Ych(d) dd (52)

On the right is plotted the mean fragment size, obtained by taking the average value of the distance between two
cracks. A crack location is defined as the position of the centroid of any element where d > 0.98. Each data point of
Figure 6 has been obtained by taking the average of 20 runs with different random distributions of the Young modulus.
A first observation is that none of the different computed dissipated energy tends to zero with mesh refinement, which
is due to the dependency on the mesh element size of the softening function for the CZM, and due to the Lip-field
regularization for the Lip-field. The convergence speed of the CZM is rather fast compared to the Lip-field, with
results which are almost independent from the mesh refinement, while the dissipation of the Lip-field stabilizes for a
mesh element size of about he ' `/35.

Similar behavior was observed in previous studies for a Thick Level Set (TLS) model equivalent to a linear CZM,
where fine meshes were necessary to reach convergence [69, 79]. Comparable studies of dynamic fragmentation using
phase-field fracture modeling [62, 63] have also been performed; however, mesh-convergence rate was not reported in
detail.

A solution [79] was proposed to improve the TLS convergence rate, which consisted in introducing cohesive zones
prior to having the bulk damage variable going to one, thus avoiding strains going to infinite values in the bulk while
preserving the amount of dissipated energy . This solution applied to the Lip-field approach would probably help
increasing convergence speed, but is out of the scope of this paper.

The results obtained with a mesh element size of he = `/10 for different strain rates are compared to different
references on Figure 7. The four tested approaches are able to reproduce the two regimes captured by the different
references: a dissipated energy and mean fragment size that is strongly rate-dependent, while transitioning toward rate-
independence at lower strain rates. The results obtained with the Lip-field match quite well the results obtained with
the CZM. For high strain rates, the results obtained with the explicit and implicit approaches are close to each other,
while some differences can be observed for low strain rates. It can be explained by the possible non-uniqueness of the
solution of problem (19) with respect to the variable (u, d), due to its non-convexity. Indeed, in explicit dynamics, a
unique u is computed for a given un, and therefore a unique d. For a given couple (un, dn) it gives a unique couple
(u, d) which is one of the solutions of (19). On the contrary, in implicit dynamic, (u, d) is obtained by alternate

10
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(a) t = 12.364 ns (b) t = 20.136 ns

(c) t = 21.196 ns (d) t = 22.963 ns

(e) t = 28.262 ns (f) t = 44.159 ns

(g) t = 44.159 ns, zoom

Figure 5: Snapshots of damage field for the Lip-field and CZM in explicit dynamics, for ε̇0 = 1 · 105 s−1 and
he = `/10. Black thick horizontal lines indicates where the Lipschitz constraint is active.
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102 x -2

3 10x -2

4 10x -2

6 10x -6

4 10x -6

(a) (b)

Figure 6: Lip-field and CZM convergence study for ε̇0 = 7.5 · 106 s−1. Dissipated energy is plotted on the left and
mean fragment size on the right.

(a) (b)

Figure 7: Strain rate dependency for he = `/10. Comparison with Drugan [7], Zhou et al. [11], Grady [5], Glenn and
Chudnovsky [6] and Stershic [69]. Dissipated energy is plotted on the left and mean fragment size on the right. Error
bars indicate the standard deviation of the plotted quantity among the stochastic runs. Note that the magnitude of the
error bars on the dissipated energy plot is too small to be visible.

minimization (problem (21). This solution is one solution of (21) among others, which is not necessarily the same as
the one obtained in explicit dynamics. It may possible to obtain another one by changing the resolution method used,
changing the initial value of the initial iterate d0 at each time step, etc. Different methods were tried when writing
this paper, but none of them matched the explicit dynamics results, so they are not presented in this paper. However,
the differences observed are within the range of the differences observed between the different references, so telling
which solution is better between explicit and implicit dynamic is difficult. Finally, the damage field at computation
end, that is, after a time long enough for the dissipated energy to stop increasing, is plotted on Figure 8 for different
strain rates, for one particular realization of the Young Modulus.

The dependency of the results with ` is studied on Figure 9. The dissipated and mean fragment sizes are plotted for
the Lip-field in explicit dynamics, for two different strain rates and different values of `. Noting `0 = 2.21 · 10−6 m
the value of ` which was used until now, the values ` = `0, ` = `0/2, ` = `0/3, ` = `0/4 are tested on two different
cases

• Case A: The mesh element size evolves with `, so that the ratio
he

`
is fixed and equal to

1

5
. It allows to keep

a fixed resolution of the non-local zones.

• Case B: The mesh element size is equal to
`0
20

, whatever the value of `.
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(a) ε̇0 = 1 · 102 s−1 (b) ε̇0 = 1 · 104 s−1

(c) ε̇0 = 1 · 106 s−1 (d) ε̇0 = 1 · 108 s−1

(e) Zoom over the [1.585, 1.68] mm segment

Figure 8: Snapshots of the damage field for the Lip-field in explicit dynamics, for he = `/10, for different values of
the initial strain rate ε̇0, at computation end

Note that cases A and B are exactly the same for ` = `0/4. Case B was added to the study because one could expect
in case A some parasite effects due to mesh refinement which may bias the interpretation of the results. However, one
can observe on Figure 9 that for the dissipated energy and for each strain rate, the case A and B give similar results.
Higher differences are observed for the mean fragment size, but the differences lies within the stochastic spread of the
results. It seems that the dissipated energy is less sensitive to ` for the lowest strain rates.

Finally, regarding computing times, for he = `/5 (for a total of 4525 finite elements), the computation of dk+1 (for
one time step and one iteration) takes less than one second when using the projectors π`d(x) and πud(x) of equations
(24) to decrease the size of the domain where problem (21b) is solved. On the contrary, the resolution of (21b) over
the entire domain, using a trust-region algorithm implemented in the scipy.optimize.minimize Python routine (which
is more adapted to large scale problems), takes around 350 seconds, which shows the interest of using π`d(x) and
πud(x) .

7 Discussion

In this section, the equivalence between CZM and Lip-field is discussed. As explained in Section 4, the parameters of
the Lip-field model have been derived in [1] to mimic the behavior of a CZM. To explain some of the results obtained
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(a) (b)

Figure 9: Explicit Lip-field `-dependency for ε̇0 = 1 · 104 s−1 and ε̇0 = 7.5 · 106 s−1. Dissipated energy is plotted
on the left and mean fragment size on the right. Note that the order or magnitude of the error bars on the dissipated
energy plot are too small to be visible.

in Section 6, it it necessary to have a closer look at how this equivalence was established. The idea, illustrated on
Figure 10 (a) is to consider a 1D bar with a crack, modelled with a CZM on one hand, and with Lip-field on the other
hand. The parameters of the Lip-field model are computed so that the displacement at the ends of the bar and the
dissipated energy is the same as with the CZM.

However, this equivalence was established in the case where the Lipschitz constraint is active, that is the inequality in
equation (20) is an equality (meaning that the slope of the damage field is exactly 1/`). This is a necessary condition
for an analytical solution to exist. Yet, zones where the slope of the damage field is strictly smaller than 1/` may
appear in the general case as illustrated on Figure 10 (b). Dissipated energies between CZM and Lip-field are not
the same anymore. This is especially true in fragmentation as we can see on Figure 5; the zones where the Lipschitz
constraint is active, indicated by black thick lines, are very small compared to the total size of the structure.

Another source of differences between CZM and Lip-field is the case of multiple cracks, as illustrated on Figures 10
(c) and 10 (d). When two cracks are separated by a distance greater than 2` (and assuming that the Lipschitz constraint
is always active), the equivalence between Lip-field and CZM is still true. However, when this distance is smaller than
2`, the two Lip-field damaged zones overlap and the resulting dissipated energy is smaller than in the case where the
cracks are far from each other, as illustrated on Figure 10 (d). It may explain why the computed dissipated energies
seems less sensitive to ` for the lowest strain rate on Figure 9; the smaller the strain rate, the smaller the number of
cracks, and therefore the smaller is the probability to get cracks emerging with a separation smaller than `. An obvious
way to counter this effect would be to use a smaller value of ` for the highest strain rates, but it would require using
smaller finite elements, and therefore further increasing computation times.

This section emphasizes that the equivalence between CZM and Lip-field may not be fully satisfied. In some cases
it may lead to energies dissipated by Lip-field greater than the ones dissipated by CZM (situation from Figure 10
(b)) or smaller (situation from Figure 10 (d)). Both situations may frequently happen in fragmentation, which makes
difficult for example to anticipate if Lip-field fragmentation computations will dissipate more or less energy than
CZM fragmentation computations. However, it gives an interpretation to the differences observed between CZM and
Lip-field computations.

8 Conclusion and future works

This paper presents the first dynamic application of the Lip-field regularization introduced in [1], to the case of 1D
dynamic fragmentation. This problem is formulated as an optimization problem, from which we can obtain the clas-
sical explicit and implicit dynamic time discretizations. The optimization framework allows to look for the damage
variable in a space such that it does not suffer from spurious localization. Parameters of the model are determined to
mimic a cohesive zone model (CZM) with a linear traction-separation law, which makes the numerical properties easy
to calibrate, knowing the tensile stress and fracture toughness of the material.
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Cohesive zone Damage

(a)

(b)

(c)

(d)

Figure 10: Different cases where CZM and Lip-field may or may not be equivalent. (a) One crack and damaged zone
where the Lipschitz constraint is active everywhere. (b) One crack and damage zone where the Lipschitz constraint
may not be active everywhere. (c) Two cracks and two damaged zones more than 2` apart. (d) Two cracks and two
damaged zones less than 2` apart.

We would like to emphasize the simplicity of the proposed approach, that is a simple elastic potential without asym-
metry between tension and compression plus a softening function computed to get the proper dissipated energy. The
damage variable can be computed using any optimization package by providing the proper Lipschitz constraint. No
particular treatment is required to ensure the irreversibility of the damage variable, which is directly taken into ac-
count when solving the optimization problem. This is an advantage over the phase-field approach for instance, where
imposing damage irreversibility is not straightforward. Also, the Lip-field approach does not introduce any particular
boundary conditions, which is not the case of phase-field where the gradient of the damage field must be orthogonal to
the domain boundaries. The use of bounds, which allow to reduce the size of the domain where the damage variable
must be computed, decreases the computing times significantly. This feature is also interesting in a parallel context,
since the regularized damage field can be computed independently on each zone where the Lipschitz bound are differ-
ent. This is even more true in dynamic fragmentation where lot of cracks are expected. Regarding computing costs,
this paper is mainly a first step to demonstrate the capacity of Lip-field to work in dynamic, rather than to propose an
optimal implementation. That is why a proper comparison with other approaches has not been done yet, but will be
the object of a forthcoming paper.

For comparison, this paper also introduces a simplified version of a linear CZM consisting in a local damage model,
akin to a crack-band model. This allows to run CZM computations without the tedious necessity to implement discrete
displacement jumps. Results exhibited in this paper demonstrate the regularizing effect of the Lip-field approach, with
dissipated energies converging to a finite value with finite element mesh refinement. We emphasize that the simplified
CZM was used in this paper as an easy-to-implement, 1D reference solution, which behaves analytically the same as a
classical CZM. However, it would likely suffer in 2D and 3D from the same mesh dependency problems as CZM and
crack-band problem.

The numerical results obtained for the Lip-field and the CZM over a range of strain rates are compared to several
references. Along with previous studies [11, 78, 69], this work may therefore serve as a benchmark for 1D dynamic
fragmentation. Both explicit and implicit dynamic simulation results lie well within the variability range of these refer-
ences and are able to reproduce the same trends. The differences observed between both approaches may be explained
by the fact that at each time step, for a given displacement field and damage state, explicit dynamics will give a unique
solution at the next time step, while in implicit dynamics, it may be possible to find different solutions depending
on how the alternate minimization is solved. Because the results of both explicit and implicit simulations converge
to the reference range, it is difficult to tell which one is better in terms of accuracy. Further, both approaches seem
comparable in terms of mesh convergence rate and give results close to their CZM counterparts. Understanding the
differences between explicit and implicit resolution remains an open question, that will be the subject of a forthcoming
paper.

As the spatial convergence is slow, we expect that there would be a benefit to introduce cohesive zones with displace-
ment jumps prior to the damage variable in the bulk going to one, as demonstrated by [79]. For 1D problems, the
advantage would be to increase the mesh convergence rate. Regarding 2D and 3D problems, placing diffuse Lip-
damage around sharp displacement jumps would (i) provide a natural propagation criterion, (ii) help in having crack
paths independent from mesh orientation, and (iii) allow modeling of complex crack patterns, representing a clear
advantage over classical cohesive zone models. Future work will serve to verify this expectation.
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Finally, further studies could explore the effect of using spatially-correlated random fields for material properties
in fragmentation studies. In particular, it would be meaningful to examine the relationship between the material
correlation length and the failure length scale as it pertains to fragment size distributions.
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Appendix: A local damage model equivalent to a linear cohesive zone model

In this section, we derive the expression of hCZM so that the behavior of a 1D element modeled with a local damage
model is the same as a 1D element modeled with a linear CZM. The opening at the tip of a 1D element modeled with
a CZM with a displacement jump w is:

u =
heσ

E
+ w (53)

and for a 1D element with a damage variable d:

u =
heσ

Eg(d)
(54)

so the expression of w is

w =
heσ

E

(
1− g(d)

g(d)

)
(55)

By injecting the expression of w above to the linear CZM relation σ = f(w), we get

σ = σc − λcI(d) (56)

where λc = σche

Ewc
and I(d) = 1−g(d)

g(d) , which gives the expression of the element stress

σ =
σc

1 + λcI(d)
(57)

The damage initiation condition gives

Yc = − σ
2
c

2E
g′(0) (58)

and the damage growth condition is

−Eg
′(d)

2
ε2 = −g

′(d)

2E
σ2 = YcHCZM(d) (59)

By combining the above equations, the expression of HCZM is

HCZM(d) = − g′(d)

((1− λc)g(d) + λc)
2 (60)

and the expression of hCZM is

hCZM(d) =
1

(1− λc)

(
1

(1− λc)g(d) + λc
− 1

)
(61)
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[23] Raúl Radovitzky, Andrew Seagraves, Mike Tupek, and Ludovic Noels. A scalable 3D fracture and fragmentation
algorithm based on a hybrid, discontinuous Galerkin, cohesive element method. Computer Methods in Applied
Mechanics and Engineering, 200(1-4):326–344, 2011.

17



Fragmentation analysis of a bar with the Lip-field approach A PREPRINT
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