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Robotic Mosaic Atomic Force Microscopy Through Sequential
Imaging and Multiview Iterative Closest Points Method

Freddy Romero Leiro, Stéphane Régnier, Frédéric Delarue and Mokrane Boudaoud

Abstract—This paper presents a functionality that has been
developed for the home-made AFM-in-SEM robotic system at
the ISIR laboratory. The method allows extending the range
of an Atomic Force Microscope (AFM) and dealing with drift
issues by fusing multiple individually AFM topography patches.
The merging of the patches into a single image is done through
a Generalized Procrustes Analysis Iterative Closest Point (GPA-
ICP) algorithm. To validate the effectiveness of the approach, an
AFM image of a TGX1 calibration grid and a 3.4-billion-year-
old organic-walled microfossil are reconstructed by automatically
merging 50 AFM elementary topography patches of dimension
0.9 ym x 1.2 um based on feature matching. The overlap between
two adjacent patches is 50 % and 33 % in the X and Y axes
respectively. The result is a coherent 3.2 pm x 3.0 um drift-free
long range AFM topography without significant artifacts. The
method is tested using an AFM-in-SEM system based on a 3-DOF
cartesian robot equipped with inertial piezoelectric actuators.
This method can be used to extend the range of any type of
AFM with a dual XY stage setup. Thus, it opens the door for
high-resolution long-range AFM by adding a long-range coarse
resolution stage to a preexisting AFM system all without needing
to actuate both stages simultaneously.

[. INTRODUCTION

The surface area that an Atomic Force Microscope (AFM)
[1] can scan is limited by the range of motion of its XY axes.
The maximum range of such actuators is usually between 30
um and 200 um [2]. This is because AFM requires positioning
with precision and resolution in the range of nanometers [3].
Currently, the majority of nano-positioners compatible with
these requirements are based on piezoelectric actuators [4]-
[6], although MEMS based nanopositioners have also been
proposed [7]-[9]. In both cases, the maximum ranges of these
devices are limited by their fundamental principles of opera-
tion. Nonetheless, it is possible to extend the range of an AFM
system by using a dual-stage architecture where a short-range
nanopositioner stage is installed on top of a long-range stage.
The former being the fastest and more precise of the two,
while the latter having slower dynamics and coarser resolution.
However, the simultaneous operation of the two stages for a
long-range AFM imaging requires a precise knowledge of the
dynamics of the two. Stages with significant differences in
range also have significantly different operational bandwidths
[10], as these two properties are inversely correlated [4]. In
this regard, many frequency based and range based control
strategies have been developed [11]-[15].
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In practice however, regardless of the maximum possible
XY range, most AFM limit their images to an area of 100
um x100 pum [2]. One reason for this is because at this scale,
a small deviation in a sample’s orientation can saturate the Z
axis. Common ranges for a Z axis is between 10 um and 20
um [2]. So, even with a flat sample, an out-of-plane orientation
of 6 ° can saturate a 10 um range axis. This limited range
is a direct consequence of the bandwidth required for the
AFM force control loop. This is again a consequence of the
inverse correlation between range and operational bandwidth
[4]. Another important reason why AFM images have a limited
range in practice, is because piezoelectric components as well
as other elements in the control chain of an AFM can suffer
from drift/creep. The causes of the drift can be varied. Thermal
drift for example, refers to expansion and contraction of the
axes in response to changes in temperature. Similarly, piezo-
electric actuators can continue to slowly expand or contract
after the actuation voltage is stable or totally removed, this is
known as creep [16] [17]. In the case of self-sensing probes
used for AFM-in-SEM (piezoelectric or piezoresistive), their
oscillation frequency can be affected by the charge accumula-
tion and matter deposition generated by the electron beam of
a Scanning Electron Microscope (SEM) [18]. This shifts the
force reading, which shifts the Z-position of the probe when
performing AFM. The longer the AFM scan lasts, the more
the drift accumulates. Hence, the drift gets incorporated into
the AFM topography. Strategies to compensate for this drift
are varied, but most of them rely on passing two or more
times in the same region. By comparing the Z position in
the same spot at different times, a drift rate is estimated and
then compensated [16], [19]. However, the more time passes
between consecutive scans of the same spot, the less precise is
the drift estimation. This is because the drift can change from
one moment to next depending on environmental conditions of
the experiment. So in summary, the bigger the scanned area,
the bigger the effect of the drift and the less precise are the
methods for drift compensation.

This paper presents a method for the extension of the
range of any type of AFM system for the generation of
consistent drift-free long-range AFM images. It consists in
merging multiple short range AFM topographies taken at
discrete equally spaced positions to generate one long-range
topography, by using a multi-view Iterative Closest Point (ICP)
algorithm. This is a family of algorithms used to construct
3D objects and surfaces from two or more point clouds that
where obtained independently by an acquisition device. ICP
has been used extensively in the fields of computer graphics,
3D imaging and mobile robotics [20], [21] but has never
been studied for AFM imaging. In this work, the Generalized
Procrustes Analysis ICP (GPA-ICP) algorithm proposed in
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Fig. 1: Block diagram of the complete control scheme including: (a) Tip landing and Z position control scheme; (b) XY control scheme

for the patch AFM scanning and the long-range positioning and (c) p

[22] has been needed because when multiple small AFM
patches are scanned, there is still drift between patches. This
is reflected as height separation from one patch to the next.
The GPA-ICP can merge all the short-range topographies
simultaneously by matching features between patches that are
close by, hence eliminating the drift-induced patch separation.
In summary, the short-range nature of the patches ensures that
AFM scans do not risk saturating the Z axis or accumulating
too much internal drift in any patch. Additionally, the GPA-
ICP algorithm takes care of the long-range drift between
patches. In this paper, this entire method is refereed to as
Mosaic AFM. The work presented in this paper describes how
such algorithms must be configured to deal with AFM and
demonstrates the effectiveness of the approach experimentally.
The proposed method can be used in any application whenever
the AFM system can be operated with two ranges of motion:
long and short. This can be achieved either by a dual stage
setup or by using axes actuated with long-range and short-
range operation modes like stick-slip actuators. The method
consists in using the AFM’s short range and long range
stages/modes interdependently. The short-range mode/stage is
used exclusively to do AFM topographies, while the long-
range mode/stage moves to discrete equally spaced positions.
This means that the method does not require a simultaneous
use of the two stages/modes, hence no particular control
strategy is needed to manage their different dynamic behavior.
Finally, the GPA-ICP can compensate the position of the
patches not only for Z, but also for XY and for rotations. It
can then compensate position mismatches due to the difference
in positioning accuracy and resolution of the stages. Hence,
cheaper and less precise long-range positioning stages can be
used to extend the range of high-accuracy short-range AFM
systems.

The article is organised as follows: Section II presents the
features of the home-made robotic AFM-in-SEM system used
for the demonstration of the Mosaic AFM strategy. Section III
describes the automatic mosaic AFM procedure. Section IV
deals with the General Procrustes Analysis ICP (GPA-ICP)
algorithm to construct one single long-range AFM image by
merging multiple AFM patches simultaneously through least-
squares minimization. Section V demonstrates experimentally

robe positioning on the ROI using the sample holder.

the efficiency of the Mosaic AFM method on a TGX1 calibra-
tion grid and a 3.4-billion-year-old microfossil. The Mosaic
AFM images are compared with SEM images. Section VI
concludes the study.

II. AFM-IN-SEM ROBOTIC SYSTEM

The equipment consists of an AFM robotic system [23]
housed inside the vacuum chamber of a Scanning Electron
Microscope (SEM) for in situ correlative AFM/SEM obser-
vations. The robotic system consists of two main structures
(Fig. 1). The first is a 3-DOF Cartesian robot [24] that holds a
self-sensing AFM probe (Akiyama probe) and performs AFM
scans for topography imaging. The second is a sample holder
platform capable of moving along X and Y axes with a mm
range in both directions. The Akiyama probe consists of two
components: a piezoelectric quartz tuning fork through which
the probe is actuated using a voltage signal and a cantilever
with a sharp tip attached to both arms of the tuning fork.
The Akiyama probe (Fig. 3) is designed to perform Frequency
Modulated AFM (FM-AFM) [25]. The actuation signal of the
probe is controlled using an amplitude control loop and a
Phase Lock Loop (PLL) working in parallel. These two control
loops maintain the driving frequency equal to the resonant
frequency of the probe at any time during its interaction with a
surface. The output of the PLL is the probe’s shift in frequency
Af with respect its free resonance frequency. This signal is
proportional to the mean probe-sample distance within the
intermittent contact region [25].

All the axes of the AFM robotic system are moved by stick-
slip piezoelectric actuators. Such actuators have two operating
modes: fine mode for short range movements below 1.6 um
and stepping mode for long range movements up to 12 mm.
The modelling of this robot has been studied in a previous
work [26] as well as for the path following control [27]. When
performing an atomic force microscopy, a force controller Cy
(Fig. 1 (a)) is engaged using the frequency shift Af feedback to
maintain the probe-sample distance constant while the position
controllers Cy, and Cyy, (Fig. 1 (b)) are used for AFM scanning
trajectory control of the X and Y axes of the Cartesian robot
respectively. To bring the AFM probe in contact with a sample,
the strategy proposed in [28] is used.
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III. AUTOMATIC MOSAIC AFM PROCEDURE

Before starting the Mosaic AFM procedure, it is necessary
to first define a grid on the sample to be imaged with the AFM.
This grid is divided into a set of patches of the same dimension
(Fig. 2). The AFM will perform a topography imaging on each
patch. The surface of the grid and that of each patch must be
consistent respectively with the working space of the Cartesian
robot in coarse and fine modes.

_k
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patches to highlight overlaps

Fig. 2: Scheme showing the "snake" pattern used for the acquisition
of the AFM patches and the relative overlapping of the patches.

The following subsections present the robotic sequences for
mosaic AFM imaging based on multiple patch imaging and
the way the patches are arranged to ensure an efficient ROI
(Region of Interest) surface reconstruction with the GPA-ICP
algorithm.

A. Robotic sequences

One of the particularities of the AFM robotic system
considered in this study is that the axes of both the sample
holder and the AFM probe can be moved in fine mode
(nanometer resolution) and stepping mode (coarse, long-range
positioning). The stepping mode is however not suitable for
AFM scanning because it generates unwanted vibrations at
each stick and slip phase and it provides a poor resolution
[24]. Therefore, the Cartesian robot is controlled in a mixed
stepping/fine mode for the landing procedure [28] and only in
fine mode when performing an AFM scanning.

The procedure for the Mosaic AFM is done step by step
in an automated way taking advantage of the dual stepping
and fine operating modes. The user defines the sample of
interest on the SEM screen. A grid with several patches is then
virtually constructed. The aim is to perform AFM imaging
of each patch individually. The sample holder is controlled
in X and Y directions to bring the initial position of each
patch under the AFM probe. For a given patch, the probe
is landed on the sample and an AFM scanning is performed.
When this task is completed, the AFM probe is separated from
the sample by pulling back the Z axis of the Cartesian robot
in stepping mode. The sample holder moves so that the next
patch is positioned below the AFM probe. The procedure of
the AFM imaging is then repeated until all the patches are
scanned.

In the following subsections, informations are given regard-
ing requirements on the AFM data and how they must be

Fig. 3: SEM image of the AFM probe tip.

treated before proceeding to use the GPA-ICP algorithm to
fuse different AFM patches into one.

B. AFM data requirements

Let us recall that the objective of the Mosaic AFM method
is to construct a single coherent AFM image from a set
of multiple AFM patches. For it to work, there must be
enough similar information between two adjacent patches.
They must therefore have sufficiently overlapping surfaces.
The maximum overlap possible without having more than two
patches overlapping in a given direction is 50%. This means
that the length where the patches share the same data is 50%
of the total length of the patch in that given direction. In this
work, the patches are of dimension 0.6 pm x 1.2 um with
50% overlap in the X direction and a 33% overlap in the Y
direction (Fig. 2), which is equivalent to a 0.3 um and 0.4 um
overlap in X and Y directions respectivelly. These overlaps
provide sufficient data to assemble the patches, taking into
account features up to 0.3 um in length. Consequently, samples
with key dimensional features of less than 0.3 pm could use
a shorter overlap without compromising the efficiency of the
algorithm.

An equally important factor to consider is the sequence of
acquisition of the AFM patches. As mentioned previously, one
of the main reasons the patches cannot be simply added to
generate the image is because of the drift in the Z-data. This
drift in Z accumulates from one patch to the next resulting
in gaps between the subsequent patches. The result of this
as seen in Fig. 6(c) is a staircase pattern. For this particular
AFM-in-SEM system, the causes of the Z-drift can be due
to the charge accumulation induced by the SEM’s electron
beam and the piezo-electric creep. Hence, to reduce the gap
between adjacent patches, a "snake" sequence is chosen as
shown in Fig.2. This scheme ensures that there are no sudden
jumps in height from one patch to the next, especially when
moving from one row of patches to the next. In this way,
all patches (with the exception of the first and last) have two
nearby neighboring patches with a minimum height difference.
It must be noted that the order of acquisition of the individual
images is not a requirement of the GPA-ICP algorithm, the
"snake" pattern is chosen only to reduce the drift deviations
(gap) between patches and facilitate the convergence of the
method.
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Fig. 4: Diagram showing the principle of grid based downsampling:
(a) XY values are replaced by the grid center position; (b) the Z
value is replaced by its average across the grid. The raw X, Y and
Z AFM data are represented by the dashed line.

C. Grid based average down-sampling

The GPA-ICP method can be computationally demanding.
Therefore, to run the algorithm efficiently, it is necessary to re-
duce the amount of data in each patch. The reduced data must,
however, be representative of the surface characteristics of the
sample. This is particularly important for feature matching in
the GPA-ICP algorithm. This is done by assigning weights
to different data points. They require the calculation of the
Shape Index (SI), which is a measure of local curvature of the
surface based on neighboring points. This means that the SI is
only consistent when measured in an equally spaced grid [29].
Because of this, a grid based down-sampling method is used
in all patches. As shown in Fig.4, a grid of side length equal
to the raster spacing of the XY trajectory is overlaid on top of
it. All X and Y values within a given grid are replaced by the
XY position of the grid center. Additionally, all Z values are
replaced by their average within a grid. With this, it is ensured
that the amount of points is sufficiently reduced for efficient
operation of the GPA-ICP algorithm. All this while keeping
representative data and having the points equally spaced in the
grid to ensure consistency in the SI.

IV. ITERATIVE CLOSEST POINTS FOR MOSAIC AFM

This section shows how the Generalized Procrustes Analysis
ICP (GPA-ICP) method of [22] was adapted for a Mosaic
AFM. This method merges two or more point clouds by
calculating at every iteration a "mean" point cloud K towards
which all other point clouds must converge. The rate at which
a point cloud approaches K is determined by a how much the
approaching points clouds’ shape resemble one another. To
explain the theory, the following notation is used: points in
3D space are 3 x 1 vectors and are represented like X{ for the
i"" point in the ¢ point cloud. In GPA-ICP, each iteration has
six main steps which are adapted as follows:

Step 1: "Nearest Neighbors". For each X point on each
point cloud ¢, find its nearest neighbor (NN) in each of the
other point clouds. For example, if 50 point clouds are used,
every X; has 49 NN, one for each of the other points clouds.

Step 2: "Mutual Nearest Neighbors". Having all the NN’s,
determine all pairs of mutual nearest neighbors (MNN). This
is all pairs of points that are the NN simultaneously of each
other on different point clouds.

Step 3: "Independent sets of MNN". A point Xj can be the
MNN of one point of multiple point clouds, and those points
themselves can have more MNN. This means that they can
form independent sets of MNN (ISM). Some sets can have
more than one point from the same point cloud, these ones
are discarded (Fig. 5). So, only sets containing two or more
points from different point clouds are selected and stored.

Step 4: "Generating the mean fixed point clouds K¢, their
correspondences P¢ and the weights W¢". What follows is to
generate the set of fixed point clouds K¢ with ¢ ={1,2,...,p},
towards which all other point clouds must converge. First,
a mean point cloud K is generated. Each point in K is
equal to the mean position of an ISM retained in Step 3.
Additionally, a weight list W is generated for each point in
K. As recommended by [22], the weight of an Independent
MNN set wysps is defined as:

wisy = 1 — MAD; (SI)) with [ € ISM (1)

Where SI; is the Shape Index of points in the ISM, and
MAD; is their Median of Absolute Deviations. These weighs
range between O and 1, and they measure how similar is the
local shape around the points of ISM. It is through this weights
that the GPA-ICP algorithm matches features between P¢ and
K.

Next, is the generation of the individual correspondent point
clouds K¢ and P¢, and the weight list W¢. Point cloud K¢
and weight list W€ are made from all values of K and W
where points from P¢ were used. Point cloud PS is made
from all points of P° used to calculate K¢ in the order
of correspondence. In other words, if K¢ = {ﬁj‘,%g,...ﬁig},
P= {)_c'fr,)'c’gr, )_c'g,} and W€ = {wf,wg, wg} then X7, is used
to calculate /7§ and w¥, the points {X{.,7¢,.} are corresponding

and w{ is their weight.

Step 5: "Calculating a solid transformation using SVD".
The problem of finding the solid transformation between two
point clouds with known correspondences is well established
in the literature [30], [31]. The optimal rotation matrix R
and translation 7 that minimizes the square-error between
the points is found using Singular Value Decomposition as
explained in [31]. Hence, with the correspondences known, a
solid transformation is calculated for each P¢. This is done by
introducing K¢ and Pf as the fixed and moving point clouds
respectively, and W€ are their weights in the SVD algorithm
of [31].

Step 6: "Applying the rotations and translations to all point
clouds". All the previously found transformations (R¢ and 7¢)
are applied to all points in P¢. This is done for all point clouds.

This procedure is repeated until a desired level of accuracy
is reached (as measured by the vector ¢ reaching a small
enough value) or after a given number of iterations are
completed.
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Fig. 5: Diagram showing the definition of Independent Sets of MNN (ISM) as explained in [22]. From left to right: (a) Three point clouds
differentiated by the colors red, blue and green are presented; (b) All of the ISM’s are defined; (c) IMS’s where all points belong to different
point clouds are averaged to generate the mean point cloud K (gray dot), those with two or more from the same point are discarded.
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Fig. 6: Results of the Mosaic AFM scan and GPA-ICP reconstruction of the TGX1 calibration grid: (a) Raw AFM topography from one
patch; (b) Down sampled AFM topography of the previous patch; (c) 3D view of the AFM topography of the 50 patches taken after down
sampling showing the effect of the Z-drift between patches; (d) Reconstructed 3D view of the AFM topography after applying the GPA-ICP
algorithm showing the elimination of the Z-drift; (e) Top view of the AFM topography after using the GPA-ICP algorithm; (f) SEM image

of the TGX1 calibration grid.
V. EXPERIMENTAL RESULTS

A. TGXI calibration grid

The Mosaic AFM procedure is used to scan an area of 3.2
um x 3.0 um of a TGX1 AFM calibration grid as seen in
Fig.6(f). It consists of a grid of squares with 1.2 pum side-
length separated by square holes with 3.0 = 0.05 um grid
period (Fig.7(b)). The mosaic consists of 5 rows of 10 patches
for a total of 50 patches of dimension 0.6 um x 1.2 um. The
patches are gathered as explained in section III, with a "snake"
pattern and overlaps of 50% in the X direction and 33 % in
the Y direction (0.4 um in both directions). The hollows of the
TGX1 grid have a depth of 0.6 um. This is a nominal value
which is not calibrated. Furthermore, the edge of a square
extends horizontally for approximately 0.3 um (Fig. 7 (b)).
The overlap used is therefore sufficient to cover the entire
edge. Fig. 6(a) shows the raw AFM data of the first patch
taken before applying the down-sampling procedure. Here,
the raster pattern with 40 nm period can be seen. Each of

the patches are down-sampled using the process explained
in section III-C, with a XY grid of 40 nm side-length. Fig.
6(b) shows the resulting gridded topography of this patch
after down-sampling. After doing this procedure for all the
50 patches, the resulting topography is shown in Fig. 6(c).
A clear staircase pattern is visible where the patches seem to
move down in the order of acquisition. This height difference
is a direct effect of the Z-drift present on the system. These
pre-processed data are integrated into the GPA-ICP algorithm
to fuse all the patches into one cohesive image. The result
after 1000 iterations of the algorithm is shown in Fig. 6(d).
Here, the global image is reconstructed as a single image from
all the 50 patches without any apparent drift. Additionally
no apparent artifacts appear at the stitching zones where the
patches merged. Finally, the dimensions of the merged Mosaic
AFM image are consistent with the standard dimensions of the
grid as seen in Fig. 6(e) and Fig. 6(f) where the latter is the
SEM image of the TGX1 calibration grid. The AFM mosaic
image is coherently reconstructed despite the internal drift of
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the individual patches. Fig. 7 shows that the dimensions of
the reconstructed topography are in a close agreement with
the reported nominal values of the TGX1.

0.00 pm

(@

| 3.0+ 0.05 um |

i 1.2 um I |

/ \ I 0.6 pm /
~0.3 pm }—| (b)

Fig. 7: (a) 3D view of the Mosaic AFM image of the TGX1
calibration grid with dimensions. (b) Nominal dimensions of the
TGX1 calibration grid.

B. Microfossil sample

To test the algorithm’s performance for non-regular topogra-
phies, a 3.4-billion-years-old microfossil presenting a folded
surface has been used [32]. The analysis of microfossils using
different microscopy techniques is an active research topic
[33]. An AFM mosaic is performed on a region of the sample
selected with the SEM, as shown in Fig. 8. The reconstruction
process is clearly visible when comparing the topographies
before and after the application of the GPA-ICP algorithm, as
shown in Figs. 8(a) and 8(b) respectively. Figure 8(c) shows
the top view of the topography and figure 8(d) the comparison
between the AFM topography and the SEM image of the
same area. Here, it is clear that the Mosaic AFM procedure
has enabled a faithful reconstruction of the irregular sample
surface, showing a complex topography representative of the
sample.

VI. CONCLUSIONS

In this study, a method to extend the range of a robotic AFM
system was proposed and tested successfully. The method con-
sists in fusing multiple individually obtained AFM topography
patches to generate a larger image. The construction of this
image was done using the Generalized Procrustes Analysis
Iterative Closest Point (GPA-ICP) algorithm. The method was
adapted for the particular case of AFM. This was done by
acquiring the local topographies in a "snake" pattern and by
down-sampling the patches so the computational load is man-
ageable. The method was tested on two samples, a TGX1 AFM
calibration grid and an organic-walled microfossil. The GPA-
ICP method merged 50 AFM topography patches of dimension
0.9 um x 1.2 pm by matching features that were similar and
close. Thus, it has been possible to generate a coherent 3.2
um x 3.0 pm drift-free long range AFM topography of both
samples without any apparent artifacts. The accuracy of the
method was verified based on the nominal dimensions of the
TGX1, while its ability to reconstruct complex geometries was

Il(c)-LS -1 05 Ux[u:‘.ls 1 -
LR ()
Fig. 8: Mosaic AFM of the folded surface of an organic-walled mi-
crofossil isolated from the 3.4 Ga Strelley Pool Formation (Australia,
[32]): (a) 3D view of the AFM topography of the 50 patches; (b)
3D view of the AFM topography after the application of the GPA-
ICP algorithm; (c) Top view of the AFM topography; (d) In situ
comparison between the AFM topography and the SEM image of
the studied specimen.

assessed on the microfossil sample. In both cases, it would
have been possible to increase the overall surface area of the
AFM image much more simply by increasing the number of
patches. The method was tested using an AFM equipped with
stick-slip axes for XY scanning. However, this method can be
used to extend the range of any type of AFM system with
a dual XY stage setup. Hence, it opens the door to have
high-resolution long-range AFM by simply adding an long-
range coarse resolution stage to a preexisting AFM system.
All without needing to actuate both stages simultaneously.
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