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ABSTRACT

Aims. We present the first unsupervised classification of spaxels in hyperspectral images of individual galaxies. Classes identify
regions by spectral similarity and thus take all the information into account that is contained in the data cubes (spatial and spectral).
Methods. We used Gaussian mixture models in a latent discriminant subspace to find clusters of spaxels. The spectra were corrected
for small-scale motions within the galaxy based on emission lines with an automatic algorithm. Our data consist of two MUSE/VLT
data cubes of JKB 18 and NGC 1068 and one NIRSpec/JWST data cube of NGC 4151.
Results. Our classes identify many regions that are most often easily interpreted. Most of the 11 classes that we find for JKB 18 are
identified as photoionised by stars. Some of them are known H ii regions, but we mapped them as extended, with gradients of ionisation
intensities. One compact structure has not been reported before, and according to diagnostic diagrams, it might be a planetary nebula
or a denser H ii region. For NGC 1068, our 16 classes are of active galactic nucleus-type (AGN) or star-forming regions. Their
spatial distribution corresponds perfectly to well-known structures such as spiral arms and a ring with giant molecular clouds. A
subclassification in the nuclear region reveals several structures and gradients in the AGN spectra. Our unsupervised classification
of the MUSE data of NGC 1068 helps visualise the complex interaction of the AGN and the jet with the interstellar medium in a
single map. The centre of NGC 4151 is very complex, but our classes can easily be related to ionisation cones, the jet, or H2 emission.
We find a new elongated structure that is ionised by the AGN along the N-S axis perpendicular to the jet direction. It is rotated
counterclockwise with respect to the axis of the H2 emission.
Conclusions. Our work shows that the unsupervised classification of spaxels takes full advantage of the richness of the information
in the data cubes by presenting the spectral and spatial information in a combined and synthetic way.

Key words. Methods: data analysis – Methods: statistical – Galaxies: statistics – Galaxies: general – Techniques: spectroscopic

1. Introduction

Hyperspectral imaging (or integral field spectroscopy; IFS there-
after) in astrophysics probably yields the most complete obser-
vations that might be imagined. Spatial and spectral information
together are available in the same data set. This is particularly
welcome in the case of galaxies, which are complex structures
with a great variety of physical features and kinematic behaviour.
IFS generates data cubes that are intrinsically computationally
intensive to analyse. As numerous new instruments and dedi-
cated surveys provide a huge number of these data cubes, new
approaches are needed, and machine-learning can come to our
rescue.

A single data cube contains so much information that it re-
quires many graphs to visualise the properties of different re-
gions. A first example that has been used by radio-astronomers
for a long time is the representation of some absorption or emis-
sion lines along the line of sight using kinematics as the third
dimension. This yields a sort of movie in this third dimension
perpendicular to the plane of the sky. In the optical domain, it
is possible to generate maps of line intensities, line ratios, and
kinematics for the numerous lines present, along with diagnostic
diagrams that are generally based on line ratios (e.g. D’Agostino
et al. 2019; Venturi et al. 2021). Interpreting and synthesising
these many 3D maps is a challenging task. It is time-consuming
even for a single object, so that automatic tools should be used.

In all cases, line properties are computed individually for
each spectrum given by each spaxel. In the optical domain, the
high resolution and the complexity of galaxies most often result
in a low signal-to-noise ratio per spaxel. In addition, the scale
of individual spaxels can become smaller than the typical size of
H ii regions or the largest molecular clouds for which the meth-
ods for deriving some physical quantities have been established
(see a discussion in Bulichi et al. 2023). A common workaround
is to bin several close spaxels together, which effectively results
in a decrease of the spatial resolution. The reasoning behind this
workaround is that two spaxels that are close in space should
also be close in physical terms. This can be seen as a clustering
of spaxels based on spatial similarity, with the spatial size being
guided by a criterion that is the signal-to-noise ratio.

In the present work, we propose a more physical approach
by grouping spaxels based on spectral similarity using unsuper-
vised classification under objective statistical criteria. Each class
gathers similar spectra and is thus characterised by a mean or
median spectrum with a higher signal-to-noise ratio. The within-
class dispersion is also lower because different physical regions
are not mixed. Consequently, the original resolution and the spa-
tial sampling are preserved, and gradients and boundaries remain
as they are in the image. This allows the detection of truly coher-
ent structures. In addition to this benefit from the physical point
of view, unsupervised classification of spaxels provides an au-
tomatic technique for synthesising the data cube into a unique
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map containing both the spatial and multivariate spectral infor-
mation. Because it is unsupervised and takes the entire spectra,
our approach could lead to the discovery of new structures.

To our knowledge, only two very recent works in astro-
physics proposed to gather spaxels based on their spectral simi-
larity using unsupervised classification. Rosito et al. (2023) con-
sidered the unsupervised classification of the kinematic mor-
phologies of simulated galaxies. Their automatic method is able
to achieve not only a clear division between slow and fast rota-
tors, but also a segregation in the rotation orientation and sub-
divisions among low-rotation edge-on galaxies corresponding to
their shapes. However, kinematic maps are only a small part of
the information contained in IFS data cubes. Tiwari et al. (2023)
applied a slightly modified version of the Gaussian mixture
model (GMM) clustering technique to spectra of 50 channels
(wavelengths) around the [CII] 158 µm line to identify coherent
physical structures in the interstellar medium in our Galaxy. In
each of the three Galactic sources they studied, they found a few
such structures. This compares favourably with the literature.

These two studies validated the use of automatic unsuper-
vised classification tools. In the present paper, we extend these
results to full optical spectra. It is crucial to take into account
all the information contained in the spectra to derive the detailed
characteristics of different regions in a galaxy. In particular, diag-
nostic diagrams are most often 2D only, and several diagrams are
needed to disentangle degeneracies (e.g. Johnston et al. 2023).

We therefore apply an unsupervised analysis on data cubes
for individual galaxies. The spectra can have several thousand
wavelengths (channels), which means that the problem has a
high dimensionality. As a consequence, we apply a GMM tech-
nique in a latent discriminant subspace that is optimised for the
clustering. We make use of the algorithm Fisher-EM (Bouvey-
ron & Brunet 2012), which has been used several times in astro-
physics (Siudek et al. 2018a,b; Fraix-Burnet et al. 2021; Siudek
et al. 2022; Dubois et al. 2022; Fraix-Burnet 2023; Dubois et al.
2024). We showed in Fraix-Burnet et al. (2021) that the cluster-
ing of galaxy spectra with the Fisher-EM algorithm is able to
distinguish according to the shape of the continuum, to the in-
tensity and shape of the emission and absorption lines, and to
the line ratios. This means that the classes of spectra include all
the 2D or 3D maps that are generally used to understand the data
cubes, as mentioned earlier. In other words, classes represent co-
herent structures that are identical in a multivariate space and not
only in some peculiar property.

In this paper, we demonstrate the capabilities of an unsu-
pervised classification of spaxels on two galaxies that were ob-
served with the multi-unit spectroscopic explorer installed at the
very large telescope (MUSE/VLT) and one galaxy that was ob-
served with the near infrared spectrograph on the James Webb
space telescope (NIRSpec/JWST).

JKB 18 is a nearby (z = 0.004) blue diffuse dwarf galaxy.
Blue diffuse galaxies are a population of low-metallicity dwarf
galaxies that form stars (James et al. 2016, 2020). The distance
and mass of JKB 18 are estimated as ∼18 Mpc and ∼108 M⊙.
Its morphology shows numerous sites of ongoing star formation
spread over a diffuse body. This type of object is considered a
nearby analogue of the first galaxies, allowing us to study the
spatial distribution of metals and the chemical homogeneity of
these currently unobservable systems. JKB 18 is an ideal target
for a first unsupervised classification analysis of IFS observa-
tions.

NGC 1068 is a prototypical Seyfert 2 galaxy located at a dis-
tance of ∼10.5 Mpc. It is one of the brightest Seyfert galaxies
at radio wavelengths. It hosts a radio jet spanning up to ∼800

pc in the NE-SW direction, and its powerful starburst activity is
mainly concentrated in a prominent starburst ring with a radius
of ∼1-1.5 kpc (Venturi et al. 2021). In addition, the gas in the
disc of the galaxy is illuminated by the AGN radiation and inter-
acts with the jet. In the field of view of the MUSE instrument of
∼3.3 kpc, many regions with various spectral characteristics are
found, which makes this target a particularly rich case study for
an unsupervised classification analysis.

NGC 4151 is the brightest Seyfert 1 galaxy in the sky and
situated at a distance of 18.5 Mpc. It has a very complex cen-
tral region: The line of sight seems to be close to the edge of
a clumpy torus, the ionisation cones show a highly filamentary
[O III] emission that is not directly associated with the radio
jet, and some localised regions have peculiar line properties and
even some indications of shocks (see an overview in May et al.
2020). With the very high spatial resolution of the NIRSpec in-
strument on board JWST, it represents a challenge for our goal,
but it might illustrate how an automatic unsupervised classifica-
tion of spaxels could synthesise very complex data cubes.

This paper is organised as follows. The data are presented in
Sect. 2. The algorithm Fisher-EM is described in Sect. 3. Our
results and discussion are gathered in separate sections for each
object: Sect.4 for JKB 18, Sect. 5 for NGC 1068, and Sect. 6 for
NGC 4151. We conclude this paper in Sect. 7.

2. Data

2.1. MUSE

The field of view of MUSE of one arcminute is covered by
319x319 spaxels (∼100,000 spectra) of 0.2 arcsec each.

2.1.1. JKB 18

The MUSE observation of JKB 18 were thoroughly studied by
James et al. (2020), and we take this work as a reference.

We took the scientific data from the ESO archive1

(ADP.2016-09-06T09:08:42.261) without reprocessing the data
as James et al. (2020) did, who tried to subtract the sky better.

We used the same automated line-fitting algorithm (ALFA,
Wesson 2016) to obtain the kinematics and line properties. Our
kinematics was not only determined from the Hα line, however,
but rather from a catalogue of several strong lines in the range
[6400, 6800] Å: the N ii doublet at 6548,6583 Å, Hα at 6584 Å,
and the S ii doublet at 6716, 6731 Å. As the unsupervised clas-
sification requires all spectra to be rigorously aligned for them
to be compared, we corrected them all to be at the same redshift
zero.

Spaxels for which ALFA returned a discrepant or unreliable
redshift were discarded. This included the bright foreground star
and most of the sky. The frame border additionally induces dis-
tortion in the spectra, and the data outside the spaxel range [52,
290] were discarded. We finally analysed 19516 spaxels.

James et al. (2020) based the identification of the H ii regions
and their sizes on the Hα line through a compromise between the
number of H ii regions and a sufficient signal-to-noise ratio. In
our work, the unsupervised algorithm distinguishes regions with
similar spectra without any a priori assumption on their physical
nature.

Finally, James et al. (2020) derived the chemical abundances
from the spectra of individual spaxels or integrated over each H ii

1 http://archive.eso.org/cms.html
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region. In our work, they are derived from the median spectrum
of each class.

2.1.2. NGC 1068

The scientific data were retrieved from the european southern ob-
servatory (ESO) archive (ADP.2016-06-17T08:44:56.817) with-
out further reprocessing of the sky. We removed the edges of the
hyperspectral image and kept the spaxels in the range [25,295].

Because the continuum levels of the different regions of
NGC 1068 are much broader than those of JKB 18, we nor-
malised the spectra to their mean within the range [7600,
8100] Å to avoid a classification mainly dictated by intensity.

We used the ALFA algorithm to obtain the kinematics and
line properties with the same catalogue of emission lines. How-
ever, the complex kinematics of the nucleus caused us to con-
sider exploring a broader range of velocities for ALFA (± 2000
km s−1). This increased the risk of falling into local minima,
which would yield an incorrect redshift estimate. Spaxels based
on an estimation of unreliable redshift were removed. This re-
sulted in 68232 spaxels for the unsupervised classification.

For NGC 1068, we also performed a clustering analysis
without aligning the spectra, that is, without correcting for the
kinematics, in order to test whether an unsupervised analysis can
take the spectral shift due to the internal motions within a galaxy
into account, in addition to all the intrinsic spectral components.

2.2. NIRSpec

The scientific observation of the nucleus of NGC 4151 was
retrieved from the Mikulski Archive for Space Telescopes2

(jw01364-o001_t001_nirspec_g235h-f170lp_s3d).
This observation focuses on the very centre of the nucleus,

with a field of view of 3 arcsec (∼228 pc). The number of spax-
els is about 1000, and the filter used (F170LP;G235H) imposes
a gap between 2.36 and 2.491 µm (Böker, T. et al. 2022) that
we discarded for the clustering analysis. The spectra were nor-
malised using the range [20000, 21000] Å.

We used the ALFA algorithm to obtain the kinematics and
line properties with a strong line catalogue adapted to the near-
infrared range: the Paα line at 18748, Å, the [Si vi] line at 19634
Å, the Brβ at 26258 Å, and the [Mg viii] line at 30279 Å . Owing
to the extreme kinematics inside the nucleus of NGC 4151, we
used a velocity exploration range of ± 1500 km s−1. The spectra
of the spaxels where the kinematics search failed were removed.

3. Method: Fisher-EM algorithm

3.1. Gaussian mixtures models in a latent subspace

Clustering divides a given data set Y = {y1, ..., yn} of n data points
into K homogeneous groups. Here, our data were the set of spec-
tra given by the spaxels of the data cube: yi∈[1..n] ∈ R

p where the
dimension p is the p fluxes at the p wavelengths of the spectra.
A popular clustering technique uses GMM, which assumes that
each class is represented by a Gaussian probability density. The
data are therefore modelled by a density,

f (y, θ) =
K∑

k=1

πkϕ(y, θk), (1)

2 https://mast.stsci.edu/portal_jwst/Mashup/Clients/Mast/Portal.html

where ϕ is a p-variate normal density, in which the parameter
θk = {µk,Σk} contains the means µk and the covariance matrices
Σk, and πk are the mixing proportions. This model requires es-
timating full covariance matrices Σk, and therefore, the number
of parameters increases with the square of the dimension. The
number of parameters that is to be estimated can be limited by
assuming that high-dimensional data lie in subspaces with a di-
mension lower than that of the original space (e.g. Bouveyron
et al. 2019).

The Fisher-EM algorithm fits the data in a low-dimensional
optimised subspace that is common to all clusters. This sim-
plifies their comparison. This algorithm is available in the R3

package called FisherEM (command fem, Bouveyron & Brunet
2012).

In Appendix D.2.1, we present a similar algorithm, called
high-dimensional data clustering (HDDC), in which the latent
subspaces are class-specific. We used it here only in the diffi-
cult case of NGC 4151 for the comparison with the result of the
Fisher-EM algorithm.

3.2. Fisher-EM algorithm

Fisher-EM (Bouveyron & Brunet 2012) is a discriminant latent
subspace Gaussian mixture algorithm. It uses a modified version
of the expectation-maximisation (EM) algorithm by inserting a
Fisher-step that optimises the ratio of the sum of the between-
class variance over the sum of the within-class variance, hence
optimising the Gaussian mixture and the subspace together for a
better clustering.

Classifying the observations into K classes mathematically
translates into finding the vector Z = {z1, ..., zn}, which assigns
each spectrum yi to a given class zi ∈ [[1,K]]. In the case of
Fisher-EM, the clustering process occurs in a subspace IE ⊂ IRp

of dimension d = K − 1 < p. Therefore, the GMM is applied to
the projected data X rather than the observed data Y:

Y = UX + ϵ, (2)

where U ∈ Mp,d(IR) is the projection matrix, and ϵ is a noise
vector of dimension p following a Gaussian distribution centred
around 0 and of the covariance matrixΨ (εk ∼ N(0,Ψk)). Hence,

X|Z=k ∼ N(µk,Σk). (3)

Combining Eqs. 2 and 3, we obtain

Y|X,Z=k ∼ N(UX,Ψk). (4)

The observed data are thus modelled by a marginal distribution
f (y) that is the sum of K multivariate Gaussian density functions
ϕ of mean Uµk and the covariance UΣkU t+Ψ, each weighted by
the corresponding mixing proportion πk,

f (y) =
K∑

k=1

πkϕ(y; Uµk,UΣkU t + Ψ). (5)

By further assuming that the noise covariance matrix Ψk sat-
isfies the conditions V tΨkV = βkIp−d, where V is the orthogonal
complement of U, and U tΨkU = 0d, the whole statistical model

3 https://www.r-project.org/
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denoted by DLM[Σkβk] can be shown to take the following form:

∆k =



Σk 0

0

βk 0
. . .

. . .
0 βk



 d ≤ K − 1

 (p − d).

These last conditions imply that the discriminative and the non-
discriminative subspaces are orthogonal, which suggests in prac-
tice that all the relevant clustering information remains in the
latent subspace. From a practical point of view, βk models the
variance of the non-discriminative noise of the data.

Several other models can be obtained from the DLM[Σkβk]
model by relaxing or adding constraints on the model parame-
ters. For example, it can be assumed that the noise parameter βk
differs from one class to another, or that the covariance matrices
Σk are the same for all K classes. A thorough description of the
DLM models with its 12 declinations can be found in Bouveyron
& Brunet (2012).

The estimation procedure, called the Fisher-EM algorithm,
is used to estimate the discriminative space and the parameters
of the mixture model (including the best statistical DLM model
and the optimum number of clusters). This algorithm is based
on the EM algorithm, to which an additional step is introduced
between steps E and M. This additional step, called step F, aims
to compute the projection matrix U whose columns span the dis-
criminative latent space. In Fisher-EM, d = K − 1 is imposed.

The choice of the best statistical DLM model and the opti-
mum number of clusters depends on the data. We estimated them
with the integrated completed likelihood (ICL) criterion. This
criterion penalises the likelihood by the number of observations,
the number of parameters of the statistical model, and favours
well-separated clusters (Biernacki et al. 2000; Girard & Saracco
2016). It generally has nearly identical values as the well-known
criterion Bayesian information criterion (BIC). It is a purely ob-
jective criterion that only relies on statistical arguments without
any tunable parameter or hyper-parameter. Its maximum value
corresponds to the best set of the Gaussian models, that is, to the
number of clusters, the parameters of the corresponding Gaus-
sian distributions, and the subspace (Eq. 5). The solution must
be interpreted from the physical point of view and validated if
the clusters are found to have coherent and consistent physical
properties.

3.3. Subclassification

As already stated, the choice of the best statistical model and
number of clusters depend on the data. In particular, the dis-
criminant subspace depends on the distribution of all the data
points. This implies that the optimum subspace may differ when
only a subset (e.g. a class) is considered. A different subspace
potentially leads to different structures. This is called subclassi-
fication. In the case of spectra, it is easy to imagine that the first
classification would separate broad categories depending on the
presence or absence of emission lines, and subsequent subclas-
sifications would be more sensitive to faint lines or line ratios.
This was well illustrated in our previous analyses (Fraix-Burnet
et al. 2021; Dubois et al. 2024).

There is no absolute rule to decide which class should be sub-
classified. It entirely depends on the characteristics of the class,

Fig. 1. Class map for JKB 18. The orange, red, and violet rings near the
centre of the image are due to the residual of a bright foreground star
that was removed by discarding spectra with a redshift of zero. In all
the class maps in this paper, the order of the class numbers is chosen to
follow the similarity of the mean spectra of the classes as determined
by the Euclidean distance, and white pixels are discarded spaxels for
which ALFA returned a discrepant or unreliable redshift .

such as the fraction of the sample it contains or the heterogeneity
(dispersion) of its spectra. The subclassification can also be re-
peated several times to obtain more granularity, but this entirely
depends on the goal of the study. Most often, however, the algo-
rithm Fisher-EM itself will provide some clue, for instance when
it fails to find a solution or yields no significantly improved re-
sult, such as when it yields a large subclass containing nearly all
spectra and other very small subclasses.

4. Analysis of JKB 18

4.1. Results

An optimum of 11 classes was found for JKB 18 (Fig. 1). Many
structures are detected, with round and concentrated structures in
the bottom right quadrant of the image and extended structures in
the bottom left quadrant. Most compact regions show a gradient
of classes, the most conspicuous structures having always the
same order of the classes 4, 6, 7, and 8 inwards. This corresponds
to increasing emission line intensities (Fig. A.1).

The ring-like structure just above and to the right of the cen-
tre of the image is a residual of a bright foreground star. It is
characterised by three classes, two inner classes (classes 10 and
11) that are not considered any further in the following, and an
outer class (class 9). Class 9 is also found in a small round fea-
ture in the bottom left quadrant that we call "the spot" in the rest
of this paper. It appears that the median spectra of the spot and
the rest of class 9 (Fig. A.1) share a common property that is
specific to this class: The continuum is higher than in the other
classes. This explains why Fisher-EM placed all these spectra in
the same class even though emission lines are only present in the
spot spectrum. This particularity and the zone around the fore-
ground star that generates artefacts justifies a subclassification
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Fig. 2. Electron density-excitation diagram for JKB 18. The contoured
regions are taken from Riesgo & López (2006). The error bars are de-
rived from line-fitting uncertainties given by ALFA.

Fig. 3. BPT diagram for JKB 18. The error bars are the same as in Fig. 2.

analysis of this class 9. It is classified into four subclasses that
almost perfectly discriminate the spot.

4.2. Discussion

Diagnostic diagrams are useful tools for identifying the source of
ionisation. The electron density-excitation diagrams compare the
relative line intensity ratios observed in planetary nebulae, super-
nova remnants, and H ii regions (Sabbadin et al. 1977; Riesgo &
López 2006), that is, of sources that are ionised by stars. We used
the [S ii] 6717/[S ii] 6731, and Hα/[S ii] ratio diagram (Fig. 2).
Classes 1 and 3 lie in the region of planetary nebulae. Classes 2
and 5 seem outside any region, but very close to planetary nebu-
lae or H ii for the former and very close to a supernova remnant
or H ii for the latter. The four classes 4, 6, 7, and 8 lie in H ii re-
gions, and the inward gradient is horizontal in this diagram. The
spot (of class 9) lies in the overlapping zone between the H ii
and the planetary nebula regions. Classes 9 (star) and 10 lie in
the supernova remnant region, but this is certainly not significant
because they are artefacts caused by the foreground star.

Fig. 4. Class map for JKB 18 with contours of H ii regions identified by
James et al. (2020) overlaid.

Fig. 5. Metallicity for the classes for JKB 18. The values and error bars
were computed through the algorithm NEAT (Wesson et al. 2012)

The Baldwin-Phillips-Terlevich (BPT) diagram (Baldwin
et al. 1981) has been designed to identify ionising sources in
galaxies between star-forming regions (photoionised by O and B
stars), shock-heating, or non-thermal photoionisation. Planetary
nebulae and H ii regions are included in the star-forming region
because they are generally difficult to isolate in external galax-
ies. The BPT diagram for our JKB 18 classes (Fig. 3) shows that
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all classes are in the star-forming zone. The four classes 4, 6, 7,
and 8 are well separated from the other classes in the upper left
corner, and the inward gradient is clearly visible and points to
the upper left corner.

Our classes and the H ii regions identified by James et al.
(2020) agree well (Fig. 4). Because James et al. only used the Hα
emission line , they were unable to distinguish planetary nebu-
lae, as we do in our density-excitation diagram above (Fig. 2).
Interestingly, most of their regions encompass at least two of our
classes (classes 4 and 6), and their main structures contain the
four classes (4, 6, 7, and 8) we found as H ii regions from the
electron density-excitation diagram in Fig.2.

We find a heterogeneity (Fig. 5) in the metallicity Z(O3N2)
indicator (equation 1 of James et al. 2020). This heterogeneity
differs from that found by James et al. (2020): It is between and
within the H ii regions and the interstellar medium, and not in the
large H ii regions along the proposed spiral arms.

There is a double dichotomy in this galaxy on each side of
a line approximately from SE to NW that passes the foreground
star: In the SW quadrant, the velocities are lower and the H ii re-
gions are not or only weakly surrounded by gas. This dichotomy
was noted by James et al. (2020). We find that our class 1 is
mainly in this quadrant, while class 3 is more present in the NE
part. The differences between the median spectra of these two
classes are weak. These two classes are also found all around the
field of view and could be due to residuals of sky lines.

The spot of our class 9 is visible in the continuous map in
Figure 5 of James et al. (2020), but is not really visible in any
other of their maps of emission lines or line ratios. According to
its position in our electron density-excitation diagram (Fig. 2), it
is compatible with an H ii region or a planetary nebula. The con-
tinuum is much redder than that of the other H ii region classes 4,
6, 7, and 8, however, suggesting that the spectrum is dominated
by dense gas. Furthermore, the spot possess a unique emission
line around 4873-4874 Å that could be a Fe ii or a N iii line. Since
the spectra of JKB 18 were not normalised in our study, the clus-
tering analysis is sensitive to the global level of the continuum,
that is, to the mass of the emitting source. The continuum in class
9 is higher than for the other classes (Fig. A.1), implying that the
spot is a denser region.

The choice not to normalise the spectra is justified in the
case of JKB 18 because we do not expect much variability in the
masses or densities on the scale of the spaxels. This does not hold
for more complex objects such as NCG1068 and NGC 4151,
which are presented below, and it clearly does not hold in the
case of integrated spectra of galaxies (Fraix-Burnet et al. 2021;
Dubois et al. 2022).

5. Analysis of NGC 1068

5.1. Results

5.1.1. Results for the whole data cube

An optimum of 16 classes was found for NGC 1068. Many com-
plex morphological structures are detected (Fig. 6): an elongated
central region, a ring, a SW string, a more complex NE structure,
and several clumps outside the ring. Every class extends over at
least a few spaxels.

The NE complex structure is made of two distinct regions:
an extended region made of classes 10, 11, and 12, and a more
compact region made of classes 13, 14 and 15.

The NGC 1068 ring hosts the most substantial diversity of
classes: 4 to 9, and 13 to 15. The inner border of the ring is

Fig. 6. Class map for NGC 1068. The class nomenclature is explained
in Fig. 1.

mostly composed of class 4 and some of class 9, whereas its
outer border is composed of class 9 and some of class 4.

The SW string and the clumps outside the ring are essen-
tially composed of the same classes as the ring, but there is a no-
ticeable difference in a diffuse component encompassing these
two types of structures: class 3 approximately delineates the SW
string and the clumps outside the ring, while class 2 is every-
where else, from the outer ring to the central region.

The central region is elongated towards the NE-SW axis,
with a gradient of well-separated classes: 16, 15, 12, 11, and
10 towards the NE, and 16, 15, 6, 5, and 10 towards the SW. An-
other gradient lies in the perpendicular direction: 16, 15, 6, and
3 along the NW-SE axis.

The inner part of the central region is composed of two
classes: 16 and 15. While class 16 is unique to the disc and con-
fined to the very central core, class 15 is found in other parts of
the galaxy, which is somewhat puzzling. In order to investigate
further differences in the spectra of the spaxels within class 15,
we subclassified this class. This is described in Sect. 5.1.2 below.

The median spectra of the 16 classes (Fig. B.1) show a huge
variability between the classes in the [O iii], Hα, Hβ, and [S ii],
but present a low dispersion in their continuum. Classes 1 to 3
present a lower relative intensity notably in Hα and Hβ. Classes
5, 6, and 10 to 12 have increasingly intense [O iii] emission lines.
Classes 4, 7, 8, 9, 13, and 14 have high Hα but relatively low
[O iii]. Class 15 presents intense Hα and Hβ and a huge variabil-
ity in [O iii] both in intensity and width. Class 16 has intense and
broad lines, but they are slightly shifted.

5.1.2. Subclassification of class 15

Class 15 is found in distinct parts of the galaxy, and its spectra
show some peculiar behaviour for the [O iii] lines, that is, a high
dispersion and a broad base with a thinner line on top of it. This
suggests that this class could gather distinct physical regions.
We therefore subclassified this class to investigate the more sub-
tle differences in the spectra (Sect. 3.3) This led to an optimum
of 22 subclasses (Fig. 7). For clarity, we call these subclasses
K15sXX, where XX extends from 1 to 22. The subclasses clearly
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Fig. 7. Class map for the NGC 1068 subclassification of class 15 with
aligned spectra.

Fig. 8. BPT diagram for NGC 1068. The class 1 median spectrum lacks
one of the lines (Hβ) and so does not appear in this plot. The error bars
are the same as in Fig. 2.

separate the nucleus (subclasses K15s9 to K15s21) from other
regions (subclasses K15s1 to K15s8). In the latter, a gradient of
the subclasses is visible. Subclass K15s22 is made of very few
spaxels with very noisy spectra. Subclasses K15s3 and K15s4
are only found in the NE structure.

Into the nucleus, the subclasses form two main adjacent
roundish structures: subclasses K15s17 and K15s11 on the NE,
and subclasses K15s16, K15s18, K15s19, K15s20, and K15s21
at the centre. The extreme NE of the nucleus homogeneously
consists of the subclass K15s12. The SW of the nucleus is more
noisy, with subclasses K15s15, K15s14, and K15s13.

The median spectra of the nucleus subclasses (Fig. B.2)
show a dichotomy in line widths and [O iii] intensity: subclasses
K15s1 to K15s8 have narrow lines and low [O iii], while sub-
classes K15s9 to Ks21 have broad lines and intense [O iii]. The

Fig. 9. Electron density-excitation diagram for NGC 1068. The error
bars are the same as in Fig. 2.

median spectra of subclass K15s22 are noisy. K15s1 to K15s8
have intense Hα, Hβ, [N ii], [S ii] and [S iii], but they present
variability along these lines. Notably, K15s3 and K15s4 have a
shallower [S iii] line. The median spectra of subclasses K15s9
to K15s21 are variable in the [S ii] emission with an overall
increase for the [S ii] at 6730 Å, but decrease from K15s9 to
K15s13, followed by an increase from K15s13 to K15s16 before
a decrease from K15s18 to K15s21. The latter behaviour is seen
in Hα, Hβ and can be extended to [N ii] to some degree.

Subclasses K15s16 and K15s13 show surprising spectra.
Some emission lines have two peaks, the second of which is
blueshifted: [S iii], [Ar iii], [O iii] 4958 Å and Hβ. While being
fainter, the same behaviour is detected in subclass K15s20. This
might have misled the automatic computing of the redshift, so
that we subclassified the same normalised spectra of class 15,
but did not correct them for the kinematics. The result in Fig. C.2
is fully consistent with the result with aligned spectra (Fig. 7).
The classmap appears to be less noisy in the central blob, how-
ever, which might be due to the influence of the kinematics (see
Sect. C and Fig. C.1).

5.2. Discussion

5.2.1. Ionisation sources of the classes

The BPT diagram (Fig. 8) shows that classes 7, 13, 14, and 15
are of the H ii type, classes 4, 8, and 9 are composite, and classes
5, 6, 10, 11, and 12 are AGNs. Classes 2 and 3 are at the limit
between low-ionisation nuclear emission-line region (LINERs)
and AGNs. Class 1 has no Hβ line detected by ALFA and thus
cannot be placed in this diagram. Class 16, situated at the very
centre of the galaxy, is absent as well because it has very wide
lines, so that their automatic identification is very difficult. How-
ever, the median spectrum of this class is undoubtedly that of an
AGN.

The electron density-excitation diagram (Fig. 9) confirms
the H ii classes (7, 13, 14, and 15) found in the BPT diagram,
but shows variability in the Hα/[S ii] line ratio. The composite
classes (4, 8, and 9) and the two AGN classes 5 and 6 now
appear as H ii. The other AGN classes (10, 11, and 12) seem
closer to being SNR, that is, shock ionised. Classes 1 and 2
are SNR and planetary nebulae, respectively, but the electron
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Fig. 10. Class map for NGC 1068 superposed with giant molecular
clouds identified by Tosaki et al. (2017).

density-excitation diagram may lead to a misinterpretation for
extended regions that are observed at high resolution, such as in
the case of spaxels (e.g. Akras et al. 2020).

5.2.2. Ring

Our H ii classes 13 to 15 in the core of the ring are thus star-
forming regions. They match the giant molecular clouds as
traced by 13CO (Fig. 10; Tosaki et al. 2017) quite well in gen-
eral. The noticeable exception is the SE region of the ring, where
many molecular clouds lie in our extended classes 8 and 9. These
regions might be too opaque to visible light, or star formation
might not be active enough. The agreement with the HC3N and
CS 3-2 emission map (Fig. 11; Rico-Villas et al. 2021) is also
quite good. The extension of our classes is larger, and there are
some mismatches in the central localisation.

A perfect match between single-line observations and multi-
variate classification at different wavelength domains cannot be
expected. Our analysis correctly reveals the core of the ring and
its associated star formation regions, however. We also find gra-
dients of classes where emission lines characteristic of H ii re-
gions are enhanced.

5.2.3. Elongated structures

Our AGN classes 10, 11, and 12 are clearly aligned or elongated
towards the NE, both in the central part and in the extended NE
structure outside the ring. This incidentally is the direction of
the well-known radio SW-NE jet, so that these classes may be
related to the biconical cones due to the interaction of the jet with
the insterstellar medium (ISM) where AGN ionisation dominates
(Gallimore et al. 1996). This also agrees very well with the [O iii]
maps from Venturi et al. (2021).

In the central part, the different gradient structures 10, 11,
and 12 observed NE and 6, 5, and 10 SW of the nucleus are
superposed with the observed jet in the radio by Gallimore et al.

Fig. 11. Class map for NGC 1068 superposed with HC3N emission, CS
3-2 emission, and the 147 Ghz continuum found by Rico-Villas et al.
(2021).

Fig. 12. Class map for NGC 1068 superposed with the VLA contours
at 18 cm from Gallimore et al. (1996).

(1996) (Fig. 12). In addition, class 6, which borders the nucleus
except to the N, corresponds to the last contour of the jet.

The Hα/[S ii] ratio, indicating the amount of ionisation due to
shocks, increases perpendicular to the jet axis in the gradient 15,
6, and 3 towards the NW and SE and increases along the jet axis
in the gradient 15, 6, 4, and 10 towards the SW (Fig. 9). Towards
the NE, this ratio is very similar for classes 10, 11, and 12. This
places the first two classes within the supernovae remnant zone
of the electron density-excitation diagram, class 12 being just
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Fig. 13. Class map for NGC 1068 superposed with the contours of the
Hα + [N ii] map by Capetti et al. (1997).

Fig. 14. BPT diagram of NGC 1068 subclassification of class 15 with
aligned spectra. Subclasses K15s15 and K15s21 are absent because
ALFA had difficulties deblending the [N ii] at 6583 Å but they are safely
classified as AGN in OI BPT. The error bars are the same as in Fig. 2.

outside. This appears to agree with shock signatures found by
Venturi et al. (2021).

Out of the five AGN classes in the BPT diagram, two groups
emerge both spatially and physically: classes 10, 11, and 12
show a higher ionisation degree and form larger structures along
the jet axis than classes 5 and 6. Likewise, in the gradients in H ii
regions, there is an AGN-dominated gradient of classes 10, 11,
and 12 corresponding to an increase of all the emission lines: in-
side the ring, the gradient 10, 11, and 12 is orientated towards the
AGN nucleus along the jet axis, whereas outside the ring in the
extended region to the NE, the gradient 10, 11, and 12 follows
the axis perpendicular to the jet towards the SE.

The structures that we find in the central region are similar
to the Hα + [N ii] map (Fig. 13, Capetti et al. 1997). In partic-

ular, the arc-like structure to the SE that is composed of classes
3, 5, and 6 matches the structure seen in the Hα + [N ii] image
perfectly. There are two gradients of the classes, 6-3 in one direc-
tion, and 15, 12, and 11 in the other (Fig. 6), which correspond
to a decrease in Hα + [N ii]. Classes 15 and 12 are within the
radio lobe edge in the image of Capetti et al. (1997), and class
10 corresponds to their high-ionisation cap (Fig. 13).

Class 15 is present in the inner central part as well as in the
compact NE region outside the ring. These two regions are spa-
tially very distinct, so that they are probably physically differ-
ent as well. The median spectrum for this class lacks the strong
or broad emission lines typical of the nucleus ([O iii], Hα, [N ii],
[S ii], and [S iii]), but the dispersion of the spectra within the class
in these emission lines is rather large. The subclassification of
this class (Fig. 7) resulted in a clear separation between the two
regions, with AGN classes in the nucleus and the H ii classes in
the outer NE compact region (Fig. 14). They are discussed in the
following two sections.

5.2.4. Compact NE region outside the ring

Outside the nucleus, only classes K15s1 to K15s8 are present,
and are all found to be H ii regions (Fig: 14). Most of them are
composed of classes K15s1 and K15s2, with a central region in
which K15s6 forms a clear gradient in the BPT diagram. Classes
K15s3 and K15s4 are specific to the compact NE structure, how-
ever. These two classes have a higher [O iii]/Hβ ratio than the
other H ii classes.

This compact NE region is thus an intense star-forming re-
gion and more extended than all the H ii regions that our classi-
fication finds in NGC 1068. It shows 13CO emission (Fig. 10). It
is apparently located in a spiral arm departing from the eastern
side of the ring, but it is strikingly situated next to the extended
NE region, which is possibly ionised by shocks due to the jet.
It is also surrounded by the two AGN classes 5 and 6 (Fig. 6).
This tends to suggest some connection with the presence of the
jet (e.g. it might be the relic of the interaction of the ISM with
the jet, spatially shifted after galaxy rotation), but it is difficult to
conclude without a much more detailed analysis. This is beyond
the scope of this paper.

5.2.5. Nucleus

The subclassification reveals that according to the BPT diagnos-
tic diagram (Fig. 14), all classes K15s9 to K15s21 of the nucleus
are of AGN type.

The two roundish structures can be related to the four differ-
ent gas blobs found by Shin et al. (2021) from kinematics prop-
erties: classes K15s17 and K15s11 (to the NE) correspond to the
R1 redshifted gas blob, and classes K15s16, K15s18, K15s19,
K15s20, and K15s21 to the B1 blueshifted blob, which is at the
centre of the galaxy. Moreover, the K15s17 structure we find co-
incides with a knot in the radio jet (Fig. 12). Class K15s16 lies
at the edge of B1, and its spectra show double peaks in high-
ionisation emission lines ([O iii], [Ar iii], and [S iii]), as do the
spectra of class K15s13, which lies SW of B1. The intriguing
kinematics of the gas blobs caused Shin et al. (2021) to propose
an additional smaller AGN nucleus located between R1 and B1,
that is, between our classes K15s17 and K15s16. We find a sub-
tle asymmetry in our subclassification class map (Fig. 14): the
two classes K15s16 and K15s20 around the centre B1 blob are
slightly shifted towards the NE, that is, towards the hypothetical
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Fig. 15. Class map summary for the Fisher-EM analysis of NGC 4151
with the classification into nine classes (reddish colours) and the sub-
classification of class 1 into 11 classes (blueish colours). The red class
1 is replaced by its subclassification and hence does not appear on this
map. The white spaxels were removed because the automatic alignment
failed. The class nomenclature is explained in Fig. 1.

second AGN, while classes K15s18, K15s14, and K15s13 are
principally found SW of blob B1.

The SW part of blob B1 appears to be somewhat pixellised
on our classmap (Fig. 14). This can be explained by real differ-
ences or by an imperfect alignment of the spectra because of the
complex emission line structures. To better understand the role
of the kinematics in our classification, we subclassified class 15
without alignment. The result is shown in Appendix C and con-
firms our findings above. In particular, the smoother appearance
of the classes around the nucleus might at least partially be at-
tributed to the difficulty of automatically computing the redshift
when the kinematics creates complex line structures.

6. Analysis of NGC 4151

6.1. Results

The classification of NGC 4151 with Fisher-EM led to an opti-
mum of nine classes (Fig. 15). Class 1 accounts for more than
90% of the spaxels, and the eight other classes are found in five
blobs: a central blob, a large blob to the NE, two blobs to the SE
and SW, and a small blob to the NW. The central blob is mainly
composed of class 6, while the small NW blob is made of class
9. The composition of the other blobs is a composite of the other
classes without coherent structures of more than five spaxels.

The median spectra of the classes (Fig. 16) present variability
in the Paα, Brβ, and Brγ lines, the principal H2 line (21218 Å),
the coronal lines [SiVI] and [MgVIII], and also in the continuum
level and shape. On the one hand, class 1 to 4 and 6 present high
dispersion both in the emission lines and in the continuum in
the interval [24500,31500] Å and a low dispersion in the interval
[18000, 23500] Å. On the other hand, class 5 and 7 to 9 present

a low dispersion in the continuum, but classes 5 and 7 present a
high dispersion in their emission lines.

Because of the high number of spaxels inside class 1 and of
the significant dispersion of its spectra, we decided to subclas-
sify this class. This led to an optimum of 11 subclasses forming
coherent structures (Fig. 15; for better visibility, Fig. D.1 shows
maps of individual classes). In particular, there is a central linear
structure (subclass K1s11) along the N-S axis and different blobs
along the SE to NW axis composed of subclasses K1s2, K1s8,
and K1s9. There is a noticeable individual elongated blob to the
extreme SE made of subclass K1s9. A perpendicular structure,
that is, E-W, seems to emerge with subclasses K1s6, K1s7, and
K1s10. Finally, subclasses K1s1 to K1s5 seem to form a rough
circular structure that is interrupted in the S.

The median spectra of subclasses K1s1 to K1s5, K1s8, and
K1s9 present a low dispersion in their continuum and a medium
dispersion in their principal emission lines: the Paα, Brβ, and Brγ
lines, the principal H2 lines, and the coronal lines [SiVI] and
[MgVIII]. Subclasses K1s6, K1s7, K1s10, and K1s11 show a
greater dispersion both for the continuum and the principal emis-
sion lines. In addition, subclasses K1s7, K1s10, and K1s11 show
a fainter or absent CO absorption band around 23000 Å.

6.2. Discussion

The subclassification step for NGC 4151 is justified because one
out of nine classes gathers 90% of the spaxels. This proves to be
clearly useful with the identification of several interesting struc-
tures. To confirm this result, we applied a slightly different algo-
rithm, called HDDC, which attributes subspaces that are specific
to each class. We expected this to result in a better distinction
without a subclassification step. However, we find that the latter
is also necessary. This algorithm and our analysis are presented
in Sect. D.2; the results are similar to those of Fisher-EM.

The two classification steps made with Fisher-EM yield 20
classes altogether. To understand the nature of the different
classes, we used the H2/Brγ ratio (Fig.17). This ratio is com-
monly used in conjunction with the [Fe II] (12567 Å), Paβ
(12818 Å; Larkin et al. 1998), but we only used the threshold
values of Rodríguez-Ardila et al. (2005). This ratio shows that
13 are classified as AGN (classes 1, 3, 6, 7, 9, K1s1, K1s2, K1s4
to K1s7, K1s10, and K1s11), 5 as LINERS (classes 2, 4, 5, 8,
and K1s3), and 2 as star-forming (subclasses K1s8 and K1s9).
The AGNs and LINERs are separated in the first classification,
while the AGN and the star-forming classes are separated in the
subclassification of class 1.

The H2 22247/H2 21218 ratio shows that 19 of the 20 classes
are compatible with the thermal excitation scenario for H2, but
classes 5, 8, and 9 are also compatible with the fluorescent ex-
citation scenario, while class 7 fits no common standard (Mouri
1994). This result agrees with the various studies for NGC4151
(Storchi-Bergmann et al. 2009).

The central and NW blobs are mostly composed of AGN
classes 6 and 9. The other blobs are a mix of AGN and LINER
classes. The composite nature of the SW and NE blobs is consis-
tent with the ionisation bi-cone axis. Surprisingly, the SE blob is
also composite, but lies outside the bi-cones. However, an inflow
of matter towards the centre could explain its ionisation proper-
ties (May et al. 2020). The central blob is closest to the AGN
and superposes a maximum in the neutral hydrogen absorption
well (Fig.18; Mundell et al. 1995) or the 21 cm continuum map
(Fig.19; Mundell et al. 2003), confirming the pure AGN diag-
nostics above.
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Fig. 16. Median spectra (black) of every class and subclass for NGC 4151 with their dispersion (10 and 90% quantiles in blue and red).

Fig. 17. H2 21218 / Brγ ratio. Classes 1 to 9 correspond to the first clas-
sification with Fisher-EM, and classes 10 to 20 correspond to classes
K1s1 to K1s11 of the subclassification step

The subclassification of class 1 underlines the presence of
star-forming regions along the NW-SE axis. They are located

outside the centre. These regions agree with the H2 emission
(Fig. 20; Storchi-Bergmann et al. 2009).

Class K1s3 is the largest LINER class. Its spatial distribution
corresponds to the ionisation bi-cones.

Class K1s11 forms a coherent elongated AGN structure
along the N-S axis perpendicular to the jet direction. The axis
of this structure is tilted counterclockwise with respect to the
axis of the H2 emission (Fig. 20). To our knowledge, a struc-
ture like this has not been reported before. Together with K1s10,
K1s11 has the highest continuum in the rarely observed [24500-
31500]Å range. Apart from the star-forming classes (K1s8 and
K1s9), they have the highest Paα emission (Fig. 16) and thus
show a high Paα/[CaVIII] ratio (Fig. 21). In contrast to the other
AGN classes, K1s10 and K1s11 lack a CO absorption band
around 23000 Å.

7. Conclusion

We have performed an unsupervised classification of spaxels for
three galaxies using a GMM algorithm in a latent discriminative
subspace called Fisher-EM. Our classes gathered similar spectra,
and the mean or median spectrum of each class has a higher
signal-to-noise ratio, which make it easier to interpret through
spectral fitting or diagnostic diagrams.
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76 parsec

Fig. 18. Class map for NGC 4151 with two subclassifications in Fisher-
EM superposed with neutral hydrogen absorption from Mundell et al.
(1995). The colours are the same as in Fig. 15
.

In the three different types of galaxies we studied, we showed
that the unsupervised classification of spaxels is not only feasi-
ble, but also useful to identify regions that have similar spec-
tra based on all the information contained and not only on a
few selected features. The interpretation of the classes is easily
achieved from both their spatial localisation and some diagnostic
diagrams, without the need to visualise many maps of different
properties. In all cases, we identified new structures.

In JKB 18, we find 11 classes and identified many H ii re-
gions that nearly all correspond to the previous description by
James et al. (2020). However, we were able to map these re-
gions as extended, with gradients of ionisation intensities. We
also identified more extended zones with much lower stellar for-
mation and slightly different metallicities. In addition, we find a
small new region that we call the spot, which might be a denser
H ii region or a planetary nebula.

Our classification of spaxels in NGC 1068 yielded 16
classes. Using diagnostic diagrams, we find that some classes
are of AGN type and some others are H ii regions. Their spa-
tial distribution corresponds perfectly to well-known structures
such as spiral arms and a ring with giant molecular clouds. In
particular, our H ii classes are preferentially located in the ring
and the spiral arms, and they vary in the Hα/[S ii] line ratio. We
also identified different classes in the inner and outer parts of the
ring that the BPT diagram shows as composite regions, that is,
photoionised by stars and/or by the central AGN.

We subclassified a class that contains the nucleus of
NGC 1068 as well as extended structures far from it. We find
22 subclasses that are separated into two categories: the AGN
classes lie around the nucleus, and the H ii regions lie in the
extended structures. Two roundish structures and asymmetries
are clearly visible inside the nucleus. Globally, our unsupervised
classification of the NGC 1068 by the MUSE instrument helps

76 parsec

Fig. 19. Class map for NGC 4151 with two subclassifications in Fisher-
EM superposed with continuum at 21cm from Mundell et al. (2003).
The colours are the same as in Fig. 15
.

to visualise the complex interaction of the AGN and the jet with
the interstellar medium.

Finally, our analysis of the NIRSpec/JWST data cube for
NGC 4151 yielded nine classes, and the subclassification of the
class that gathered 90% of the spaxels yielded 11 subclasses.
Many structures can be identified and characterised by several
emission lines and their continuum level and shape, mainly of
AGN and LINER types. They can mostly be related to the jet in-
teraction, the ionisation bicones, and the H2 emission. We iden-
tified a new nearly linear structure, perpendicular to the jet and
slightly tilted with the respect to the H2 absorption map.

We have thus shown that unsupervised classification can be
very useful to automatically identify spectroscopically identical
regions in individual galaxies in IFS data cubes. The interpreta-
tion of the data only needs to be made on the mean or median
spectrum of each class instead of on all spaxels. The map of
the classes summarises many maps of different properties and
highlights some structures with peculiar multivariate properties,
such as gradients within H ii regions. Altogether, this exploratory
work shows that the unsupervised classification of spaxels takes
full advantage of the richness of information in the data cubes
by presenting both the spectral and spatial information in a com-
bined and synthetic way.

We have shown that the unsupervised classification of spec-
tra requires them to be aligned (i.e. de-redshifted), otherwise the
kinematics dominates the result. However, it is possible to visu-
alise the internal motions within each class afterwards, that is,
the detailed kinematics of spectroscopically identical regions.

We used some classical diagnostic diagrams to characterise
our classes. These diagnostics are based on emission line ratios,
while our classes are built from the entire spectrum including the
continuum and the absorption or emission lines. We have shown
in Fraix-Burnet et al. (2021) that the Fisher-EM classification
of spectra is sensitive to line ratios as well. This means that the
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76 parsec

Fig. 20. Class map for NGC 4151 with two subclassifications in Fisher-
EM superposed with H2 emission from Storchi-Bergmann et al. (2009).
The continuous line shows the orientation of the major axis of the
galaxy, the dashed line shows the orientation of the bicone, and the
dot–dashed line shows the orientation of the bar. The colours are the
same as in Fig. 15
.

Fig. 21. Paα 21218 / [Ca viii] ratio. Classes 1 to 9 correspond to the
first classification with Fisher-EM, and classes 10 to 20 correspond to
classes Ks1 to Ks11 of the subclassification step.

mean spectra obtained with an algorithm like this should be in-
terpreted in their whole complexity, probably through model fit-
ting. This was beyond the scope of this exploratory work.

Finally, we must mention that other maps obtained at dif-
ferent wavelengths can be added to complete the data cubes.
This would require similar spatial samplings, but would advan-
tageously include much more physics.
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Appendix A: Median spectra of the classes for
JKB 18

In this section, we show (Fig. A.1) the spectra of the classes from
the classification described in Sect. 4.1.

Appendix B: Median spectra of the classes for
NGC 1068

In this section, we show in Fig. B.1 the spectra of the classes
from the classification of NGC 1068 as described in Sect. 5.1.1,
and in Fig. B.2 the spectra of the classes from the subclassifica-
tion of class 15 as described in Sect. 5.1.2.

Appendix C: Analysis of unaligned spectra in
NGC 1068

When comparing spectra in a clustering or classification con-
text, correcting for the Doppler effect is essential. We included
this here automatically with the algorithm ALFA. This process
may fail when the emission lines are multiple or enlarged by
small-scale motions. It may then be interesting to perform the
unsupervised classification without this correction and hope that
the algorithm, here Fisher-EM, will take the relative kinematics
into account in addition to the physical differences. We illustrate
this idea by repeating the classifications made on NGC 1068, but
without an a priori alignment of the spectra, first, on the whole
data cubes, and second, on the subclassification of class 15.

For the whole data cubes, the optimum is obtained for 20
classes. The class map (Fig. C.1) shows a clear distinction be-
tween the blue- and redshifted sides of the galaxy. The kine-
matics clearly dominates the classification, and despite a nearly
identical number of classes (20 vs 22; Sect. 5.1.1), intrinsically
similar spectra are less well identified than with redshift correc-
tion (Fig. 6). For instance, the ring is much less prominent, and
the regions impacted by the jet are not emphasised. We conclude
that the unsupervised classification without aligning the spectra
might provide a first guess of the kinematics structure in the data
cubes, but does not provide a sufficiently discriminating classifi-
cation for the physics.

The subclassification of class 15 with the unaligned spec-
tra yields an optimum of 18 classes, again nearly identical to
the number (16) obtained with aligned spectra (Sect. 5.1.2). The
separation between the nucleus and the other regions is also per-
fect, but different classes generated by the kinematics between
the E and the W side of the galaxies are visible (Fig. C.2). We
also find the same structures in the nucleus, with two roundish
structures and the same asymmetries NE versus SW. The only
differences in the nucleus is the much smoother class map than
when we aligned spectra. This could show that there might be a
consistent kinematics at the scale of the nuclear region, but this
is probably more complex at the spaxel level.

Appendix D: Analysis of NGC 4151

D.1. Fisher-EM

For a better readibility of the classification results, we show a
map for each individual subclass of NGC 4151 with Fisher-EM
(Fig. D.1).

D.2. Analysis with the HDDC method

For comparison with the results of Fisher-EM (see Sect. 6.2),
we used another algorithm, called high-dimensional data clus-
tering (HDDC) algorithm, which fits the data in class-specific
subspaces (Bouveyron et al. 2007). For this reason, we might
expect that a subclassification is not generally necessary. Except
for an illustration on hyperspectral images of Mars made in this
latter paper, this is the first use of HDDC in astrophysics. This
algorithm is available in the R4 package HDClassif (command
hddc, Bouveyron et al. 2007).

D.2.1. High-dimensional data clustering algorithm

Here, the GMM is applied directly to the data themselves,

Y |Z=k ∼ N(µk,Σk). (D.1)

Bouveyron et al. (2007) proposed to constrain the GMM through
the eigen-decomposition of the covariance matrix Σk. Let Qk be
the orthogonal matrix with the eigenvectors of Σk as columns.
The class conditional covariance matrix ∆k is therefore defined
in the eigenspace of Σk by

∆k = Qt
k Σk Qk. (D.2)

The matrix ∆k is thus a diagonal matrix that contains the eigen-
values of Σk. It is further assumed that ∆k is divided into two
blocks,

∆k =



ak1 0
. . .

0 akdk

0

0

bk 0
. . .

. . .

0 bk



 dk

 (p − dk)

,

(D.3)

with ak j > bk, j = 1, ..., dk. The parameter dk ∈ {1, . . . , p − 1} is
unknown and can be considered as the dimension of the subspace
associated to the kth group, that is, the number of dimensions
required to describe the main features of this group. The second
block is assumed to represent the noise described by bk.

Because of the class-specific subspaces, the number of pa-
rameters to optimise is large. By fixing some parameters to be
common within or between classes, Bouveyron et al. (2007) pro-
posed several parsimonious models that correspond to different
regularisations. The estimation of all the parameters uses a clas-
sical EM algorithm.

D.2.2. Application of HDDC to NGC 4151

The classification of NGC4151 with HDDC led to an optimum
of three classes (Fig. D.2). Classes 1 and 2 represent the major-
ity of spaxels. Class 2 encompasses subclasses K1s4 to K1s11
except for K1s9 of the Fisher-EM subclassification. Class 1 cor-
responds to subclasses K1s1 to K1s3 and to classes 2 to 9 of the
Fisher-EM classification. Because classes 1 and 2 of the HDDC
classification are large and show high dispersion, we subclassi-
fied each of these classes (Fig. D.3. For better visibility, we built
maps of individual classes (Fig. D.4). Both subclassifications

4 https://www.r-project.org/
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Fig. A.1. Median spectra (black) of every class for JKB18 with their dispersion (10 and 90% quantiles in blue and red). The y-axis is in arbitrary
units with the same scale for all plots.

highlight several structures similar to those obtained by Fisher-
EM both spatially and physically, but they appear to be less pre-
cise. For instance, the SE structure of the Fisher-EM subclass
K1s9 is not found by HDDC. In addition, the HDDC classes are
more dispersed in their spectra than Fisher-EM.

Hence, we conclude that the HDDC algorithm does not avoid
the necessity of subclassification and does not bring more infor-
mation than Fisher-EM for our data for NGC 4151. However,
both algorithms yield consistent results, which means that our
analyses are more robust.
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Fig. B.1. Median spectra (black) of every class for NGC 1068 with their dispersion (10 and 90% quantiles in blue and red). The y-axis is in
arbitrary units with the same scale for all plots.
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Fig. B.2. Median spectra (black) of every subclass for NGC 1068 subclassifcation of class 15 with their dispersion (10 and 90% quantiles in blue
and red). The y-axis is in arbitrary units with the same scale for all plots.
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Fig. C.1. Class map of NGC 1068 with unaligned spectra. To be com-
pared with Fig. 6.

Fig. C.2. Class map of NGC 1068 subclassification of class 15 with its
unaligned spectra. To be compared with Fig. 8.

Fig. D.1. Maps of individual subclasses of NGC 4151 class 1 with
Fisher-EM. Each subclass is highlighted in red, and the others are plot-
ted in grey. See Fig. 15 and Sect. ??.
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76 parsec

Fig. D.2. Class map for NGC 4151 with three classes with HDDC. The
class nomenclature is explained in Fig. 1.

Fig. D.3. Class map summary for NGC 4151 for the subclassifications
of classes 1 (reddish colours) and 2 (blueish colours) of Fig. D.2 with
HDDC. The class nomenclature is explained in Fig. 1.

Fig. D.4. Maps of individual subclasses of NGC 4151 class 2 with
HDDC. Each subclass is highlighted in red, and the others are plotted
in grey. See Fig. D.3.
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