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Abstract: Digital twin technology is a highly valued asset in the manufacturing sector, with its unique
capability to bridge the gap between the physical and virtual parts. The impact of the rapid increase
in this technology is based on the collection of real-world data, its standardization, and its widespread
deployment on an existing manufacturing system. This encompasses sensor values, PLC internal
states, and IoT, as well as how the means of linking these data with their digital counterparts. It is
challenging to implement digital twins on a large scale due to the heterogeneity of protocols and data
structuring of subsystems. To facilitate the integration of the digital twin into existing manufacturing
architectures, we propose in this paper a framework that enables the deployment of scalable digital
twins from sensors to services of digital twins in an iterative manner.
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1. Introduction

The manufacturing industry is rapidly transforming into a new era, Industry 4.0.
Data and their analyses are the main components of this industrial revolution that we
are experiencing. Artificial intelligence, connectivity, Digital Twin (DTw), and intelligent
inter-issues obtain data from the real world. DTw is a technology based on this connectivity
between the real and virtual worlds [1,2] whereby the virtual is a vision of its real part
to increase its capabilities. Different devices have different data refresh rates, power, and
communication protocols. This diversity in the world of Operational Technology (OT)
makes it complex. Feeding a DTw with data from the physical world is a real challenge
requiring expertise from OT to Information Technology (IT) [3]. This challenge is very
difficult when the system already exists. Deploying a DTw therefore has a significant cost
to design and deploy it, and also to maintain it [4]. This is because collection, models,
and analytics must be constantly updated with real-world developments. Duplicating a
DTw facilitates the return on investment and the development of this technology, which
is expensive to implement [5]. Data collection is the pivot between the two worlds. The
available data must allow the creation of standard services and, conversely, the lack of
data must allow the standardization of their measurement and collection [6]. The difficulty
of large-scale deployment of standardized data collection in the manufacturing sector
is slowing down the deployment of a first generation of DTws in existing systems. The
objective of this article is to propose a framework for the development and large-scale
deployment of an evolutive DTw in the manufacturing domain.

Section 2 provides a concise state of the art of the DTw concept. The purpose of this
overview is to show the main characteristics of DTw, which are applicable in a wide range
of industries. This overview also aims to show the potential benefits of DTw, the link
with simulation and IoT technologies, as well as the need for methodologies to define a
DTw project.
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Section 3 aims to show the challenges of implementing communication between the
real and virtual worlds even more in the context where the system already exists. This part
also shows the importance of contextualizing data to provide a maximum understanding
of them in the virtual world of DTw. To meet these challenges, the OPC-UA technology,
which is increasingly standard in the manufacturing world for its communication protocol,
also allows the contextualization of data and the provision of information models.

Section 4 provides a framework for iterative DTw design on legacy systems. Services
self-configure through the provision of contextualization data, and the addition of a sensor
instantiates new services. As self-configuring sensors and services are implemented, DTw
will become more and more mature.

We conclude with a discussion explaining the opportunities and limitations of this
iterative approach and conclusion.

2. Digital Twin Overview

This section is intended to provide an overview of the concept of DTws, and the
advancements in research on the subject, particularly in the manufacturing sector. It will
also try to show the difficulties in defining and implementing a DTw for its need to limit
the risks of these projects.

2.1. The Basics of the Concept of a Digital Twin

The basis of the concept of DTw is in the following two definitions, that of Grieves [1]
“The Digital Twin concept model [. . .] contains three main parts: (a) physical products
in Real Space, (b) virtual products in Virtual Space, and (c) the connections of data and
information that ties the virtual and real products together.”, and Glaessgen and Stargel [7],
“Digital twin is an integrated multi-physics, multi-scale, probabilistic simulation of a
complex product and uses the best available physical models, sensor updates, etc., to
mirror the life of its corresponding twin.” The DTw is, from its earliest definitions, the
mirror of its real physical twin. The complexity of the implementation of this technology,
its youth, and its promised perception have caused a distorted or incomplete image of
the actual technology, which is the DTw. A more recent definition of DTw is given by
Tao et al. in 2018 [8,9], “[. . .A] complete DT [Digital Twin] should include five parts:
physical part, virtual part, connection, data, and service.” It takes up Grieve’s [1] by clearly
introducing the notions of data and service; the five-dimensional DTw can be integrated. In
order to characterize the DTw, Jones et al. synthesized the work and identified 12 themes
that describe and characterize the DTw [10]: Physical/Virtual Entity, Physical/Virtual
Environment, Physical/Virtual Process, Fidelity, Status, Parameters, Twinning Frequency,
and Physical-to-Virtual/Virtual-to-Physical Connection. Many other syntheses on the DTw
have been produced in recent years, clarifying this complex notion more and more [11–19].
They bring together real-life use cases that make it easier to understand the possibilities of
DTw as well as the technologies currently available to implement its DTw in its environment.
A new generalist standard named “Digital twin concepts and terminology” was published
at the end of 2023 [20]. It defines the DTw as the “digital representation of a target entity
with data connections that enable convergence between the physical and digital states at
an appropriate rate of synchronization”. This is a very broad definition of DTw, but it has
all the essential concepts that make up a DTw.

2.2. Definitions for Each Domain

As DTw is a technology that can be used in a variety of fields, definitions that are
more specific to business areas are proposed, such as those focused on the product life
cycle [21,22], such as Stark’s et al. definition in 2019 [23], or the manufacture-oriented one,
such as the Negrie et al. definition in 2017 [24]. The high demand for implementations
in the manufacturing sector has led to the development of the ISO 23247 standard to
standardize the DTw for these requirements [25]. The DTw is divided into four blocks:
User, Core, Data collection and Device control, and Cross-System. Interfaces with humans
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are an integral part of this standard framework, which could potentially shift toward the
symbiosis between humans and the DTw. From measurement by sensors to ergonomic
data for use, many technological blocks must be developed and implemented. In addition,
human DTw interfaces must be adapted to the user’s needs. Figure 1 of [26] shows the
interactions between DTws, based on the granularity of observable manufacturing elements
(OMEs) and their correspondence with the different requirements within the company.
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These definitions enable us to better understand the possibilities of DTw in each field,
as well as how to implement it in its activities. However, they also have the potential to
diverge the understanding of the DTw by limiting its possibilities to those possible in their
field (see Table 1).

Table 1. Overview of domain-specific digital twin definition.

Author Domain Definition

Negrie et al. [24] Manufacturer

“DT for manufacturing industry lies in their definition as virtual counterparts of
physical devices. These are digital representations based on semantic data models

that allow running simulations in different disciplines, that support not only a
prognostic assessment at design stage (static perspective), but also a continuous
update of the virtual representation of the object by a real time synchronization

with sensed data. This allows the representation to reflect the current status of the
system and to perform real-time optimizations, decision making and predictive

maintenance according to the sensed conditions.”

ISO 23247 [25] Manufacturer
“Manufacturing digital twin fit for purpose digital representation of an observable

manufacturing element with synchronization between the element and its
digital representation.”

Tuegel [27] Aeronautics

“An ADT is a cradle-to-grave model of an aircraft structure’s ability to meet
mission requirements. It is a submodel of an all-encompassing Aircraft Digital
Twin which would include submodels of the electronics, the flight controls, the

propulsion system, and other subsystems.”
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Table 1. Cont.

Author Domain Definition

Stark et al. [23] Product

“A digital twin is a digital representation of an active unique product (real device,
object, machine, service, or intangible asset) or unique product-service system (a
system consisting of a product and a related service) that comprises its selected

characteristics, properties, conditions, and behaviors by means of models,
information, and data within a single or even across multiple life cycle phases.”

Talkhestani et al. [22] Product “The Digital Twin is a virtual model of a physical asset capable of fully mirroring
its characteristics and functionalities during its entire lifecycle.”

2.3. Digital Twin Gain

The first two sub-parts introduce the concept of DTw and its multiple definitions
that are specialized in a field of application. However, these definitions do not give any
indication of the different purposes that DTws may have.

The purpose of DTw is to give a certain omniscience to its users, making operations
less expensive because they are more efficient. It also offers material gains by providing
predictive maintenance services, the possibility of simulating certain measurements, or
increasing the performance of the system. In other words, the DTw is a tool that offers easy
access to enriched information to all its users, eliminating many unnecessary human and
material costs [28].

A maintenance operation on a sensor can be recommended by a DTw department,
and technicians can prepare it via the planning and visualization service. The gains in
this example are multiple: the sensor is only changed when it starts to malfunction; and
accessibility operations and tools will have been planned before the intervention, which
optimizes the efficiency of human operations and reduces machine productivity losses.
The DTw can also be used to predict the future behavior of the system by simulating the
future behavior of the system based on the real situation, to test parameter optimizations by
simulation, to validate them, and to provide feedback on the control accordingly. The gains
are not only at the operational level but also at the decision-making level, facilitating the
analysis of performance, quality, and energy consumption. Indeed, a production line DTw
can be accessed from a machine as well as from a centralized service. Thus, the decisions
are made based on data based on reality and not only on theoretical projections (Figure 2).
To be able to obtain its possibilities from DTw, simulation and IoT technologies will be part
of a large part of DTws.
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2.4. Digital Twin and Simulations

As we have seen in the previous parts, the DTw is more than just a simulation. Indeed,
it is the link with reality that makes it unique and powerful. It is an essential part of the
standard DTw definition [20,25]. A simulation is not a DTw, as it is not connected to the
real system. However, DTws can have services that utilize simulations. These can be
visual with a three-dimensional representation, but they may not have a graphical interface.
Indeed, the models used can be of any kind. A simulation cannot be a DTw. However,
the DTw can use simulations. The distinction between these two concepts is necessary to
address the need for the right technology. The opening up of simulation services executed
and initialized according to parameters captured from the real world appears to be an
important way for exploration. Indeed, the applications of the simulations can then be
used as close as possible to the system in operation to predict failures or even propose
optimizations. Simulation models developed in the design phase can continue their life
phase to be used in a DTw service. DTw and simulations are not identical, but the two
concepts are intimately connected.

2.5. Digital Twin and IoT

In the manufacturing world, production equipment has many measuring points nec-
essary for control. However, to be able to integrate services that respond to the system
environment, it is often necessary to increase the measurement capabilities of the real
system, even in the manufacturing industry. The concentration of all its data in the control
system is a result of the burden of the control system. IoT sensors are therefore responsible
for collecting data that are not necessary for control but have a potential for optimiza-
tion analyses. IoT technologies facilitate data collection by offering more standards and
capabilities directly on sensors [29–31]. Thus, these sensors allow a broadening of the mea-
surements that can be made to understand the system in its environment. It is not necessary
for them to be added to the DTw, but they enable a possible increase in its capabilities if
services utilize them [32]. Another aspect between these two concepts is the distribution of
the first data processing. Indeed, an IoT layer with enough computing and storage power
can consolidate with a certain intelligence the data directly from the shopfloor [33]. This is
a key point in the possibilities of DTws in view of the quantities of data collected and to be
transmitted and stored beyond the production networks.

2.6. Define Your Digital Twin

Agrawal et al. propose a framework to assist in defining its DTw [34]. It divides the
DTw into four elements (Observation, Analysis, Decision, and Execution). Their framework
is composed of a two-dimensional graph: the element and the level of automation. It
replaces the objective of the DTw by providing a tool for reflection on its anticipated
objectives. Iteratively, DTw projects are designed with a reflection on the needs, constraints,
and expectations. On an existing system, the integration of a DTw must be integrated
as seamlessly as possible to disrupt production as little as possible. This means that the
optimal balance between needs and effort/costs can be defined more easily [34]. Analysis,
decision making, and execution are only possible through information. The observation
part is therefore essential [35] and often overlooked in the DTw. A DTw project that is most
suitable for its needs and constraints is a difficult task that still requires new methods. The
ISO 9001 [36] model approach is an opening to reflect on all DTw design issues [37]. The
creation of a DTw from a library of components that is gradually developed, and reusable,
seems to be a way to achieve more massive deployments across an entire shop floor [38].
As the age of DTw deployments is still in its infancy, it is important to understand the
significant risk of deployment over a large area. Observation is often forgotten in the design
idea of the DTw even though it is one of its main features.
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2.7. Digital Twin Maturity

Private and public research laboratories are designing and implementing proofs of
concept and frameworks on this technology. The reality on the ground can hinder the
relevance of these tools [19]. However, the maturation of the DTw evolves as it encounters
this technology. The constraints of the application domains will be incorporated to create
an implementable DTw. The DTw is composed of mechanical and control architectures. It
is difficult to modify this architecture in production during the life cycle of the production
line. DTw grows over time, as do the different services that aggregate with projects. It
increases these capabilities more and more iteratively. Thus, the gains of the DTw are
reduced by the project risks [39]. It also learns, during its life cycle, about different models
of settings, normal behavior, failures, etc. They can be used to monitor the system more
accurately. DTws can be enhanced by their ability to communicate with other DTws to
obtain information. These capabilities could even be from a management perspective with
higher-level services. At the end of the system’s existence, the DTw is also at the end of
its life. The experience gained with the creation of this DTw, as well as the limitations
encountered, must be considered for the design of the next DTw generation. It can also be
used to store the real system for the future. Figure 3 summarizes how a DTw can evolve
during its life cycle. However, the DTw can reach the conclusion of its life without having
passed the various levels of maturity. Nevertheless, experience must be retained to improve
future versions of the system. The real and virtual parts of the DTw are not as independent
as the DTw suggests. They complement each other to form an integrated system with more
control over themself as well as more communication capabilities.
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2.8. Overview Discussion

This overview of the state of the art of DTw made it possible to show the concept
in its generality. The different definitions, presented in this overview, allow the main
characteristics of DTw to be observed. The evolution of definitions is very rapid, and more
and more standards define DTw. Our state of the art is concise and oriented toward the
applicability of the DTw concept, particularly in the manufacturing world. This overview
provides a DTw maturity model to help understand the diversity of different DTws that
can change over time. The investment of time and money to achieve a retroactive DTw
is colossal, from design to maintenance. This is especially the case when the system is
in production and has not been designed with DTw implementation constraints in mind.
Rigor in the definition of the need and the design methodology of the DTw is therefore



Sensors 2024, 24, 1434 7 of 18

necessary. The communication between the real and virtual parts of the DTw must be
able to keep up with the changes in the maturity of the DTw. In the next Section, we will
look at the practical issues of this part of the DTw when implementing it on an existing
production system.

3. Digital Twin Connection between Real and Virtual

The purpose of this Section is to illustrate the aspects of the connection between the
real and the virtual parts in the manufacturing industry. Indeed, this connectivity between
the real and virtual worlds is the hallmark of the DTw. It is therefore essential for its
deployment. Data collection in sensor-equipped service workshops takes place at a level
above that of the order. Interoperability and knowledge of equipment are the first points.
Then, the contextualization of the data collected is also just as important. The OPC-UA
brings these aspects together in an open technology that is increasingly standard not only
in the field of manufacturing but also in research.

3.1. Interoperability

Interoperability between the company’s various systems is at the heart of Industry 4.0
issues. Silo architecture between trades must be deconstructed to facilitate the transmission
of data. Reference architectures [40] have therefore been created as the Reference Archi-
tectural Model Industry 4.0 (RAMI 4.0) or the Industrial Internet Reference Architecture
(IIRA). Depending on the life cycle of the product and the location of the company, the
possibilities for interoperability differ. This interoperability encounters major challenges
in the field of operation technologies. In addition, the communication protocols of the
equipment in the field are varied and often proprietary. Additionally, the communication
performance of some protocols in equipment is not yet complete (e.g., OPC-UA embedded
servers). As a result, they are sometimes not up to the standard of the proprietary protocols
available. In some cases, interoperability is not possible at the lowest levels. It is then up to
the top layer to take over to ensure this. The construction of an architecture from the sensor
to the DTw is therefore essential. The standardization of communication protocols should
facilitate this issue of connection to data. However, this process is going to be a lengthy
one and will be a crucial element in the OT world for many years to come. Implementing
a scalable DTw involves considering the evolution of technologies during the system’s
life cycle. Thus, interoperability is a challenge for the implementation of a DTw in the
architectures of current production lines but will also be so in the future between several
generations of DTws.

3.2. Contextualization

The value collected from the real world does not yet have a meaning associated with it.
It is this meaning that makes it contextualized. All the metadata around the data then allow
this to be understood by those who consume them. This contextualization can take the form
of units of measurement (kg, m, s, ms−1, W, etc.), a hierarchy of components (the sensor X
belonging to robot X in line X of factory X, etc.), type of process, etc. From the perspective
of open data architecture in the company and interoperability, this contextualization is
essential to maintaining consistency and understanding between the various trades. Thus,
the data are aggregated as they move through the levels of the company with the richness
of their metadata so that they can be used in the best possible manner [41]. Figure 4
illustrates the potential impact of contextualizing data from the moment they are collected
for all the company’s stakeholders, even beyond their use in a DTw. This is because each
core business receives a virtual representation of the system perception and not a raw
list of measurements. The contextualization of the data brings the system closer to each
person who needs to analyze them. These metadata, beyond being utilized for human
understanding and data analysis, are also a source of information for algorithms and
models. It is possible to find the same and consistent data across multiple production



Sensors 2024, 24, 1434 8 of 18

sites, giving us a bigger data set. The deployment of services can also be increased by
contextualization metadata by self-configuring with the necessary data.
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3.3. OPC-UA

The Open Platform Communication Unified Architecture (OPC-UA) is a secure in-
dustrial protocol but also a data space for industrial systems. The OPC Foundation has
been established, maintained, and improved since 2008. It is the result of the unification
of OPC Data Access, OPC Historical Data Access, and OPC Alarms and Events, as well
as the distancing of itself from Microsoft’s proprietary COM and DCOM protocols. IEC
62541 [42], RAMI 4.0, and IIRA utilize OPC UA as a communication protocol for industrial
assets. The OPC-UA includes the possibility of opting for a publish/subscribe mode. A
popular way to implement this mode is to use OPC-UA through the MQTT protocol. This
is called “OPC-UA over MQTT”. This openness allows for greater interoperability with
consumers in the IT sector. The security measures implemented in this communication
standard are commensurate with potential attacks. This is a key point in the possibilities of
opening more possibilities for secure exposures of the data collected. The benefits of this
technology are being felt in the manufacturing and research sectors, where implementations
are becoming increasingly widespread.

The use of an open and royalty-free protocol on a large scale will facilitate not only the
interoperability of field equipment, but also the more widespread standardization of data
collection on it.

4. Integrated Approach from Sensor to Digital Twin

There is a growing demand for DTws to improve the performance of factories world-
wide [43]. However, the DTw takes time to develop and must be maintained continuously.
Our integrated approach from sensor to DTw aims to make it rapidly deployable and
scalable in today’s industrial environment. However, it also expands the possibility of
evolution over time to capitalize on experiences, and allows the segmentation of projects
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to facilitate the allocation of associated budgets. Iteratively, in the manner of the spiral
model, with data collection as a pivot between the two worlds, our approach proposes a
scalable DTw from the sensor to its services (Figure 5). This architecture will be detailed in
the different subsections.
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4.1. First Data Collection for Digital Twin

The DTw’s data collection is the hub for various services. What data are available on
the different controllers, and in which am I interested? Are they accessible in a standardized
manner? The right granularity of data collection must be determined to provide its DTw
while considering the difficulty in deploying this data collection brick on a large scale.

4.1.1. What Is the Need for Data Collection?

The various controllers on the production lines are full of data. They can be of various
types, such as continuous, discrete values, images originating from a capture of the real
world, or states within the system itself. Some of these data, which are considered essential
for the overall control of the system, are gathered by a higher-level controller coordinating
its various equipment. Depending on the need, the granularity of data collection cannot be
the same. Indeed, depending on the constraints of the network architecture, the refresh
rates in the “aggregator” controller, the communication capabilities of the equipment,
and the “aggregator” controller, the choice of the collection method is highly constrained.
The need for a use case can guide the granularity of data collection so that it can best be
addressed. However, performing data collection guided solely by the use case does not
open the doors to a diversity of services. The DTw can therefore be designed unitarily with
this approach, but it is difficult to replicate because it is driven by the use case. A hybrid
approach based on a use case, but also on the scalability of service options, opens the
possibility of large-scale deployment. Service projects are developed based on identified
needs and available data.

Defining an initial need and the desired measures to try to solve it is the first phase
of building a scalable DTw. It makes it possible to de-risk access to desired values and to
initiate potential connectivity issues in the factory.

4.1.2. Granularity Compatible with Standardization

However, the purposes of data collection are manifold, and the demands for data for
production lines are high. The need is therefore to provide data on the equipment that is
available in factories as easily as possible to improve their profits and limit their costs and
losses. Choosing a granularity that is found time and time again in your company opens
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possibilities for standardization, both in terms of data collection and in all the services
using standardized data at the level of your company. This is the second phase of the DTw’s
connectivity design that is destined to be instantiated multiple times. Indeed, it is a phase
of retreat to orient the following phases of the methodology toward more openness and,
therefore, toward more potential gains. Thus, the granularity can be located at the level
of a concentrating PLC as well as on the controller of a robot or a camera, depending on
your case. This granularity must be sought with the use cases available, but also with the
difficulty in finding a standardization for the equipment. This task of determining the data
to be collected is complex. With the OPC-UA standard, companion specifications have
been introduced for different equipment and areas of application. The purpose of this data
collection is to establish a general standard for data collection by type of equipment or
by field of application. However, it does not currently meet the needs of everyone. Thus,
basing oneself on its specifications seems to be relevant. However, in some cases, it is
necessary to adapt them for generalization in one’s own environment and specific needs.
Furthermore, the development of these information models is rapidly evolving, which does
not guarantee future compatibility with third-party applications.

4.1.3. Collection and Its Limitations

Data collection is subject to technical limitations. Additionally, the collection of data
from the various sensors present on the production line through the controllers utilizes
part of their computing power. Hardware solutions exist to collect data without relying
on control. However, this approach requires human intervention in the physical system,
which significantly complicates the scalability of standardized data collection. This short-
circuiting of data collection out of the controller does not include any direct feedback to the
control. Depending on the capabilities, data collection can be driven by a standard view of
it on a controller but can also be configured according to the associated services. However,
in both cases, the data are collected only once on the controller and can be utilized by
several services in the company.

The programming of the PLCs is a major limitation of data collection. Furthermore,
the lack of control design methodology and the differences in the implementation of the
ISO 61131-3 [44] standard between the different brands of PLC make it more difficult to
collect data automatically. Some groups require a programming standard for themselves or
their integrators in order to obtain standardized control of the PLCs in their factories [45].
However, this approach is not standardized, which only allows the most powerful groups
to utilize it.

The contextualized data collected on the production lines are sensitive to the company.
Furthermore, these data can be used by competing companies or as pressure during
negotiations. Thus, data collection must consider this issue of cybersecurity. Additionally,
in the event of feedback on controllers, this security vigilance must be increased due to
the risks involved in the event of an attack. A secure communication protocol is the first
step to take. However, the OT world is moving at a much slower pace on the renewal of
technologies due to the longevity of the installations and the reliability required of them. It
is through architecture that protections are and have been deployed to protect production
lines from cyberattacks. We therefore find a segmentation of networks (by line, by zone, etc.)
in manufacturing facilities. This protective architecture limits the possibilities of holistic
access to controllers throughout a plant. To be able to escalate the data securely, a secure
gateway to the higher levels of the company is then necessary. The OPC-UA protocol allows
data to be grouped together in an address space that is securely accessible to authorized
individuals. The standard also offers the possibility of a role with different rights on the
server. Thus, the sensitive data collected on its production lines can be transmitted only to
the authorized persons who need them.
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4.2. Data Enrichment

The data collected from the various controllers and IoT devices in the factory must
be enriched so that they can be understood, stored, exploited, etc. Mechanisms for contex-
tualizing, aggregating, and consolidating data make it possible to increase the amount of
data collected. However, the DTw is dynamic, requiring the addition of new measures and
temporary data collections. The data collection part must be modular to enrich, in multiple
ways, the data on which the DTw services capitalize. This data enrichment phase is carried
out in parallel with the two previous ones to obtain data collection models that meet the
needs that are as minimally intrusive as possible in the order.

4.2.1. Contextualization of Data

Making decisions or analyzing raw values without any information about their rep-
resentation is impossible. Simple floats, for example, cannot be understood without a
connection to reality. Contextualizing data is the link between the user and the real world.
This is all the information needed to understand a variable. Several possibilities can be
implemented to convey this contextualization. The first is the self-collection of data to locate
the end-to-end chain between the sensor and collected values. However, this “manual”
method has limitations due to the skills required to carry out the project from the beginning
to the end, as well as the possibilities of scalability and the possible saturation of the
collection on the APIs. Computer approaches are therefore to be preferred to transmit this
information around the values. The name of the variable can allow this contextualization
in the different strata of the company. Thus, the current of axis 2 of the pick and place
robot of production line 3 of the French factory can be found in the name of the variable.
This solution is easily implementable and understandable for humans. However, variable
names can be limited in size and require string operations to rebuild the variable tree.
One technological solution to address this need for contextualization is the OPC UA. This
technology includes an address space that allows the contextualization of the data, as well
as a secure exchange protocol and openings via MQTT. This opening in MQTT is also
standardized to be able to transmit contextualization through this protocol.

4.2.2. Data Consolidation and Aggregation

The data collected, contextualized, and harvested from the lower layers of the factory
are increasingly important with this transition to Industry 4.0. The collected data are
directly put into a single silo and fed back to the cloud (Figure 4). It is with this immense
lack of data that data scientists query to carry out their analyses. However, transporting
and storing this mass of data comes at a cost. It is as much financial, in terms of the storage
and retrieval of its data, as it is environmental. The governance of these data is also an
important factor to consider. Consolidating data between different levels of the company
partly limits this massive data transport between production line controllers and the cloud,
as well as the resulting storage.

The consolidation of the data also makes it possible to carry out the first processing in a
standardized and distributed way at each point of collection. In this way, the pre-processed
and contextualized data can be distributed directly to the line operators. The processing of
the collected data at the factory or cloud level involves a significant delay in having a timely
response to the needs of the operator on site. Thus, preprocessing compresses the data
to be transmitted to the higher levels of the company by distributing the computational
load over the different collection points, and it also allows the synthesis of data in real time
for operators.

In the example in Figure 6, data collection between different robots can be different for
different brands. However, it is possible to know the convention (e.g., Euler conventions)
used and pre-process the data to expose them in a standardized way to analysts and to the
various interfaces and services. In addition, each manufacturer has different connectors for
their robots. Standardizing data collection makes it possible to find the same information
for all robots, but also to pre-map the collection addresses in the controllers. Deploying a



Sensors 2024, 24, 1434 12 of 18

new data collection on one of its robots is then almost automatic. Indeed, instantiating a
collection on a robot is the same as defining what defines the robot, such as its brand, its IP
address, etc. The mapping work no longer needs to be performed. It is the same with the
upper level of interfaces and services that can have automatic reconfiguration behaviors
depending on the equipment or type of data collected. The standardized encapsulation
of the technical aspects of data collection will facilitate the implementation of the data
collection and processing flow from the workshops for different users.
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4.2.3. Modular Collection for Digital Twin Separates from the Control

Data collection needs to evolve over time and different projects around the production
line. Modular data collection is therefore preferable. However, the modularity of the collec-
tion should not be achieved by diversifying it. Considering the versioning of data collection
models is the first solution to this modularity. It allows you to update the data collected
not only for your new needs but also for your interfaces and all the associated services. In
this way, the associated services can be versioned and tested globally before deployment
on premises. This modularity of the collection deployment can be compromised if part
of the control is carried out by the collection system. This is why the DTw seems to be, in
principle, not essential for control. It optimizes the system, makes it more resilient, and
makes it easier to understand while remaining independent (Figure 7). Thus, it can be
scaled with more flexibility than controllers. However, this flexibility is limited by the
architecture and interfaces of the controllers to obtain the optimizations from the DTw.
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4.3. Evolution and Other Deployments of Digital Twin

DTw projects are still largely unitary, with many manual operations. Facilitating the
larger-scale deployment of the DTw is therefore a necessity for the industry to accelerate
their deployments. Furthermore, the standardization of the DTw will also result in a better
acceptance of the technology, with gains in production but also in the accessibility of data by
operators. This is the last phase of the methodology to duplicate or evolve the DTw created
in the upstream phases. Figure 8 shows what the framework produces when you design a
new service and when you integrate new standardized sensors into the architecture. The
aim of this section is to demonstrate that this framework offers the opportunity to deploy
in existing systems iterative DTws.

Sensors 2024, 24, x FOR PEER REVIEW 13 of 18 
 

 

4.3. Evolution and Other Deployments of Digital Twin 
DTw projects are still largely unitary, with many manual operations. Facilitating the 

larger-scale deployment of the DTw is therefore a necessity for the industry to accelerate 
their deployments. Furthermore, the standardization of the DTw will also result in a better 
acceptance of the technology, with gains in production but also in the accessibility of data 
by operators. This is the last phase of the methodology to duplicate or evolve the DTw 
created in the upstream phases. Figure 8 shows what the framework produces when you 
design a new service and when you integrate new standardized sensors into the architec-
ture. The aim of this section is to demonstrate that this framework offers the opportunity 
to deploy in existing systems iterative DTws. 

 
Figure 8. Iterative Digital Twin. 

4.3.1. New Services and Intelligent Interfaces 
One of the ways to evolve the DTw is to add new services based on the available data. 

These services can leverage the wealth of contextualization and standardization of data 
collection to deliver more intelligence to meet user needs. Indeed, the arrangement of such 
standardized data allows standardization to be opened on the floors above the collection 
(interfaces, simulations, processing, etc.). Thus, the potential project benefits are poten-
tially much greater. Funding requests can theoretically be larger. However, that is not the 
only benefit. The duplication of services and interfaces also allows for more user feedback, 
bugs, and possible improvements that will benefit all users. The involvement of line op-
erators, engineers, and managers is crucial to achieving this digital transformation of the 
industry. 

The contextualization of data provides new perspectives for intelligent services and 
interfaces. Additionally, all the contextualization data can be utilized by the different ap-
plications. Thus, the data can be retrieved automatically according to their type, according 
to a filter (geographical area, line number, plant name, etc.). All this wealth of contextual-
ization opens doors for intelligent customers to process them to perform standardized 
tasks. Object discovery in the address space provides automatic modularity reconfigura-
tion based on connected devices. 

Furthermore, standardization has the potential to standardize human interfaces. 
Thus, human–machine interaction is simplified by a more advanced knowledge of the in-
terface by all users. The interface with the machine is no longer a blocking point in the 
understanding of the system because it is understood and experienced by a wider range 
of people. Human expertise can then be expressed much more easily to detect and solve 

Figure 8. Iterative Digital Twin.

4.3.1. New Services and Intelligent Interfaces

One of the ways to evolve the DTw is to add new services based on the available data.
These services can leverage the wealth of contextualization and standardization of data
collection to deliver more intelligence to meet user needs. Indeed, the arrangement of such
standardized data allows standardization to be opened on the floors above the collection
(interfaces, simulations, processing, etc.). Thus, the potential project benefits are potentially
much greater. Funding requests can theoretically be larger. However, that is not the only
benefit. The duplication of services and interfaces also allows for more user feedback, bugs,
and possible improvements that will benefit all users. The involvement of line operators,
engineers, and managers is crucial to achieving this digital transformation of the industry.

The contextualization of data provides new perspectives for intelligent services and
interfaces. Additionally, all the contextualization data can be utilized by the different appli-
cations. Thus, the data can be retrieved automatically according to their type, according to a
filter (geographical area, line number, plant name, etc.). All this wealth of contextualization
opens doors for intelligent customers to process them to perform standardized tasks. Object
discovery in the address space provides automatic modularity reconfiguration based on
connected devices.

Furthermore, standardization has the potential to standardize human interfaces. Thus,
human–machine interaction is simplified by a more advanced knowledge of the interface by
all users. The interface with the machine is no longer a blocking point in the understanding
of the system because it is understood and experienced by a wider range of people. Human
expertise can then be expressed much more easily to detect and solve problems not managed
by IT. The interface can even be in symbiosis with the user to work together.



Sensors 2024, 24, 1434 14 of 18

4.3.2. Integration of New Sensors

Another way to evolve DTw is through the integration of new sensors to achieve new
services. In this integrated approach from the sensor to the DTw, the service can be created
by the sensors available through the collection of standardized and contextualized data, but
the reverse is also possible. This is because a service may require the addition of standard
sensors to the system. Thus, to implement this standard service, the additional sensors to
be installed, as well as the collection model, are standardized. Thus, the standardization of
a system does not end with the addition of additional sensors. On the contrary, it allows for
a more in-depth study of the observability needs and the appropriate sensors to obtain the
best result. The standardization of data collection can therefore be considered in the form
of options to be able to integrate new services as needed. Additionally, smart services will
be integrated directly if they are designed for the contextualized information of the new
sensors. We see data collection as the pivot between the real and virtual worlds, requiring
a two-way connection for connection but also for the integration of services and sensors
into its architecture (Figure 9). The service has all the necessary data to work with the
system’s basic data collection, or it will be necessary to add new measurement points. The
hardware and the integration method are then standardized. Thus, the need is driven by
data collection, and services are driven by available data. The material cost and the cost
of implementing new measurement points must be able to measure the relevance of the
implementation or its duplication.
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4.3.3. The Digital Twin at Scale

The reflections on the granularity of the data collected in the methodology aim to be
able to carry out multiple instances of the DTw designed. This ability to deploy standard-
ized data collection, as well as intelligent clients that can use contextualization metadata,
provides an opportunity for large-scale deployment of DTws. It is a data-collectable-driven
approach to the DTw for the manufacturing sector. The certain standardization of pro-
duction equipment opens this opportunity in this field. As the DTw is a very expensive
technology, this approach, by collecting data that can be used directly, complemented by
simple services, is a first step in allowing training and the understanding of the possibilities
and limitations of the DTw. The complexity and excitement around the word “Digital
Twin” should warn decision-makers about projects that are too complex for the maturity of
their business.

A standardized modularity of the collection allows the creation of a collection as close
as possible to its needs as a DTw. In this approach, a DTw service could reconfigure (if
it has permission) the data collection to automatically populate the address space of the
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variables it requires. Existing data will be collected once and contextualized for all needs.
However, this possibility only exists if the information in the controller is standardized. In
the opposite case, humans must intervene to map between variables.

Figure 10 synthesizes the different issues for the design of a DTw that can be scaled
from the sensor to the services. This hybrid approach, based on the need and the possi-
bilities of standardizable collection, offers the possibility of rapid and cost-effective mass
deployments. This integrated approach from the sensor to the DTw is particularly intended
for the manufacturing world, which is already loaded with sensors. The human element
must not be forgotten in the design of the DTw and its evolution so as not to unnecessarily
complicate the work of some people. This consideration allows for better acceptance of the
DTw and better feedback from the field to augment the existing system and push the limits
for future generations.
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5. Discussion

The possibilities of transmitting data from sensors present for control or from the
various IoT systems capturing the environment of a production line are not easy. Indeed, the
network architectures of the manufacturing industry are particularly effective in preventing
cyberattacks on their production. Additionally, the code of the PLCs controlling these lines
is only, in very rare cases, standardized. In the case of a non-standardized controlling
system, it is not possible to utilize a collection standard, including automatic mapping
of variables to connect to the PLCs. Methodological work on the order therefore seems
essential to deploy intelligent data collection and DTws on a large scale on manufacturing
production lines.

This approach based on the connectivity of production line equipment seems promis-
ing to us for democratizing DTw implementations on a large scale and thus bringing
research into the industrial world more quickly. However, this approach requires a com-
mon and unified effort by a group to deploy DTws and make them evolve together. This
approach is applicable in cases where the same pattern is repeated. For unitary sys-
tems, the iterative approach is always relevant to limiting risks. However, it will only be
instantiated once.

The collection of data from sensors on production lines should not only be intended
for their use through DTws, but for all applications that need them. Thus, the collection is
carried out once and only on the control, and made accessible securely to all authorized
persons and applications. Better methodologies must be developed for each level of
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the DTw, both in terms of its design, implementation, and even interactions, but also
to define the measurements to be collected, the controllable parameters, etc. It will be
increasingly necessary to have methodologies in the design phase to have access to the
desired information in the controllers. Indeed, IoT can integrate connectivity limitations
to be able to sell and value the data it contains. Having methodologies and standards can
make it possible to anticipate the problems of freedom of connectivity and thus choose
the most appropriate technical solutions for the creation of smart factories augmented
by DTws.

Increasing data collection is generating more and more data storage. It therefore seems
important to know at least one use for the data collected before recording them. Questions
then arise as to the lifespan of a piece of data, for which it is still relevant, but also the right
times to collect it or what is the optimal way to store it.

6. Conclusions

The core of the contribution presented in this article is to propose a framework from
an integrated approach of the sensor to the DTw with data collection as a central pivot.
This architecture not only focuses on the importance and challenges of data collection,
but also provides a rapid opportunity for large-scale deployment of DTws on common
patterns. The iterative nature of the approach limits risk for DTw projects while providing
scalability and flexibility. The same is true with the contextualization of data through a
more explicit understanding of the data collected. This lower layer of the DTw linking the
real and virtual worlds is difficult to implement on a large scale, especially as the system
already exists with the aim of obtaining quality data. Through successive projects for the
deployment of sensors and services, the DTw is maturing. Each project can be scaled to the
available budget to continuously advance the DTw. Using contextualization data for service
configuration makes it easier to maintain and scale the DTw. In addition, the integration of
a new sensor brings with it all the services developed with the data available in the DTw.

As part of our future work, we plan not only to focus on control design methodologies
but also on the realization of generic services for the DTw. The duplication of the DTw
will allow its reliability and maintainability over time to augment systems. The design
methodology proposed in this article offers an opportunity for a transition from today’s
factory to tomorrow’s smart factory. This iterative approach smooths out effort, gains, and
risks over time, from instrumentation to services and interfaces. The proposed approach
will be applied in a real existing system in the near future.
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