HAL
open science

Honeybees' altitude control relies on same optical invariants as pilots

Julien Serres, Aimie Berger Dauxère, Gilles Montagne

To cite this version:

Julien Serres, Aimie Berger Dauxère, Gilles Montagne. Honeybees' altitude control relies on same optical invariants as pilots. 53ème Colloque de la Société Française pour l'Etude du Comportement Animal (SFECA), May 2024, Albi, France. , 37, 2024. hal-04585486

HAL Id: hal-04585486

https://hal.science/hal-04585486

Submitted on 23 May 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Main question: Perceiving a complex visual environment, what optical invariant does Apis mellifera focus on to stabilize its altitude?

Bases and aims

Optic flow: vector field of the apparent motion of objects, surfaces, and edges in a visual scene caused by the relative motion between an agent and the scene.

Optical invariants: particular properties of the optic flow unaltered when the agent is moving. Two optical invariants are particularily relevant for a ground_following task:

- optical speed rate of change $\dot{\omega}$ [used by bees and pilots]
- splay angle rate of change \dot{s} [used by pilots]

Aims: (1) To determine if bees also use splay angle rate of change for performing ground-following tasks
(2) To set the priority and weight system by which bees use these two optical invariants to control their altitude

Optic flow field perceived by a flying agent (Gibson 1950, 1979)

Optical speed (OS) experienced by a flying agent

*This project was supported by a doctoral grant awarded to
Aimie Berger Dauxère from Aix Marseille University.

