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Abstract: Intermittent power interruptions and blackouts with long outage durations are very
common, especially on weak distribution grids such as in developing countries. This paper proposes
a hybrid photovoltaic (PV)-battery-system sizing optimization through a genetic algorithm to address
the reliability in fragile grids measured by the loss of power supply probability (LPSP) index.
Recorded historical outage data from a real stochastic grid in Ethiopia and measured customer
load is used. The resulting hybrid-system Pareto solutions give the flexibility for customers/power
utilities to choose appropriate sizes based on the required reliability level. To evaluate the sizing
solutions’ robustness, this work considers and compares grid outage modeling through two different
approaches. The first is a Markov model, developed to be minimally implemented with limited outage
data available. The second is a Weibull model, commonly used to describe extreme phenomena
and failure analysis. It is more faithful in reproducing the dispersion of outage events. Using these
models, the effectiveness and performance of the PV-battery system is verified on a large number
of simulated outage scenarios, to estimate the real performance of the optimized design. It leads to
a more accurate evaluation of the behavior of a renewable power system to a weak and unreliable
electrical grid.

Keywords: distributed generation; distribution network; grid outage/interruption; outage predic-
tion; PV-battery; reliability modeling; renewable energy; Weibull/Markov model

1. Introduction

Monotonous power interruptions and blackouts even in modern electrical power
systems are customary throughout the world, from which both the power utility operators
and customers are suffering a lot. Distribution networks are the constituent elements of
the power system, which make up the major outages and interrupting events world-wide.
They account for more than 80% [1,2] of customer reliability issues, and could even reach
to 90% [3].

In modern economies, there are virtually no economic or any other activities in any
country without energy services, i.e., predominantly, no activities can be carried out un-
der power interruptions. Grid outages are crucial, with impacts on both consumers and
suppliers. Whether interruptions are planned or unplanned, they entail high costs and
socio-economic losses for different consumer categories [4,5]. Interruptions are either sus-
tained (long) interruptions or momentary (short durations). The aftermath of interruptions
highly differs with consumer types, such as for hospitals or residences; time of outage
occurrence; and outage durations [5]. For instance, direct costs such as investing on diesel
backup generators can make up as much as 40% of consumers’ energy bills [4]. The use
of the diesel backup units is also environmentally damaging and the less cost-efficient
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option. This added consumer cost depends on different factors, such as the behavior of the
grid outage.

The first step to improve power supply reliability is the study and detailed assessment
of such reliability issues, which are essential for judicious evaluation of mitigation solutions
and investment decisions. Several research studies are made on reliability evaluation with
respect to incessantly growing and changing power demands, supply imbalances, and
weather-caused interruptions. Apart from the severe weather effects, causes of outages
could include operational (overvoltage, short circuit, maintenances, etc.), aging and com-
ponent failures, human actions, overgrown or fallen trees, inadequate maintenance, other
nature factors, and so on.

To begin with the broader sense of reliability studies, the impact of integrating dis-
tributed generations (DG), both from conventional and renewable resources, has been
studied in several works, such as in [2,6–12]. With an hourly time-step, these works in-
vestigated the reliability benefits of DGs tested on IEEE distribution test systems. System
reliability indices are evaluated on different bases, e.g., the basis of randomly generated
Poisson distribution average failure rates [6]; exponential average failure rates [9,10]; and
an average time to repair, modeled by Rayleigh distribution [9]. Some of these publications
also include other potential reliability improvement techniques such as load demand man-
agement [7,9]. Aside from their universal reliability analysis on DG-based structure, some
authors have also featured DGs’ start times [2], grid supply or local integration [8], and
their locations in the network for the improvement of reliability and supply restoration
for fault-upstream load points [11,12]. Overall, the average interruption durations and
frequencies, unsupplied energy or lost loads are some of the reliability measures considered
in those works. The reliability concern due to the inclusion of such DGs as solar and wind
sources in isolated power systems is also studied [13].

On the other hand, either to recommend power distribution system design configura-
tions or to include DGs for reliability improvements, an overall grid reliability assessment
was presented in [14,15]. The system topology and subsystem failure behaviors with their
corresponding historical data were used for the reliability analysis model. The Markov
model is used for the failure and restoration of the system from the decomposed subsys-
tems data. The authors applied component-level historical interruption, and reliability
data profiles such as for switches, breakers, line sections, and fuses were used to construct
the Markov technique. These components’ features were then applied by taking into
account the distribution system topology and coordinated operation of those devices. Also
in [16,17], reliability evaluation is carried out by considering an exponential distribution
family for the failure times of system components. The latter papers tried to incorporate
aging in the analysis, where a log-normal distribution was used for the downtimes of
components. Moreover, a similar approach was reported by [18] for reliability analysis
of a system characterized by an artificially created failure history based on individual
components’ failure and repair information. In these above papers, components such as
lines, transformers, switches, breakers, and feeders are considered.

Reliability assessment studies often use the Monte Carlo simulation for reliability
indices’ characteristics analysis, despite its computational demand [19–21]. The models
of component life relating to the time to failure and time between failures are explored
respectively using the exponential and Poisson distributions [21]. Meanwhile, in [20],
the probabilities of interruption durations of components are replaced by the Weibull
distribution for the reliability evaluation. Similarly, a probabilistic reliability assessment
by estimating a probability function for power restoration in a transmission system is
examined in [22]. The probability function fit is based on the failure event databases in
selected power systems.

Extreme and severe weather impacts, such as from hurricanes, storms, floods, torna-
dos, and so on are the predominant causes in distribution system outages in countries such
as the US that have advanced systems [23,24]. Various studies in the literature, such as
in [23–28], developed system outage predictions to estimate the probable operational or
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damaged states of components under weather-caused interruptions. The authors reported
that the input data for the predictive models are principally the weather information,
historical extreme weathers, other environmental parameters or historical outages with
their associated factors, such as seasonal birds. Some of the recommended purposes
of the prediction include either to facilitate grid restoration, to locate fault areas, or to
plan maintenance.

On the other hand, grid outages in developing countries, where either the system
is weak or supply is inadequate, are serious, and customers experience very frequent
power-supply interruptions [4,29]. For customers with such frail distribution systems, a
rather more resilient and reliable solution is required. Optimal energy storage systems
are examined for improving distribution network reliability in reducing the unsupplied
energy for a radial distribution network [30], and for enhancing the reliability due to
momentary interruptions [31]. Moreover, a residential PV-battery backup system is pre-
sented for reliable power generation under scheduled grid outages [32,33]. In one case [32],
a blackout caused by the supply capacity’s shortage to meet the demand, whereby the
scheduled outage is known to customers, is studied. Whereas in another case, a similarly
predetermined outage in terms of a fraction of the total simulation is investigated. Two
conditions, harsh and moderate, are defined with a corresponding 52% and 34% of outage
time from the total simulation period with a 1-h time step. A rural residential setting in
Lebanon is where this case study is applied, with a blackout schedule that seems to be
rather severe. Additionally, a diesel/solar hybrid system is investigated for a similarly
scheduled outage context [34].

Due to the stochastic nature of the unplanned random outages that are very common
in developing and emerging countries [29], demand-side solutions usually fail to alleviate
these outage problems. It is thus essential to have a supply-side mitigation like in this work,
with a more in-depth rational study of the distribution outages and projected grid supply.

Regarding the reliability issue, various approaches in addressing reliability assess-
ment, the added impact of DGs, weather-caused outage predictions, and the sizing and
operation of hybrid systems have been explored. However, as explained above, and ac-
cording to our observation in developing countries like in Ethiopia, the distribution system
outages are sporadic in nature, i.e., unscheduled sustained interruptions, and the causes
are mainly not linked to weather or environmental factors. Among those, very old and
weak grid infrastructure, poor grid architecture, and inadequate maintenance are some of
the key causes [35]. Hence, an adapted practical approach for reliability evaluation and
improvement is required.

This paper proposes a methodology for modeling and simulating the grid state in
scrutinizing its outage phenomena. Unlike others, a 1-min sampled actual stochastic grid
interruption rather than a hypothetically synthesized interruption data is considered in this
study. Such interruptions or outages are representatives of distribution networks outages
under similar circumstances, including radial arrangement, aged networks, geographical
places, networks lacking sufficient redundancy, and comparable average outage durations.
Hence, this study may be extended to distribution systems under such similar conditions.
Furthermore, sizing a hybrid PV-battery system using a multi-criteria optimization for an
enhanced reliability index and lower investment is investigated. The idea in this study,
partially developed in [36], is to assess the suitability of power system sizing based on a
limited number of measured outage sequences, by testing it on a much larger set of data
reconstructed through stochastic modeling. Here, a method to simulate a stochastic cloud
cover is formulated for a solar radiation-based sizing of a standalone photovoltaic system.
In this work, two different modeling approaches are proposed. The first is a Markov
model, which can minimally be implemented with limited outage data available. The
second is a Weibull model, which is commonly used to describe extreme phenomena and
failure analysis. It is more faithful to reproduce the dispersion of the events, both on their
duration and on their frequency of occurrence. However, it also requires a larger initial
data set. Based on these two modeling approaches, the effectiveness and performance
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of the PV-battery system is then verified on a large set of simulated outages (equivalent
to one thousand years), to try to estimate the real performance of the optimized design.
Comparisons of the performances of a sizing are then possible, and open the discussion on
the best way to consider outages in a sizing process.

The proposed paper is structured as follows. In Section 2, the technical and economic
models with the multiobjective optimization for the proposed hybrid PV-battery system
are presented by considering the grid reliability and cost of energy. A nearly one-month-
recorded load profile and outage data sampled at 1 min is used as the basis for the sizing.
Additionally, the genetic algorithm optimization method, and the solar irradiation and
ambient temperature input datasets for a considered case study are also detailed in this
section. It also explains the distribution grid outage predictive modeling and simulation
approaches based on five years of data, taking into account any periodicities and correla-
tions among the outage parameters. Section 3 presents the Pareto front solutions of the
results for the hybrid-system sizing optimization. The grid outage simulations, the test
evaluation of these outage profiles on different optimal systems, and overall associated
performances on larger scale are also detailed. Finally, the summarized optimal hybrid
system and outage simulation findings conclude this paper in the last section.

2. Proposed Methodology

A PV-battery system for an actually measured grid outage sequence is considered as
a primary step. Here, the optimization problem is approached through the sizing of the
power system, by considering the PV area and the number of batteries. A sizing is then
evaluated on its cost and on the quality of the provided services (i.e., enhancing of the
reliability), and for a given energy management strategy. Besides this, the load demand
combined with grid outage profile for a conventional university building in Addis Ababa,
Ethiopia, was measured and is a case study for this work. The battery also allows an
extra degree of freedom for supplying energy during the interruptions and in the case of
unbalanced solar power production.

A main problem for the sizing of such an auxiliary power system is the stochastic
nature of the outages, which represent the main part of the energy to supply when installed
on weak distribution systems, such as in developing countries. Thus, faced with this
problem of forecasting network outages, this work proposes to link a sizing optimization
approach, carried out on the basis of a sample of measurements, and to try to verify the
effect of the random nature of the outages on the power system quality. In the end, the
idea is that for a given sizing it becomes possible to predict its behavior from a statistical
point of view. Then, two different methods are proposed in order to model and simulate
possible grid outages, according to short, historical recorded data. To evaluate these
models, long-term projected outage profiles (from five years of measurement) are used,
which permit a comparative performance analysis of the PV-battery system with the actual
historical outage data of a real radial distribution network. This further provides a twofold
advantage, which consists of the test of the performance of the optimal power system
in reducing interruptions on the one hand, and the validation of the simulated outage
behavior with actual records on the other hand.

2.1. System Modeling

Considering such an unreliable grid with random outages, a grid-connected photo-
voltaic system with battery storage is considered in this work—see Figure 1. The techno-
economical models include a solar PV generator, a battery storage, the load demand, the
random grid unavailability profile due to outages, solar radiation, and ambient tempera-
ture data. The sizing optimization enables consideration of the tradeoff between the cost
of the system in terms of energy and the improvement of the grid’s satisfactory ratio (i.e.,
the reduction of the outage issues). This can be achieved using the energy and economic
modeling of the aforementioned system elements.
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Figure 1. Simplified system power flow schematic.

Whenever the grid is available, i.e., there are no outages, the grid fully supplies the
building load and the PV will charge the battery eventually assisted by the grid, if PV alone
is insufficient. During outages, the PV fulfils the demand. If the PV power is inadequate,
the storage batteries will flexibly be able to complementarily back up the solar power.

2.1.1. Photovoltaic System Model

The power generated from the photovoltaic panel is defined by the cell temperature as
a function of the location’s ambient temperature and the available solar irradiation. The PV
power is used to supply the load directly in case of outages, and/or to charge the battery
bank. The maximum available power from the PV with maximum power point tracking
(MPPT) for a given surface area of the panel, Apv (m2), and the total irradiation hitting the
PV surface, Gtot, is mathematically modelled by [36–39]:

Ppv(t) = ηpv ApvGtot(t) (1)

where Ppv is the generated PV power at time step t (a 1-min time step is used) and ηpv is
the PV panel efficiency and is given by [36,39]:

ηpv = ηm

[
1− βp

(
Tcell − Tre f

)]
(2)

Tcell = Tamb + (NOCT − 20)
Gtot

800
(3)

where ηm is the module efficiency, βp is the photovoltaic panel power temperature co-
efficient taken as −0.003/◦C for silicon cells. Tcell and Tamb are the cell and ambient
temperatures (◦C), and Tref is the reference temperature, which is 25 ◦C. The nominal
operating cell temperature (NOCT), module efficiency, and temperature coefficient are
variables depending on the selected module, and can be derived from the manufacturers’
datasheets.

2.1.2. Battery Model

During the grid outages and in cases where there is no PV power or there is a deficit
in the solar power production, the battery bank supplies the consumer load demand.
Considering this key system component to work in connection with the existing grid, a
universal sizing method and energy management according to the charging–discharging
rule is used [37–40]. This rule takes into account the grid availability and compares the
total (grid + PV) power with the load. Thus, depending on the grid availability together
with the total available power and the battery-stored energy, the battery storage system
can be modeled by its State of Charge (SoC) at any time instant, t, and given by equations
(Equation (4)) for the charging, and (Equation (5)) for the discharging operations:

SoC(t) = SoC(t− ∆t) +
(

Ptot(t)−
Pload(t)

ηinv

)
ηbat
Cbat

∆t i f
(

Ptot(t)−
Pload(t)

ηinv

)
> 0 (4)
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For discharging:

SoC(t) = SoC(t− ∆t)−
(

Ptot(t)−
Pload(t)

ηinv

)
1

Cbat
∆t i f

(
Ptot(t)−

Pload(t)
ηinv

)
< 0 (5)

where Ptot is the total available power from the grid and PV, Pload is the load demand, ηinv
and ηbat are the inverter and battery efficiencies, assuming a discharge efficiency of 1, Cbat
(kWh) is the battery storage nominal capacity, and ∆t is the simulation time-step increment,
which is 1 min in this study. Here, note that the total power during outages is only the PV
power, as the grid power is zero.

The storage battery ensures the power supply during outages in its operational range
of states, SoCmin and SoCmax. These lower and upper limits are here considered to be
SoCmin = 0.2 and SoCmax = 0.9. Additionally, for a more rigorous model of the storage,
the maximum allowable charging and discharging powers are considered in the energy
management model.

2.1.3. Reliability Criteria

The portion of the power that cannot be supplied by the PV-battery system during
outages is the reliability metric considered in this study. Apart from this main fraction due
to the outage, it also incorporates the intermittency of solar production. This whole portion
of power can effectively be described by the widely used parameter, loss of power supply
probability (LPSP) [36–41], as given by:

LPSP =
∑T

t=1 LPS(t)

∑T
t=1 Pload(t)

(6)

where the loss of power supply (LPS) is the power that cannot be met during a sample time
∆t, even by the PV-battery system during outages.

This power imbalance is then simply given by the difference of power between the
load and the power system:

LPS(t) = Pload(t)− [Ptot(t) + Pbat(t)]ηinv (7)

such that: {
(SoC(t)− SOCmin)

Cbat
ηbat∆t < Pload(t)

ηinv
− Ptot(t)

Pload(t)− [Ptot(t) + Pbat(t)]ηinv > 0
(8)

where Pbat is the battery power.
The LPSP is normally in the range of [0, 1], in which 0 means that the load is fully

satisfied and 1 means that the load can never be met at all.

2.1.4. Economic Model

With the objective of improving the LPSP, the economic evaluation index considers the
annualized system cost (Ctot,a) containing the sum of the capital (Ccap), O&M (CO&M), and
replacement costs (Crep) of the different components, and grid-charging cost (Ccha.) [36,42]:

Ctot,a = CRF×
[
Ccap + CO&M + Crep

]
+ Ccha. (9)

where the capital cost covers all the components, the O&M cost is considered for the PV
only and the replacement cost for the storage battery only. The system capital recovery
factor (CRF), with the discount rate i, is given by [39]:

CRF =
i(1 + i)N

(1 + i)N − 1
(10)
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Finally, we calculated the annualized cost of energy (CoE), which is the average cost
(in euros) for the energy actually generated and served (in Wh). It is then defined by:

CoE =
Ctot,a

∑N
t=1 Pgen∆t

(11)

where Pgen is the total generated power, and N is the project lifetime—considered as 25
years.

The details of the technical and economic parameters of the system components are
summed up in Table 1 for a commercially available PV panel and storage battery, taken
from literatures, see details in [43].

Figure 2 shows the rule-based energy management strategy implemented in the sizing
algorithm based on the grid availability status, the power available from the PV and battery
SoC, with other constraints.

Figure 2. Rule-based energy management strategy flowchart.

Table 1. Considered values for the technical and economic parameters of the system 1.

PV Module Values

Module efficiency, ηm (%) 20.3
Capital cost, Ccap,pv (€/m2) 200

O&M cost, CO&M,pv, (€) 1% of Ccap,pv
PV lifetime (years) 25

Storage battery

Nominal capacity, Cbat,nom (kWh) 7
Efficiency, ηbat (%) 97

Capital cost, Ccap,bat (€/kWh) 550
Battery lifetime (years) 6

System

Project lifetime (years) 25
Discount rate, i (%) 2

1 Refer to Appendix A for an extended table of the detailed parameters used.
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The energy management rule considers the following strategies in the sizing optimiza-
tion process:

• PV power is preferred over grid to supply loads, when there is no outage;
• The grid covers loads and assists in battery charging, when the grid is available;
• During outage, no power is sent to the grid;
• The algorithm should satisfy the SoC limits and battery charge–discharge constraints;
• The storage-battery charging process starts whenever the total power generation

exceeds the load demand;
• Pgrid means the power ‘drawn from’ or ‘sent to’ the electrical grid network.

2.2. Power System Sizing Optimization

As a prime objective for an acceptable robust system configuration, the PV-battery
sizing process is formulated as an optimization problem [38,43]. In this problematic, there
are two conflicting objectives that will have a set of possible solutions called the Pareto
frontier. For these nondominated sets of solutions, for instance, one of the objectives will
never be any better without making the other objective worse. This tradeoff will give
flexibility to consumers or power utilities to choose any of the combinations of the hybrid
system based on their required level of reliability.

The two-objective function considered is: the minimization of the cost of energy (CoE),
which is composed of the system and associated costs, as well as grid-charging cost; and the
minimization of the LPSP, which is the measure of the reliability improvement by reducing
or fully overcoming the grid outages. The optimization algorithm evaluates the area of PV
panels (Apv) and number of batteries (Nbat) to be installed either to avoid outages or for
minimization. Hence, the area of the PV panels and the number of storage batteries are the
sizing parameters in the optimization:

min
{

LPSP
(

f
(

Apv, Nbat
))

(%)
CoE

(
f
(

Apv, Nbat
))

(€/kWh)
s.t.0 ≤ Apv ≤ Apv, max, 0 < Cbat ≤ Cbat,max (12)

Then, all the possible solutions (Apv, Nbat) of the two decision variables will be eval-
uated on real load demands and outage profiles recorded at the university building in
Ethiopia, namely the Addis Ababa Institute of Technology, located in the capital, Addis
Ababa. The system evaluation comprises the Apv and Nbat in wider sizing boundaries
to a maximum range of 600 m2 PV panels and 50 batteries, respectively, projected to the
project’s lifetime of 25 years. Due to the small number of decision variables, we used an
exhaustive search to test all the possible set of solutions in these boundaries.

The nondominated sorting genetic algorithm (NSGA II) was used for optimization
of the PV-battery system using the aforementioned monthly load profile and outage data.
The optimization Pareto front allows users to choose one of the possible combinations of
LPSP and associated CoE, depending on the acceptable reliability degree.

2.2.1. Load and Outage Profile

Nearly a one-month load profile (exactly 28 days, see Figure 3) for a typical public
university building in Ethiopia was measured using Fluke 435 power analyzer (series
II power quality and energy analyzer). The measurement time-step was 1 s, which was
sufficient to register the outage duration and frequency in sensibly high resolution. This
demand, the typical one-week data shown in Figure 3a, and one outage profile (Figure 3b)
are used for the optimization problem. The grid supply-side LPSP without the inclusion of
any backup system, neither diesel nor PV-battery systems, is 5.9%. Additionally, one can
also see that the building has an average, maximum, and minimum load power of about
24.5 kW, 50 kW, and 13 kW respectively.
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Figure 3. Load demand and outage profiles measured data: (a) representative one-week (12–18 November 2018) load
demand—the first five days represent the weekdays’ load and the last two days for weekends; and (b) outage sequence
(upper) and corresponding outage durations (lower) during the measurement period—24 October to 21 November 2018.

Next, five-year outage data for a radial distribution network in Ethiopia were collected,
as summarized in Table 2. The data were used for the grid outage modeling and simulation,
which will be discussed in detail in Section 2.3. It also served to test the performance of the
sizing for a selected year profile by considering a monthly constant load taken from the
1-month measurement. Moreover, the optimization was re-run for the selected year, which
was again used to compare with the system testing and performance of the simulated
outage. It is worth mentioning here that this distribution outage data is for an 11 kV
feeder, which experiences slightly more frequent outages than what are measured at the
university node.

Table 2. Distribution grid outage five-year data.

2012 2013 2014 2015 2016

Outage duration (h) 714.82 1799.08 1955 1873.65 1270.9
Number of outages (Nº) 1306 1610 2305 1847 1528

2.2.2. Solar Resource

The PV power output directly depends on the global solar irradiation incident on
the PV panel surface and the ambient temperature of the location. For the site considered
in the case study in Ethiopia at a 9.04◦ N latitude and 38.8◦ E longitude, the used solar
irradiation resource and ambient temperature data are from [44] and given by Figure 4.
The dish-shaped irradiation and the temperature minimums in mid-year, are due to the
rainy season in the country.

2.3. Grid Outage Modeling and Simulation

A key part of this work, which proposes to evaluate the influence of the stochastic na-
ture of outage apparition and duration, is the modeling of this stochastic process. Modeling
distribution grid outage needs long-term profiles to be accurate and faithful. It then permits
us to study the nature of outages in depth for further analysis and reliability improvement
solutions. Additionally, it becomes highly important to evaluate the performance of the
optimal energy system over a long period of time for techno-economic feasibility. As
a reminder, due to a substandard power system infrastructure in developing countries,
the existing fragile power-supply service experiences many power outages which greatly
affects the service quality [35]. Hence, the modeling technique is very important in that
power distribution system measurements, data acquisition, and storage in real-time and
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for a long time is very costly; and it is hardly even possible to find such datasets for most
infrastructures in developing countries.
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The Markov model has been used in several power distribution system problems such
as in the evaluation and assessment of interruptions taking into account their stochastic
nature (see Section 1). It is a probabilistic mathematical model that can sufficiently capture
system failures and failure rates in the form of state transitions for most dynamic systems
with greater flexibility [2,15].

Alternatively, the Weibull distribution approach is widely used to characterize grid
network interruptions. It is one of the statistical approaches used to denote interruption
durations or component failure durations, as well as the chain states of interrupting grid
components [20,21,45].

Hence, in this paper, the Markov and Weibull models have been applied for the
simulation of grid interruptions, as these models can respectively characterize the random
probabilistic outages and also be able to signify rare outage occurrences that could be
overlooked with a classical approach.

2.3.1. Test for Outage Periodicity, and Correlation between Outage Duration (OD) and
Time between Outages (TBO)

In the first step, whether there exist any seasonal variation and other outage periodicity
impacts was tested. In addition, other possible periodicities due to such causes as regular
maintenance activities, day–night cycles, and mild summer–winter seasonal dependences,
as is the case in Ethiopian climate, are tested for their periodic effect, if any exist. For
instance, a clear seasonal load difference according to seasonal variation can be observed
during winter and summer [32,33].

For this, the frequency representation of the outage sequence data using the fast
Fourier transform (FFT) of the autocorrelation function is used. What this basically does
is extract the frequency components of the outage data and plot them as a function of
time period for observation. This helps either to select an appropriate model for outage
simulation or modify currently existing methods. It can also help to determine which DG
technologies to consider, depending on resource availability, and integrate any periodicity
to the rule-based energy management.

Results are given by Figure 5, where correlations are tested between the TBO and OD
as well as the highlight of periodicities in the outage sequence.
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Figure 5. Correlation diagram between (a) outage duration and time between outages, (b) between
two consecutive outages, and (c) frequency analysis to highlight the outage periodicities.

It is quite clear that there are no correlations between the TBO and the OD. It is also
interesting to see that the lag between two consecutive outages has a large dynamic and
can range from a few minutes to a few hours.

The periodicity check showed that the distribution outage is totally random without
any long-term periodicities, concluding that there is no cyclic nature with seasons, nor
is there in yearly, monthly, and weekly patterns. In contrast, a clear daily periodicity is
visible. Figure 6 shows the time of occurrence of the failures during the day. Most outages
occur during the day and seem to be linked to the global load demand. In other words,
the probability of outage occurrence is positively correlated to the power requirements of
grid users.
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2.3.2. Markov Model

It may perhaps be customary to use a historical annual number of outages and
corresponding duration data to characterize the distribution grid reliability and further
utilize it for various applications, like grid management, outage prediction and adding
hybrid systems. To have trustworthy reliability study, long-term historical data is usually
required. Hence, it is clear that small data will not be able to adequately describe the
distribution system’s reliability. For each year, the sequence of grid availability may not
be found, but some global parameters such as the total number of hours of outage, the
number of outages in the year, the average duration of an outage, and the average time
between two successive outages, can be given.

Here, considering a case in which a small number of data are available, it is proposed
to use a relatively simple-to-implement Markov model with the transition probabilities of
the grid outage with the binary-state Markov transitions, from/to ‘ON’ and ‘OFF’ states.
The Markov model enables the calculation of the probability of system outage states using
the analytic matrix computations. This again gives the durations and frequency of outages.
The Markov model is important due to its computational minimalism and the capability to
be built from global data to develop a full representation of stochastic systems, such as a
standalone photovoltaic system sizing based on a stochastic cloud cover, represented by a
possible-state values-of-clearness index [36]. Solar irradiation measurement observations
were used to label the possible states of the clearness index parameter. The principal indices
of the distribution system outage, i.e., outage duration and frequency, were used for the
model, and subsequently any desired length of time can be simulated.

To characterize the stochastic grid outage as a Markov process, some steps are followed.
Firstly, the state transitions from state to state are enumerated to define the size of the
transition matrix (see Figure 7). Secondly, the Markov transition matrix (MTM) is built from
the recorded data according to all the transitions encountered. Once this MTM is obtained,
simulated scenarios of grid outage can be generated on the base of the MTM probabilities.
This Markov probability model assumes that the next outage event is absolutely dependent
on the current state only, which is widely used in reliability modeling [16].

Figure 7. A schematic representation of MTM transition states.

Here, the power grid description can be limited to only two states, which are ‘ON’ for
a working grid, and ‘OFF’ when outage occurs. There are then four possible state transition
probabilities to calculate, given by:

MTM =
Current state,

State N

State
→
N + 1[

POFF→OFF POFF→ON
PON→OFF PON→ON

] (13)

where current states are listed in the column and future states in the lines. An easy way
to build the transition matrix is to count the total number of each transition. Suppose a
measured historical global data with a series of M samples times, and these two possible
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states. The MTM with a total number of outages N, a total number of samples in OFF state
MOFF and deducing the total number of samples in ON state M-MOFF gives (see Figure 8):

MTM =

[ MOFF−N
MOFF

N
MOFF

N
M−MOFF

M−MOFF−N
M−MOFF

]
with MOFF =

N

∑
n=1

mOFF[n] (14)

It is interesting to see here that the MTM parameters can be deduced from global data.
Indeed, it is common that published data on outages are annual and only the total number
of outages and the total duration of the outages for one year are given. For instance, in [46],
the average durations of the outages can be deduced per year, as for the total annual outage
duration. It is easy to see that these data are enough to build the equivalent MTM. If the
total annual outage duration is noted as Toutage, the average outage duration Tavg, and the
duration of one year Tyear (8760 h), the MTM can be rewritten as:

MTM =

 1− 1
Tavg

1
Tavg

1
Tavg Toutage

Tyear−Toutage

Tyear−Toutage

(
1+ 1

Tavg

)
Tyear−Toutage

 (15)

To capture the daily occurrence, more adapted Markov transition matrices (MTM)
are repartitioned to day and night MTMs, based on the corresponding actual outages
occurrences data (see Figure 6). Hence, the above approach enables the MTMs for better
simulated predictions and are calculated from the global data (2012–2016); the histori-
cal outage data enables us to adapt the MTM simulation model using the said global
parameters.

Figure 8. Typical time series of the state of a power grid.

2.3.3. Weibull Model

In the previous section, the Markov transition matrix has been proposed to describe
the outage occurrence. It has been shown that this matrix is easily built from global annual
data, such as average and total outage durations. The Markov approach also permits us to
consider the daily periodicity through the use of two different MTMs, used respectively
during the day and the night. In counterpart, the MTM is very limited to take into account
the shape of the probability distribution for both parameters, which are the time between
outages and the outage duration, because of the limited number of setting parameters
with this approach. In particular, it is not possible to take into account the longest outages
without changing the step time or the order of the MTM. Then, a second model to address
this difficulty is proposed, which is more adapted to approximate the extreme outage
events. This time, the outage duration (OD) and time between outages (TBO) are directly
based on statistical distributions.

Weibull distribution is able to closely fit with the five-year outage data; consequently
for the case study of this paper, the standard two-parameter Weibull distribution has
been used to model the distribution grid outage. Outage durations or repair times of a
component can be represented by this distribution [20,21], and its cumulative distribution
function (cdf ) for a random variable x can be given as:

cd f = f (x|a, b) = 1− e−(
x
a )

b
(16)

where a and b are the scale and shape parameters; a, b > 0, and are derived from the data.
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By fitting a Weibull cdf to the set of historical data, the values of a and b are determined;
these characteristic parameters permit us to get a calibrated Weibull distribution with the
actual distribution grid outage data. For clarity, the grid outage and restoration sequence
are constructed from the simulated TBO and OD—see Figure 8 for grid sequence depiction.
Based on those two global parameters, OD and TBO, from the five-year distribution grid
operating history, a uniformly distributed pseudorandom number generator in the interval
(0, 1) was used to build the distribution of simulated OD and TBO. This once again results
in building the grid outage sequence, the grid being in an up state or down state, for the
simulation time frame considered.

We have selected the year 2015’s distribution grid outage as a reference year, which has
relatively average outage durations, number of outages, and LPSP values. For calculating
the LPSPs for each of the five years, we considered the monthly load measurement to be
the same in each 12 months. This customer building is assumed to be connected to the
11 kV feeder under consideration, Section 2.2.1.

Finally, the 1000-year simulated outage profiles from both models are tested for their
performance with the optimal system sizing.

3. Results and Discussion
3.1. System Configuration and Optimal Sizing Results

Based on the real load demand and outage measurement, a techno-economically
optimal solution is developed. The proposed sizing optimization in minimizing the LPSP
and CoE enables us to achieve greater reliability improvement. The frequency of outage
occurrence and the durations of outages are the two crucial factors dictating the size of the
power system components. Longer outages occurring during the night entail bigger battery
capacity; conversely, such similar outages during sunny days necessitate a larger PV area.
The proposed optimal photovoltaic-battery system sizing analysis was implemented in
MATLAB (version R2018a).

The sizing algorithm calculates the desired quality of service measured by the LPSP
with the corresponding global energy costs, which are set to be minimized. The nondomi-
nated Pareto solutions result in the cost function value and corresponding positions of the
optimization variables—in this case, the PV area and number of batteries. This solutions
front is the best optimal set from which any of the two objective variables, LPSP or CoE,
cannot be further improved without degrading the other. The optimization algorithm is
run repeatedly to ensure that the algorithm led to these best results of the Pareto, resulting
in similar values.

Figure 9 illustrates the modeling objective targeted at a reduced or zero loss of power is
achieved by optimizing the LPSP and CoE for all the possible combinations of the system’s
PV area and storage battery capacity. A zero LPSP can be achieved with relatively high
battery capacity and PV array, at a cost of energy of 0.17 € per kWh, which corresponds to
182 m2 PV and 39 batteries. The Pareto front set of all the possible solutions indicate that
lower costs with a more acceptable choice of LPSP than zero shall give the freedom to choose
other PV-battery combinations, for users to make an informed decision in implementing
such systems. A customer can select the intended level of comfort (LPSP level) as a primary
objective with the best possible value of the corresponding CoE.

Longer outage duration causes the LPSP to surge, demanding larger system sizes
and hence energy costs. Except for the likelihood of slightly enhancing the reliability,
the LPSP barely responded to PV area and battery sizes after certain values. A further
increase in PV sizes with 10 or more batteries, notably did not further improve the LPSP.
This reliability and system sizing optimization result indicated that there is an important
sensitivity of the LPSP index to the PV size at a low-cost solution with higher LPSP values.
This shows the role of PV in low-cost systems. Increasing the number of batteries from 5 to
20 created a 1% LPSP improvement. At lower LPSPs for improved comfort, the batteries
played an important role, with higher system cost as expected. But the LPSP insensitivity
beyond this higher battery value highlighted that the outages that occurred during non-PV
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generation have dictated the sizing process. This means that the compensation for the
longest outages, or those that occurred during the night, were provided by the batteries.
System sizing would have been primarily ruled by outages if they occurred during a
nonzero PV power generation.

Figure 9. Photovoltaic-battery system Pareto optimal sizing.

3.2. Outage Predictive Modeling: Markov, Weibull

Contrary to the weather conditions that cause distribution systems outage elsewhere in
the world, in this paper context there is no wide variation in season and weather conditions.
This can be also seen from the two major decisive factors of the PV system design, global
irradiation and ambient temperature data (see Figure 4).

For the Markov method, the resulting MTMs of probabilities for the daytime and
nighttime are:

MTMday =

[
0.97803 0.02158
0.00055 0.99945

]
, f or t mod 24 ∈ [8.00; 20.00]

and

MTMnight =

[
0.97882 0.02118
0.00056 0.99944

]
, f or t mod 24 ∈ [0.00; 8.00] ∪ [20.00; 24.00]

The transition probabilities apparently show a higher chance of staying in an ‘OFF’
or ‘ON’ state, if the grid is already in those respective states initially. For example, in the
daytime MTMd (1, 1), the probability of the grid remaining in its initial position of ‘off’
state is 0.978; refer to Appendix B for a sample simulation based on five years of data with
these transition probability matrices compared to actual data.

With regard to the Weibull process, the estimated a and b values with a 95% confidence
interval through the maximum likelihood estimates technique are: for TBO: a = 1620 (min),
b = 0.77, and for OD: a = 36 (min), b = 0.56.

Figure 10 shows the obtained cumulative distribution functions for both OD and
TBO. It is obvious that the Weibull distribution, with only two parameters, is able to
accurately reproduce the measurements results. On the contrary, the Markov matrix
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approach, although it is simpler to implement and can differentiate the day and night
phases, does not allow the measured distributions to be accurately followed. In particular,
long and unlikely events are very difficult to be captured by the Markov approach. This
confirms the idea that using a Markov process to describe grid outages is a simple and
accessible way when the data are not available, but that it will not allow to be accurate to
the actual outage profiles. Weibull is able to demonstrate a more realistic simulated profile
as compared to Markov.

Figure 10. Cumulative distribution function of outage duration and time between outages, for
measurements (five-year data), Markov transition matrices (day and night) and Weibull distribution.

After the proposed models and methods of generating outage profiles were presented,
a safe sizing methodology could be developed. On the basis of optimal sizing obtained for
a reference year (2015), the method consists of testing it for a large set of simulated outage
profiles, and testing its results in the objective plan, which are in this study the LPSP and
the cost of the solution. Then, the obtained LPSP results (there are then as many LPSP
values as there are years simulated) are statistically compared to the five-year average
LPSP value, obtained without any power system (LPSP = 2.53%).

Similarly, according to Figure 11, the Markov model shows a lesser distribution, while
Weibull shows better spread—appearing to better cover the data profiles. The outage data
without any power system in the years 2012–2016, i.e., the grid-side power supply state
without any backup or standby system, is shown in broken vertical lines superimposed on
these model simulation probability curves.

The Markov model takes into account a piecewise constant transition probability
depending on the hour of the day to develop the outage sequences. Regarding the Weibull
model, it gives a more diverse LPSP probability pertaining to its capability to take into
account lower frequency outage occurrences or extreme events.

For both models, their mean LPSPs are closer to the five-year average, which is 2.53%,
with marginal dispersion, showing the effectiveness of the models. This ensures that the
proposed simulation models tend to yield a comparable practical outage scenario. By
integrating hybrid systems like in this study, better outage management, system reconfigu-
ration, system planning, and so on can then be examined and reliability will effectively be
addressed, based on a sufficient system profile.
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system, by using Markov and Weibull models. The LPSP comparison with the 2012–2016 data is
shown in broken lines; the mean LPSPs values for the Markov and Weibull simulations are 2.51%
and 2.38%, respectively.

3.3. Optimal System Performance Test and Reliability Results

For the robustness criteria, long-term outage sequences are considered in order to test
the performance and the robustness of the proposed PV-battery system. To do that, the
proposed idea is to test an optimal solution, obtained for a limited measurement data set
(few days or few weeks), on a large number of simulated outage scenarios obtained from
both Markov transition matrices and Weibull distribution. The methodology is illustrated
in Figure 12. Based on a measurement sequence, optimization is achieved and a set of
optimal solutions is obtained, on the base of CoE–LPSP objectives.

In parallel, the measurement data are used to fit the MTM and Weibull distribution
parameters. It must be noted that the MTM approach also makes it possible to find the
parameters of the transition matrix only from annual global data, as given by equation (15).
Next, a sizing solution on the Pareto front is chosen, and tested on a large set of simulated
years (for instance a few hundred years). It results, for each simulated year, in a couple of
LPSP and CoE, which differ from the values obtained in measurement. It is then possible
to build the histogram and the cumulative distribution of both objectives. Finally, for an
optimal sizing, it becomes possible to evaluate its robustness with probability values, and
especially for the probability value n to have a maximum LPSPn:

cd f (LPSPn) = P(LPSP ≤ LPSPn) (17)

To illustrate this methodology with the proposed case study, PV-battery system opti-
mal solutions are adopted, with 0.0%, 0.1%, 0.5%, 1.0%, 1.5%, and 2% LPSPs as reference
systems based on 2015. The PV and battery sizes and corresponding energy costs for the
reference system are as given below, Table 3.
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Figure 12. Proposed methodology for the reliability test of a sizing solution.

Table 3. Reference optimal systems’ PV and battery sizes with their corresponding CoE, based on
measurements data of the year 2015.

LPSPref (%) Nbat (Nº) Apv (m2) CoE (€/kWh)

0.0 39 151 0.176
0.5 304 7 0.063
1.0 284 4 0.05
1.5 260 1 0.039
2.0 179 0 0.033

The next step of the proposed methodology consists of testing the performance of
these sizings on the 1000-year simulated outage profiles. It gives a cloud of points of LPSP
and CoE that are the two objectives of the optimization problem. These clouds of points are
analyzed as statistical distributions of both parameters and are presented in Figure 13.

Considering a completely reliable reference system with LPSPref = 0%, this value is
equal to zero for about 92% and 32% of simulations for Markov and Weibull respectively.
Comparatively, for a relatively higher LPSP reference system, such as 2%, this metric shows
an LPSP less than or equal to this value (i.e., 2%) for 51% and 71% in the Markov and
Weibull methods. Summing up these figures, for all the different solutions, both Markov
and Weibull lead to distributions centered around the reference LPSP values and it can
also be deduced that the Markov approach leads to more optimistic results compared to
the Weibull distribution results. However, as seen previously, the Weibull distribution
approach is more faithful to reality and therefore offers more reliable indicators.

The performance of the two models with selected reference systems with the corre-
sponding LPSPs and CoE are illustrated by boxplots in Figure 14. As explained above,
due to the Markov simulation resulting in well above the data average LPSP in lower
values, the performance of the PV-battery system ensures a greater reliability under these
circumstances. For example, the performance at LPSP = 0.5%, the optimal size line-graph
predominantly satisfies load demand under such simulated outages, i.e., the Pareto graph
(solid line) crosses above the third quartile (well above the median) of the corresponding
boxplot. Note that the red lines inside the box are the median.
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Figure 14. Optimal PV-battery power system based on 2015 data: performance test on four years’ measured grid outage
data is represented by blue symbols, and performance on simulated grid outages is depicted by boxplots; (a) performance
of Markov outage prediction; and (b) performance of Weibull outage prediction. Boxplots show the performance of the
simulated outage profiles, while the blue marks show the PV-battery system test on the outage data years.

Nevertheless, the Weibull shows the Pareto line crossing through the median for the
0.5% LPSP case. This phenomenon is reversed for higher LPSP values. By taking the 1.5%
value, one can see that the point at which the Pareto front crosses the boxplots is vice versa
to the above explained case.

In summary, the two pivotal variables in characterizing and sizing the hybrid PV-
battery systems are the grid outage durations, which mainly dictate the size of the storage
battery via the charge–discharge cycles, and the number of outages. Inherent to these
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factors is the time of occurrence of outages (time of the day) that further govern the size of
the PV panel area required. Others could include the magnitude of the load demand and
weather variables. The longer the outage duration and/or if it occurs at night when there
is no PV production, the higher the battery size. Additionally, the higher the load demand
during the day, the larger the PV area.

Furthermore, the outage modeling by the Markov and Weibull techniques show a
very good estimate closer to historical data. The latter, with a minimal computational
requirement compared to its counterpart, gives a disperse outage profile weighting in
reference to the historical average LPSP. Conversely, the reduced dispersion in Markov
offers an advantage for the optimal system to be able to satisfy the load–demand-outage
profile to a higher degree of reliability. This is because the simulated outage profiles tend to
be situated well below the historical average metric. Its requirement of crude outage data
for the modeling is an advantage, but with slightly higher computations than the Weibull.

4. Conclusions and Perspectives

Nowadays, intermittent power interruptions and long outages are very common,
especially from distribution systems in developing countries, which are ageing, have poor
maintenance practices, substandard infrastructures, capacity shortages, and so on. This
consequently affects diverse groups of consumers, with a substantial negative effect for
consumers such as hospitals.

In this paper, we proposed an optimal hybrid PV-battery system to improve or wholly
achieve the expected reliability. This renewable–based system will also substitute the
commonly used diesel backups, which are harmful for the environment and relatively
costly options. For practicality, we have used real load consumption and outage data,
from Ethiopia, as a case study for the sizing optimization using the NSGA-II algorithm.
Moreover, unlike in several papers, a very good resolution simulation time step of 1 min
was used, which enables us to consider the power supply dynamics and the outages
with a reasonably better accuracy. It was proven that the system can successfully reduce
outages and entirely supply the load. The set of optimum solutions gives the freedom for
consumers and utility operators to choose a safe system size with the desired reliability
index. For instance, consumers connected to a weak distribution network with critical
load requirements can have a zero LPSP with 0.17 €/kWh. Conversely, for consumers
with tolerable load types, such as households, may choose a system with lower LPSP that
perhaps, shall afford partial outages. Let us say that with about 0.11 €/kWh, the system
could give 0.5% reliability.

On the other hand, outage evaluations and reliability studies usually demand detailed
information about outage-causing factors, sufficiently high data records, and component/
subsystem-level contributing elements. However, obtaining such datasets for distribution
grids dealing with recurrent outages, such as in developing countries is unlikely. Hence,
we developed a methodology to model and extend longtime outage simulation as needed,
using global outage parameters and small amount of data. The proposed Markov and
Weibull models are able to simulate outage profiles with sound computational effort and
effectiveness. Simulated outage profiles can then either be used for various applications,
including hybrid system inclusion to a weak grid for outage reductions and hence reliability
improvement. Real outage data from a stochastic grid in a developing country is applied
for the two modeling approaches. Such sufficiently dispersed outage simulations using the
Weibull model will lead to a notable realistic scenario in order to avoid oversized hybrid
systems. On the contrary, the PV-battery system on Markov-simulated outage profiles
showcased that the reference system seems to perform with above the expected reference
LPSP. The effectiveness of the proposed methodology for the optimal system is validated
on a large set of simulated outages with these two models. Regardless of the effort to verify
the absence of any correlation among the outage parameters and any periodicities, factors
such as weather conditions, change in the load demand, future grid maintenance routines,
and so on can affect and change the expected LPSP.
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Further to these approaches, additional demand-side management techniques and
load monitoring, such as load prioritization, could be explored to further improve the cost
optimality and increase power supply security during outages. Besides which, sensitivity
evaluation on the optimal system and simulated outages under varying load demand
outage profiles shall be something to look into. It can obviously be highlighted that a load
variation would result in a change of the required system size with a positive correlation,
given the same outage profile.
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Nomenclature

Apv PV surface area (m2)
Apv,max Sizing upper boundary/maximum PV area (m2)
Cbat Battery storage nominal capacity (Wh)
Cbat,max Sizing upper boundary/maximum storage capacity (kWh)
Ccap,bat Initial capital cost of the battery bank (€)
Ccap,pv Initial capital cost of the PV (€)
Ccha Battery storage charging cost from grid (€/kWh)
CO&M Operation and maintenance cost (€/yr)
CO&M,pv Annual operation maintenance cost of the PV (€/yr)
CoE Cost of energy generated (€/kWh)
Crep Replacement cost (€/yr)
CRF Capital recovery factor
Ctot,a Annualized total system cost (€/yr)
Gtot Total solar irradiation on tilted surface (Wh/m2)
i Interest rate (%)
LPS Loss of power supply (W)
LPSP Loss of power supply probability (%)
N Project lifetime (yr)
Nbat Number of batteries
NOCT Nominal operating cell temperature
Pcha,max Maximum allowable battery charging power (kW)
Pdischa,max Maximum discharged power from the battery (kW)
Pgen Total generated power (kWh/yr)
Pload Load demand (W)
Ppv Generated power output of the PV (W)
Ptot Total available power from grid and PV (W)
SoC Battery storage state-of-charge (%)
SoCmax Maximum SoC value (%)
SoCmin Minimum SoC value (%)
t Simulation time-step/tth time interval
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Tamb Ambient temperature (◦C)
Tavg Average grid outage duration (h)
Tcell PV-cell temperature (◦C)
Toutage Total annual grid outage duration (h)
Tref Reference temperature (◦C)
Tyear Total hours in a year, 8760 h
βp PV module power temperature coefficient (/◦C)
ηbat Battery storage efficiency (%)
ηinv Inverter efficiency (%)
ηm PV model module efficiency (%)

ηpv
PV panel efficiency (%)

Abbreviations
cdf Cumulative distribution function
DG Distributed generation
MTM Markov transition matrix
NSGA-II Nondominated sorting genetic algorithm II
OD Outage duration
PV Photovoltaic
TBO Time between outages

Appendix A

Table A1 shows all the detailed technical and economical parameters, and constraints.

Table A1. Considered values for the technical and economic parameters of the system [43].

PV Module Values

Reference temperature, Tref (◦C) 25
NOCT (◦C) 47

Module efficiency, ηm (%) 20.3
Temperature coefficient, βp (%/◦C) −0.30

Capital cost, Ccap,pv (€/m2) 200
O&M cost, CO&M,pv, (€) 1% of Ccap,pv

PV lifetime (years) 25
PV simulation boundary (m2) (0, 600)

Storage battery

Nominal capacity, Cbat,nom (kWh) 7
Efficiency, ηbat (%) 97

Capital cost, Ccap,bat (€/kWh) 550
Battery lifetime (years) 6

Max. charging power, Pcha,max (W) Cbat,nom/3
Max. discharging power, Pdischa,max (W) Cbat,nom/2

DOD (%) 0.8
Battery max. cycle 2000

Bat. simulation boundary (Nº) (0, 50)

System

Max. grid subscribed power (kW) 50
Grid elec. cost (€/kWh) 0.0321
Project lifetime (years) 25

Discount rate, i (%) 2

Appendix B

Sample grid outage sequence simulation using the Markov approach in comparison
with the 2015 measured data. The calculated Markov transition probabilities are also given
in the black–white boxes.
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