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Abstract: This paper reviews the recent literature on the “social ranking problem”, that is, the
problem of converting group rankings into individual rankings. We introduce and categorize existing
social ranking methods and we briefly explain their attributes. Three main categories of social ranking
methods are identified: lexicographic social rankings, methods based on voting mechanisms, and
those inspired by the theory of coalitional games. An open-source R package called socialranking for
computing the majority of the existing social rankings is also presented and discussed.
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1. Introduction

Various problems that may seem unrelated at first glance—like ranking researchers
or athletes in team sports [1], understanding the importance of diseases in interconnected
health graphs of co-morbidities [2,3], understanding how a formula contributes to the
inconsistency in a belief base [4], measuring someone’s influence on a social network [5,6],
explaining the impact of different factors in multi-criteria decision-making [7], and many
more—in fact all come down to a common social ranking problem: how to turn rankings that
involve sets of elements or coalitions into an informative ranking that applies to individual
ones. Therefore, a social ranking solution aims to address the essential question of how to
rank the elements within a set N in a way that aligns with an established ranking of its
subsets. Additionally, it strives to ensure that this ranking accurately represents the ordinal
influence of each individual element on the ranking positions of the subsets.

Inspired by the framework of three-valued simple games [8], a ranking over coalitions
of political parties may represent, for instance, a bicameral legislature wherein the two
houses are formed by n1 and n2 members, respectively. Each political party i of a set N is
represented by precisely w1

i and w2
i in house 1 and 2, respectively. As it is the case for the

States General of the Netherlands [8], assume that the first house can accept (reject) a bill if
there is (is not) a majority in favor. In case of acceptance by the first house, the bill is sent to
the second house that follows the same rule to give a final ruling on whether to accept or
reject the bill. If the bill is accepted by the two houses, it becomes a law. However, only the
first house has the right to submit a bill and start the procedure. Precisely, any coalition of
S of the set N of political parties can reach one of the following three outcomes denoted
as f (S):

• f (S) = 2 if the parties in coalition S form a majority in both houses (i.e., ∑i∈S w1
i ≥

⌊ n1

2 ⌋+ 1 and ∑i∈S w2
i ≥ ⌊

n2

2 ⌋+ 1);
• f (S) = 1 if the parties in coalition S form a majority in the first house but not in the

second one (i.e., ∑i∈S w1
i ≥ ⌊

n1

2 ⌋+ 1 and ∑i∈S w2
i < ⌊ n2

2 ⌋+ 1);
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• f (S) = 0 in all the remaining cases.

Such a situation can be represented as a ranking of the subsets of N such that, for any
pair of coalitions S and T, we have that S “is at least as powerful as T” whenever f (S) is at
least as large as f (T). Notice that, in this situation, the outcomes associated to coalitions are
purely ordinal, as the ordering 0, 1, 2 only encodes an increasing preference of political par-
ties over the possible outcomes, and not a specific amount of utility. Nevertheless, it seems
rather appealing to try to estimate the relative importance of the different political parties,
taking into account their role in determining the most preferred levels of acceptance of a
bill through the formation of alternative coalitions. The theory of social rankings is aimed
at addressing this kind of problems by proposing a portfolio of alternative solutions. This
paper aims to systematically categorize those solutions, clearly outlining their key features
and demonstrating how they are computed using numerical examples. Furthermore, we
will provide a concise overview of the socialranking R package [9], which facilitates the
computation of social rankings for more intricate cases.

Our analysis has delineated three distinct categories of social ranking solutions within
the existing literature:

• Lexicographic social rankings. These rankings prioritize elements based on a predeter-
mined hierarchy of importance related to the roles played within coalitions. Addi-
tionally, they may factor in the size of the coalitions, offering a nuanced approach to
ranking [10–12].

• Social rankings based on voting rules: This category assesses the impact of individual
elements by examining their unique contributions to various coalitions. These rankings
maintain consistency (ceteris paribus) by altering only one element at a time while
keeping all other factors constant. The aggregation of individual contributions in this
approach is guided by principles akin to classical voting systems [13–15].

• Game theory-inspired social rankings: These rankings are grounded in the principles of
cooperative game theory. They leverage established solution concepts from this field to
formulate rankings, providing a theoretical and strategic framework for understanding
social rankings [15–18].

We start in the next section with some preliminary definitions. The three aforemen-
tioned families of social rankings are presented in Sections 3–5, respectively. Section 6 is
devoted to a short introduction of the socialranking package. We conclude in Section 7 with
a mention to related studies and applications of social rankings from the literature.

2. Preliminaries and Notations

Consider a finite set of elements N = {1, . . . , n}. The set of subsets of N (also called
coalitions) is denoted by P(N) (for many social rankings, like the lexicographic ones in
Section 3, the empty coalition ∅, and the coalition of all elements N, are irrelevant and can
be omitted from P(N). For other social rankings, however (e.g., the ordinal Banzhaf index
in Section 5), these two special coalitions play an important role.). The set of coalitions
without i is denoted by Ui = {S ∈ P(N) : i /∈ S}, whereas the set of coalitions containing
neither i nor j is denoted by Uij = {S ∈ P(N) : {i, j} ∩ S = ∅}, for any i, j ∈ N, i ̸= j.

A binary relation on N is a set R ⊆ N × N and it is: reflexive, if for each i ∈ N, iRi;
transitive, if for each i, j, k ∈ N, iRj and jRk ⇒ iRk; total, if for each i, j ∈ N, iRj or jRi;
antisymmetric, if for each i, j ∈ N, iRj and jRi ⇒ i = j. A total preorder or ranking is a
reflexive, transitive, and total binary relation. A total or linear order is an antisymmetric
ranking. R(N) and L(N) denote, respectively, the set of rankings and the one of linear
orders on N.

The lexicographic order ≥L and the lexicographic* order ≥L∗ among vectors
i = (i1, . . . , iu) and j = (j1, . . . , ju) are defined, respectively, as follows:

• i ≥L j if either i = j or there exists t such that it > jt and ir = jr for all r ∈ {1, . . . , t− 1}.
• i ≥L∗ j if either i = j or there exists t such that it < jt and ir = jr for all

r ∈ {t + 1, . . . , u}.
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Hereafter, a total preorder ≿ ∈ R(P(N)) is referred to as a power relation. In the
following, for all S, T ∈ P(N), (S, T) ∈≿ or, equivalently, S ≿ T is interpreted as “coalition
S is at least as powerful as coalition T according to the power relation ≿”. We denote by ∼
the symmetric part of ≿ (i.e., for all S, T ∈ P(N), S ∼ T ⇔ S ≿ T and T ≿ S) and by ≻ the
asymmetric part of ≿ (i.e., for all S, T ∈ P(N), S ≻ T ⇔ S ≿ T and not T ≿ S). Therefore,
for all S, T ∈ P(N), S ≻ T means that “coalition S is strictly more powerful than coalition
T”, whereas S ∼ T means that “coalitions S and T are equally powerful”.

Let ≿∈ R(P(N)) be a power relation of the form S1 ≿ S2 ≿ · · · ≿ S|P(N)|. The
quotient order of ≿ is denoted as Σ1 ≻ Σ2 ≻ · · · ≻ Σl in which the subsets Sj are grouped
in the equivalence classes Σk generated by the symmetric part of ≿. This means that all the
sets in Σ1 are equally powerful to S1 and are strictly better than the sets in Σ2, and so on.
Given a power relation ≿ and its associated quotient order Σ1 ≻ Σ2 ≻ · · · ≻ Σl , we denote
by ik = |{S ∈ Σk : i ∈ S}| the number of sets in Σk containing i for k = 1, . . . , l and by θ≿(i)
the l-dimensional vector θ≿(i) = (i1, . . . , il) associated to ≿.

A social ranking (solution) on N is a function R : R(P(N)) −→ R(N) associating to
each power relation ≿∈ R(P(N)) a total preorder R(≿) ∈ R(N) (or R≿ ∈ R(N)) over
the elements of N. By this definition, the notion iR≿ j means that “applying the social
ranking R to the power relation ≿ gives the result that i is ranked higher than or equal to
j”. We denote by I≿ the symmetric part of R≿, and by P≿ its asymmetric part.

A trivial social ranking, neglecting the position of non-singletons coalitions in the
power relation, is the map R0 : R(P(N)) −→ R(N) such that i R≿

0 j ⇐⇒ {i} ≿ {j}
for all i, j ∈ N and all ≿∈ R(P(N)). Another extremely simple social ranking may
only look at the comparisons of coalitions containing all-but-one elements, like the map
Rn−1 : R(P(N)) −→R(N) such that i R≿

n−1 j⇐⇒ N \ {j} ≿ N \ {i} for all i, j ∈ N.

Example 1. Let N = {1, 2, 3} and consider the power relation ≿ as follows (in the remaining of
this paper, we will continue to use the concise notation introduced in this example to save space
in the expression of a ranking. So, for example, the notation {1, 3} ∼ {2, 3} ≻ {1, 2} indicates a
power relation ≿ such that {1, 3} ∼ {2, 3}, {2, 3} ≻ {1, 2} and also {1, 3} ≻ {1, 2}, due to the
transitivity of ≻; similarly, for a relation R on the individual elements with 1P2I3, we have that
1P2, 2I3, and also 1P3; etc.):

{1, 2, 3} ∼ {1, 3} ∼ {2, 3} ≻ {1, 2} ∼ {2} ≻ {1} ≻ {3} ∼ ∅.

The quotient order of ≿ is such that

Σ1 = {{1, 2, 3}, {1, 3}, {2, 3}} ≻ Σ2 = {{1, 2}, {2}} ≻ Σ3 = {{1}} ≻ Σ4 = {{3}, ∅}.

So, R≿
0 returns the ranking 2 P0 1 P0 3 while R≿

n−1 yields the ranking 1 In−1 2 Pn−1 3.

The remaining of this section is devoted to the presentation of families of social ranking
solutions from the literature.

3. Lexicographic Social Rankings

The lexicographic excellence (lex-cel) [12] has received increasing attention in the recent
literature on social rankings. The lex-cel is based on the idea that the most influential
individuals are those appearing more frequently in the highest positions in the ranking
of coalitions. Precisely, to compare two elements i and j in N, lex-cel proceeds in a lex-
icographic way over the vectors of occurrences of the two elements in the equivalence
classes of a power relation. With the objective to award the excellence of the elements in
contributing to the best-ranked sets, the lex-cel first compares the occurrences of i and j in
the first equivalence class of a power relation (i.e., the equivalence class with the lowest
index in the quotient order, on the left side), placing the element occurring the most above
the other. In case of a tie, i.e., i and j occur the same number of times in the sets of the
first equivalence class, lex-cel demands to compare the occurrences of i and j in the second
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equivalence class of the power relation, again placing the element occurring the most above
the other or, in case of a tie, proceeding with the examination of the third equivalence class,
and so on, until one finds a difference between the number of occurrences in a certain
equivalence class (declaring a strict preference for the element occurring the most) or the
last equivalence class is reached with all ties and, in this case, i and j are declared indifferent
by the lex-cel. More formally,

Definition 1 (Lexicographic-excellence (lex-cel) [12]). The lexicographic excellence (lex-cel)
is the map R≿

le such that for all i, j ∈ N:

i R≿
le j⇐⇒ θ≿(i) ≥L θ≿(j).

for any power relation ≿∈R(P(N)) (following the same convention as before, I le(≿) and Ple(≽)
stand for the symmetric part and the asymmetric part of Rle(≿), respectively.)

Example 2. Let N = {1, 2, 3} and let us consider the power relation ≿ of Example 1. We
have θ≿(1) = (2, 1, 1, 0), θ≿(2) = (2, 2, 0, 0) and θ≿(3) = (3, 0, 0, 1). Notice that θ≿(3) >L

θ≿(2) >L θ≿(1). So, the lex-cel returns the following ranking: 3 P≿
le 2 P≿

le 1.

While the lex-cel solution rewards excellence, its dual definition may be used to punish
mediocrity. Therefore, to compare two elements i and j in N, the dual lexicographic-excellence
(dual-lex) [12] first compares the occurrences of i and j in the last equivalence class of a
power relation (i.e., the sets in the equivalence class with the highest index in the quotient
order, on the right side), placing the element occurring the least above the other one, for
appearing more frequently in the worst equivalent class denotes weakness. In case of a tie,
i.e., i and j occur equally in the sets of the last equivalence class, the dual-lex focuses on
the occurrences of i and j in the penultimate equivalence class, always punishing the less
frequent element and proceeding to the next equivalence class in case of a tie, and so on,
from the right to the left side. Once again, if the number of occurrences remains the same
over all equivalence classes, the dual-lex declares i and j indifferent.

Definition 2 (Dual lexicographic-excellence (dual-lex) [12]). The dual-lexicographic (dual-
lex) solution is the map Rd : R(P(N))→R(N) such that, for all i, j ∈ N,

i R≿
d j⇐⇒ θ≿(i) ≥L∗ θ≿(j).

for any power relation ≿∈ R(P(N)) (Id(≿) and Pd(≿) stand for the symmetric part and the
asymmetric part of Rd(≿), respectively).

Example 3. Let N = {1, 2, 3} be the set of agents and let us consider the power relation ≿ of
Example 1. Notice that θ≿(2) >L∗ θ≿(1) >L∗ θ≿(3). So, the dual-lex returns the following
ranking: 2 P≿

d 1 P≿
d 3.

Other lexicographic social rankings have been introduced in [10]. Like lex-cel, the two
social rankings L1 and L2 proposed in [10] are aimed at rewarding the excellence of elements
in contributing to the best coalitions in a power relation, but the excellence is mediated
by the size of the coalitions, promoting the importance of smaller ones. More precisely, as
lex-cel, L1 starts the comparison of two elements i and j looking at the first equivalence
class of a power relation (from the left). Different from lex-cel, L1 distinguishes the number
of occurrences in coalitions of different sizes giving, as a secondary principle (after the
principle of excellence), priority to smaller coalitions. The main argument supporting
such a principle is that, in an ordinal framework, where it is not possible to quantify the
performance of coalitions, individual contributions to smaller coalitions are likely more
relevant and should count more. So, in the first equivalence classes, L1 first focuses on
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the occurrences of i and j as singletons; then, in case of a tie (i.e., both singletons do or
do not belong to the first equivalence class), it considers coalitions of size 2, and so on,
until all possible coalition sizes are considered. Possibly, the smallest coalition size such
that i and j occur differently determines a strict relation in favor of the most frequent one;
otherwise, in case i and j occur equally over coalitions of the same sizes throughout the first
equivalence class, L1 looks at the second equivalence class and it compares again elements’
occurrences based on the size of coalitions, like for the first equivalence class, and so on
proceeding from left to right over all possible equivalence classes. An indifference may
arise according to L1 only in case all the per-size occurrences are equal in all equivalence
classes. To formally introduce L1, we need some further notations.

Given a power relation ≿∈ R(P(N)), with quotient order Σ1 ≻ Σ2 ≻ · · · ≻ Σl , we
define the matrix M≿,i ∈ Nn×l for any element i ∈ N such that M≿,i

sk denotes the number
of coalitions of size s ∈ {1, . . . , n} containing i in the equivalence class Σk, k ∈ {1, . . . , l}.
Notice that ∑l

k=1 M≿,i
sk = (n−1

s−1), so ∑n
s=1 ∑l

k=1 M≿,i
sk = 2n−1.

Definition 3 (L1 ranking [10]). The L1-solution is the map RL1 : R(P(N)) → R(N) such
that, for any power relation ≿∈R(P(N)) and i, j ∈ N,

i IL1(≿) j⇐⇒ M≿,i = M≿,j

and

i PL1(≿) j⇐⇒



there exist ŝ ∈ {1, . . . , n} and k̂ ∈ {1, . . . , l − 1} such that

(i) M≿,i
sk = M≿,j

sk for all s ∈ {1, . . . , n} and all k ∈ {1, . . . , k̂− 1},

(ii) M≿,i
sk̂

= M≿,j
sk̂

for all s ∈ {1, . . . , ŝ− 1}, and

(iii) M≿,i
ŝk̂

> M≿,j
ŝk̂

(IL1(≿) and PL1(≿) stand for the symmetric part and the asymmetric part of RL1(≿),
respectively.)

Example 4. Let N = {1, 2, 3, 4} be the set of agents. Consider the power relation ≿ defined as

{1, 3} ∼ {2, 4} ≻ {2, 3} ∼ {1, 2} ∼ {4} ≻ S,

where all coalitions S ∈ P(N) not explicitly listed belong to the last equivalent class. The quotient
order of ≿ can be expressed as

Σ1 = {{1, 3}, {2, 4}} ≻ Σ2 = {{1, 2}, {2, 3}, {4}} ≻ Σ3 = {S ∈ P(N) : S /∈ Σ1 ∪ Σ2}.

Focusing on elements 2 and 4, their respective vectors are θ≿(2) = (1, 2, 5) and θ≿(4) =

(1, 1, 6). Consequently, lex-cel yields 2 P≿
le 4.

On the other hand, we have that

M≿,2 =


0 0 1

1 2 0

0 0 3

0 0 1

 and M≿,4 =


0 1 0

1 0 2

0 0 3

0 0 1

.

It is easy to verify that, according to Definition 3, with ŝ = 1 and k̂ = 2, the L1 solution
produces 4 P≿

L1 2.

Based on a per-size comparison within each equivalence class, L1 may completely
reverse a strict relation between two elements yielded by lex-cel (see, for instance, the
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relation between elements 2 and 4 in Example 4). One can argue that, if the overall
excellence is the main criterion to rank elements, then reversing the indication of the total
amount of occurrences within a discriminating equivalence class is too extreme.

To rectify this, the authors in [10] introduce another social ranking solution, namely
L2. Like L1, L2 also begins by examining the equivalence classes from left to right and
counts occurrences on a per-size basis. However, the per-size comparison is only allowed
to determine a strict relation between two elements when there is an inequality in the total
number of occurrences within an equivalence class.

To formalize the L2 social ranking solution as introduced in [10], we extend our
notation for the matrix M≿,i. Let M≿,i

k denote the sum of the values of column k ∈ {1, . . . , l},
calculated as M≿,i

k = ∑n
s=1 M≿,i

sk . Then, L2 is defined as follows:

Definition 4 (L2 ranking [10]). The L2-solution is the map RL2 : R(P(N)) → R(N) such
that, for any power relation ≿∈R(P(N)) and i, j ∈ N,

i IL2(≿) j⇐⇒ M≿,i = M≿,j

and

i PL2(≿) j ⇐⇒



there exist ŝ ∈ {1, . . . , n} and k̂ ∈ {1, . . . , l − 1} such that

(i) M≿,i
sk = M≿,j

sk for any s ∈ {1, . . . , n} and k ∈ {1, . . . , k̂− 1}, and

(ii) either M≿,i
k̂

> M≿,j
k̂

or M≿,i
k̂

= M≿,j
k̂

, M≿,i
sk̂

= M≿,j
sk̂

for alls ∈ {1, . . . , ŝ− 1} and M≿,i
ŝk̂

> M≿,j
ŝk̂

.

(IL2(≿) and PL2(≿) stand for the symmetric part and the asymmetric part of RL2(≽),
respectively.)

Example 5. Let N = {1, 2, 3} be the set of agents and let us consider again the power relation ≿
of Example 1. We have that

M≿,1 =


0 0 1 0

1 1 0 0

1 0 0 0

, M≿,2 =


0 1 0 0

1 1 0 0

1 0 0 0

, M≿,3 =


0 0 0 1

2 0 0 0

1 0 0 0

.

To compute the L1 social ranking between 1 and 2, notice that M≿,1
sk = M≿,2

sk for all s ∈
{1, 2, 3} and k = 1, but M≿,1

12 = 0 < 1 = M≿,2
12 . As such, according to Definition 3, 2 P≿

L1 1. In a

similar way, M≿,2
11 = M≿,3

11 but M≿,2
21 = 1 < 2 = M≿,3

21 . So, L1 returns the ranking 3 P≿
L1 2 P≿

L1 1.
The social ranking L2 yields the same ranking on N, but for different reasons. In fact,

M≿,1
1 = M≿,2

1 = 2 while M≿,3
1 = 3 and M≿,1

1 = M≿,2
1 = 2, which implies that 3 is ranked

higher than both 1 and 2 according to Definition 4. One can verify that L2 returns the ranking
3 P≿

L2 2 P≿
L2 1.

Example 6. Let N = {1, 2, 3, 4} be the set of agents and consider the power relation ≿ from
Example 4.

According to Definition 4, with parameters ŝ = 1 and k̂ = 2, one obtains M≿,2
k̂

= 2 > 1 =

M≿,4
k̂

. Therefore, L2 yields the relation 2 P≿
L2 4, which aligns with the outcome from the lex-cel

solution.
However, it is easy to find an example wherein the L2 and lex-cel solutions diverge in their

rankings. Consider the slightly different power relation ≿′ such that

{1, 3} ∼′ {2, 4} ≻′ {2, 3} ∼′ {4} ≻′ {1, 2} ≻′ S
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where all S ∈ P(N) not explicitly listed belong to the same last equivalence class. The quotient
order of ≿′ can be represented as

Σ1 = {{1, 3}, {2, 4}} ≻′ Σ2 = {{2, 3}, {4}} ≻′ Σ3 = {{1, 2}} ≻′ Σ4 = {S ∈ P(N) \
3⋃

t=1

Σt}.

Focusing on elements 2 and 4, their respective vectors under lex-cel are θ≿
′
(2) = (1, 1, 1, 5)

and θ≿
′
(4) = (1, 1, 0, 6). Consequently, lex-cel produces 2 P≿′

le 4.
On the other hand, the matrices for L2 are as follows:

M≿′ ,2 =


0 0 0 1

1 1 1 0

0 0 0 3

0 0 0 1

, M≿′ ,4 =


0 1 0 0

1 0 0 2

0 0 0 3

0 0 0 1

.

For column k̂ = 2, both M≿′ ,2
k̂

and M≿′ ,4
k̂

add up to 1. However, with ŝ = 1, M≿′ ,4
ŝk̂

= 1 >

0 = M≿′ ,2
ŝk̂

. As such, L2 yields 4 P≿′

L2 2.

Two other lexicographic social ranking solutions have been introduced more recently
in the paper [11] with the name of Lp and Lp∗ . These solutions aim to use the information
about the performance of coalitions only in the case of a tie between two elements whose
singleton coalitions belong to the same equivalence class in the power relation. The
procedure to compute the Lp social ranking is as follows (if {i} ∼ {j}, we denote by kij the
index of the equivalence class to which {i} and {j} belong, and we have M≿,i

1kij = M≿,j
1kij ):

Definition 5 (Lp ranking [11]). The Lp-solution is the map RLp : R(P(N)) → R(N) such
that, for any power relation ≿∈R(P(N)) and i, j ∈ N,

i PLp(≿) j

if one of the following conditions hold:

(1) {i} ≻ {j};
(2) {i} ∼ {j} and there exists ŝ ∈ {2, . . . , n} such that

(i) if ŝ > 2, then ∑kij−1
k=1 M≿,i

sk = ∑kij−1
k=1 M≿,j

sk for all s ∈ {2, . . . , ŝ− 1},
(ii) ∑kij−1

k=1 M≿,i
ŝk > ∑kij−1

k=1 M≿,j
ŝk

Otherwise, if {i} ∼ {j} and ∑kij−1
k=1 M≿,i

sk = ∑kij−1
k=1 M≿,j

sk for all s ∈ {2, . . . , n}, we have that
i ILp(≿) j.

Example 7. In the power relation ≿ of Example 2, by condition 1), we immediately have the
ranking 2 PLp(≿) 1 PLp(≿) 3.

Now, consider a slightly different power relation ≿′ such that

{1, 2, 3} ∼′ {1, 3} ≻′ {2, 3} ∼′ {1, 2} ≻′ {2} ∼′ {1} ≻′ {3} ∼′ ∅.

The quotient order of ≿ is such that

Σ1 = {{1, 2, 3}, {1, 3}} ≻ Σ2 = {{1, 2}, {2, 3}} ≻ Σ3 = {{1}, {2}} ≻ Σ4 = {{3}, ∅}.

As before, 1 PLp(≿′) 3 and 2 PLp(≿′) 3. But now, {1} ∼′ {2} and we have that k12 = 3.
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M≿,1 =


0 0 1 0

1 1 0 0

1 0 0 0

, M≿,2 =


0 0 1 0

0 2 0 0

1 0 0 0

, M≿,3 =


0 0 0 1

2 0 0 0

1 0 0 0

.

Notice that ∑2
k=1 M≿,1

2k = ∑2
k=1 M≿,2

2k = 2 and ∑2
k=1 M≿,1

3k = ∑2
k=1 M≿,2

3k = 1. So, there is
no ŝ such that condition 2.ii) in Definition 5 is satisfied, subsequently yielding 1 ILp(≿′) 2 (also
notice that both L1 and L2 in this example place 1 above 2, as in, 1 P≿

L1 2 and 1 P≿
L2 2).

The social ranking solution Lp resolves ties between two elements who exhibit identical
individual performances counting the coalitions with a size of two, followed by those of
size three, and so forth, that belong to equivalence classes above the one of the two
singletons. Consequently, the Lp ranking is not concerned by the actual performance
levels exhibited by the considered coalitions, as long as they outperform the singletons’
performance. An alternative social ranking solution, referred to as Lp∗ , is designed to rectify
this particular effect.

Definition 6 (Lp∗ ranking [11]). The Lp∗ -solution is the map RLp∗ : R(P(N))→R(X) such
that, for any power relation ≿∈R(P(N)) and i, j ∈ N,

i PLp∗ (≿) j

if one of the following conditions holds:

(1) {i} ≻ {j};
(2) {i} ∼ {j} and there exists ŝ ∈ {2, . . . , n} and k̂ ∈ {1, . . . , kij − 1} such that

(i) if ŝ > 2, then M≿,i
sk = M≿,j

sk for all s ∈ {2, . . . , ŝ− 1} and k ∈ {1, . . . , kij − 1};
(ii) if k̂ > 1, then M≿,i

ŝk = M≿,j
ŝk for all k ∈ {1, . . . , k̂− 1};

(iii) M≿,i
ŝk̂

> M≿,j
ŝk̂

.

Otherwise, if {i} ∼ {j} and M≿,i
sk = M≿,j

sk for all s ∈ {2, . . . , n} and k ∈ {1, . . . , kij − 1},
we have that i ILp∗ (≿) j.

Example 8. Consider the power relation ≿′ of Example 7. According to Definition 6, the Lp

ranking gives us immediately 1 PLp∗ (≿′) 3 and 2 PLp∗ (≿′) 3 by condition 6.1. On the other
hand, for ŝ = 2 and k̂ = 2, conditions 6.2.(i) and 6.2.(ii) are automatically satisfied, as well as
condition 6.2.(iii), for M≿,1

21 = 1 > 0 = M≿,2
21 . So, we have 1 PLp∗ (≿′) 2.

For alternative axiomatic characterizations of lex-cel, dual-lex, L1, L2, Lp, and Lp∗ , we
refer to the original papers wherein these solutions have been introduced [10–12].

4. Social Rankings Inspired by Voting Rules

The family of weighted majority relations was introduced in [15] to rank individuals
based on the comparisons of coalitions that are identical except for one element (also
called CP-comparisons in [14]). More precisely, for any pair of individuals i and j in N, we
consider the set of coalitions Uij and we refer to the CP-comparisons for i and j as the
set of comparisons between S ∪ {i} and S ∪ {j}, for any S ∈ Uij. Roughly speaking, a
CP-comparison S ∪ {i} vs. S ∪ {j} can be interpreted as the expression of a “voter” casting
a preference relation over i and j.
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To introduce the family of weighted majority relations, we first define the notion of
ordinal difference between individuals i and j within a coalition S. For any power relation
≿∈R(P(N)), i, j ∈ N and S ∈ Uij, define the ordinal difference dS

ij such that

dS
ij(≿) =


1 if S ∪ {i} ≻ S ∪ {j},
−1 if S ∪ {j} ≻ S ∪ {i},

0 otherwise.

(1)

Definition 7 (Weighted majority relation). Let ≿∈R(P(N)) and let w = [wS
ij]i,j∈N,S∈Uij be

a weight scheme such that wS
ij ≥ 0 for all i, j ∈ N and S ∈ Uij. The weighted majority relation

associated to w is the binary relation (notice that R≿
w is not necessarily transitive; therefore, it cannot

be denoted using the notationR≿
w, which is reserved to well-defined social rankings.) R≿

w ⊆ A× A
such that for all i, j ∈ A ⊆ N,

iR≿
w j ⇔ ∑

S∈Uij

wS
ijd

S
ij(≿) ≥ 0.

Example 9. Consider the power relation ≿ of Example 1 and a weight system w̄ such that
w̄S

ij = |S|+ 1. As indicated in Table 1, to compare elements 1 and 2, we compute

w̄∅
12d∅

12(≿) + w̄{3}12 d{3}12 (≿) = −1 + 0 < 0

and so 2P≿
w̄ 1. In a similar way, we have that

w̄∅
13d∅

13(≿) + w̄{2}13 d{2}13 (≿) = 1− 2 < 0

implying that 3P≿
w̄ 1 and

w̄∅
23d∅

23(≿) + w̄{1}23 d{1}23 (≿) = 1− 2 < 0

which implies 3P≿
w̄ 2, too.

Table 1. The weight scheme of Example 9 on the power relation of Example 1 concerning the
CP-comparisons for individuals 1 and 2.

S ∈ U12 S ∪ {1} vs. S ∪ {2} dS
12(≿) w̄S

12

∅ {1} ≺ {2} −1 1

3 {1, 3} ∼ {2, 3} 0 2

In a special case, all CP-comparisons are assigned an equal weight of 1. With such a
weight system, the corresponding weighted majority ranking is also known as the Ceteris
Paribus (CP-)majority relation that has been introduced and axiomatically studied in [14].

Definition 8 (CP-majority [14]). The CP-majority relation is the binary relation R≿
CP ∈R(N)

such that, for all i, j ∈ N,
iR≿

CP j ⇔ ∑
S∈Uij

dS
ij(≿) ≥ 0.

for any power relation ≿∈R(P(N)).

In voting theory, the majority rule is not necessarily a ranking when there are more
than two individuals, as illustrated by May’s work [19]. This is also true for weighted
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majority relations. The following example demonstrates an instance of a CP-majority
relation that fails to satisfy transitivity.

Example 10. Consider the power relation ≿ of Example 1. We have that ∑S∈U12
dS

12(≿) = −1,
and both ∑S∈U13

dS
13(≿) and ∑S∈U23

dS
23(≿) equal 0. Consequently, the CP-majority relation gives

us 1I≿CP3 and 2I≿CP3, yet also 2P≿
CP1.

Special weight systems can be generated to guarantee that the corresponding weighted
majority relation is transitive. For instance, in [15] a special weight system ŵ was considered
wherein ŵS

ij(≿) is exactly the number of coalitions S and S ∪ {i, j} that are comprised
between S ∪ {i} and S ∪ {j} in the power relation ≿. Precisely, let T = {T ∈ P(N) :
S ∪ {i} ≻ T ≻ S ∪ {j} or S ∪ {j} ≻ T ≻ S ∪ {i}} be the set of coalitions that are strictly
between S ∪ {i} and S ∪ {j} in the power relation ≿. The weight for the CP-comparison
then corresponds to the number of coalitions in {S, S ∪ {i, j}} that are also in T . More
formally,

ŵS
ij(≿) = |{S, S ∪ {i, j}} ∩ T |. (2)

Clearly, ŵS
ij(≿) ∈ {0, 1, 2} (i.e., if S ∪ {i} ≻ S ∪ {i, j} ≻ S ≻ S ∪ {j}, we obtain

ŵS
ij(≿) = 2).

Example 11. Consider the linear power relation ≿∈ L(P(N)) such that

{1, 3} ≻ {1, 2, 3} ≻ {3} ≻ {2} ≻ {1, 2} ≻ {2, 3} ≻ {1} ≻ ∅

The CP-comparisons and the corresponding weights are shown in Table 2.

Table 2. CP-comparisons and the weight scheme ŵ on the power relation of Example 11.

1 vs. 2 ŵS
12 2 vs. 3 ŵS

23 1 vs. 3 ŵS
13

{1} ≺ {2} 1 {2} ≺ {3} 0 {1} ≺ {3} 0

{1, 3} ≻ {2, 3} 2 {1, 2} ≺ {1, 3} 1 {1, 2} ≻ {2, 3} 0

∑S∈U12
ŵS

12dS
12(≿) = 1 ∑S∈U23

ŵS
23dS

23(≿) = −1 ∑S∈U13
ŵS

13dS
13(≿) = 0

Notice that the CP-majority yields 1I≿CP2 and 1I≿CP3, but also 3P≿
CP2, breaking transitivity

again. In contrast, using the weighted majority relation with weights ŵ, we obtain the ranking
1I≿ŵ3P≿

ŵ 2.

For any linear power relation, the weighted majority relation with weights ŵ yields
a ranking which holds for any linear power ranking. This is proven in [15] by showing
that R≿

ŵ coincides with the ordinal Banzhaf ranking, a social ranking solution introduced
in [15] that is inspired by the celebrated Banzhaf index [20] for coalitional games (see also
Theorem 2 in Section 5).

Alternative methods to eliminate cycles in the CP-majority solution have been studied
in [13], which proposes social ranking solutions inspired by established voting rules. For
instance, a solution akin to the Copeland’s rule [21] has been introduced. This approach
ranks individuals by balancing the number of favorable pairwise comparisons against
defeats, taking into account the full range of CP-comparisons.

Definition 9 (Copeland-like social ranking [13]). The Copeland-like solution is the map
RCop : R(P(N))→R(N) such that for each ≿∈R(P(N)) and i, j ∈ N

i R≿
Cop j⇔ Score≿Cop(i) ≥ Score≿Cop(j).
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where Score≿Cop(i) = |{j ∈ N \ {i} : i P≿
CP j}| − |{j ∈ N \ {i} : j P≿

CP i}|.

Example 12. Consider the power relation ≿ of Example 1 and the CP-majority relation of
Example 10. The corresponding scores are Score≿Cop(1) = |∅| − |{2}| = −1, Score≿Cop(2) =

|{1}| − |∅| = 1, and Score≿Cop(3) = |∅| − |∅| = 0. The Copeland-like solution therefore yields

the ranking 2 P≿
Cop 3 P≿

Cop1.

Another approach studied in [13] draws inspiration from the Kramer–Simpson method-
ology in social choice theory, commonly referred to as Minmax REF. In this approach,
individuals are ranked in reverse order according to their worst pairwise defeat, taking
into account all possible CP-comparisons.

Definition 10 (Kramer–Simpson (KS)-like social ranking [13]). The KS-like social ranking is
the map RKS : R(P(N))→R(N) such that for each ≿∈R(P(N)) and i, j ∈ N

iR≿
KS j⇔ Score≿KS(i) ≤ Score≿KS(j),

where (we point out a difference in Definition 4 in [13] concerning the notion of Score≿KS(i), which
seems to count ties as defeats.)

Score≿KS(i) = max
j∈N

(|{S ∈ Uij : S ∪ {j} ≻ S ∪ {i}}|).

Example 13. Consider the power relation ≿ of Example 1. Individual 1 is defeated once by 2
({2} ≻ {1}) and once by 3 ({2, 3} ≻ {1, 2}); thus, Score≿KS(1) = 1; individual 2 is also defeated

only once by 3 ({1, 3} ≻ {1, 2}), so Score≿KS(2) = 1; finally, individual 3 is defeated as well once

by 1 ({1} ≻ {3}) and once by 2 ({2} ≻ {3}); hence, Score≿KS(3) = 1. It follows that, according to

the KS-like social ranking, 1 I≿KS 2 I≿KS 3.

5. Social Ranking Based on Solution Concepts for Coalitional Games

We start this section by introducing some basic definitions from coalitional game
theory. A coalitional game on a set N is a map v : P(N) → R that satisfies v(∅) = 0. Let
p = (p0, . . . , pn−1) be a vector of n non-negative weights such that ∑n−1

k=0 pk(
n−1

k ) = 1. A
semivalue π

p
i (v) is defined as the sum

π
p
i (v) = ∑

S∈Ui

psmS
i (v). (3)

where mS
i (v) = v(S ∪ {i})− v(S) is the marginal contribution of i to S ∪ {i}, for each i ∈ N

and S ∈ P(N). Since ps can be seen as the probability that a coalition of size s forms,
for each s ∈ {0, . . . , n− 1}, π

p
i (v) represents an expected marginal contribution of player

i to all possible subsets of N containing i. Semivalues have been used in the literature
to convert the information of a game v into an overall personal attribution of element i
(see, for instance, [22–24]). Well-studied semivalues in the literature (also interpreted as
power indices) are the Shapley value [25], with ps =

1
n(n−1

s )
, and the Banzhaf value [20], with

ps =
1

2n−1 , for each s ∈ {0, . . . , n− 1}.
The use of semivalues is rather limited in the ordinal framework, for two distinct

coalitional games that are “consistent” with the same power relation may lead to contradic-
tory orderings over the elements. Consider for instance a power relation ≿ on P(N) with
N = {1, 2, 3} and two elements i and j in N. Take a coalitional game v consistent with ≿,
such that

v(S) ≥ v(T)⇔ S ≿ T (4)
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for all S, T ∈ P(N). One can verify that a semivalue πp computed on v yields a relation
between i and j corresponding to the sign of the difference

π
p
i (v)− π

p
j (v) = (p0 + p1)(v({i})− v({j})) + (p1 + p2)(v({i, k})− v({j, k})), (5)

where k ∈ N \ {i, j}. It is obvious that, except for some particular situations, the difference
in relation (5) can be made negative or positive, with a suitable choice of game v (for
instance, if {j, k} ≻ {i} ≻ {i, k} ≻ {j}, we necessarily have that v({i})− v({j}) > 0 and
v({i, k})− v({j, k}) < 0). So, in general, any attempt to use semivalues to rank individuals
seems strongly affected by an arbitrary choice of the game v (among those which are
consistent with a given power relation).

The restricted domain of power relations where the ranking provided by a semi-
value is invariant to the choice of compatible coalitional games has been studied in the
papers [17,26]. For instance, a necessary and sufficient condition for a power relation
≿∈R(P(N)) such that the Banzhaf value of i is larger than the Banzhaf value of element j
for all games satisfying condition (4) is given in Definition 11.

Definition 11 ([17,26]). Let ≿∈ R(P(N)) be a power relation and i, j ∈ N. Consider
the sequence of sets S1 ∪ {i}, . . . , Sn−2 ∪ {i} with Sk ∈ P(N) and {i, j} ∩ Sk = ∅ and the
sequence T1∪{j}, . . . , Tn−2∪{j}with Sk ∈ P(N) and {i, j}∩Sk = ∅, for all k = 1, . . . , 2n−2

and such that
S1 ∪ {i} ≿ . . . ≿ Sn−2 ∪ {i}

and
T1 ∪ {j} ≿ . . . ≿ Tn−2 ∪ {j}.

We say that i orderly responds to j if

Sk ∪ {i} ≿ Tk ∪ {j}

for all k = 1, . . . , 2n−2.

Theorem 1 ([17,26]). Let ≿∈R(P(N)) be a power relation and i, j ∈ N. Consider the semivalue
πp(v) with ps =

1
2n−1 , for each s ∈ {0, . . . , n− 1}.

Then, π
p
i (v) ≥ π

p
j (v) for all coalitional games v such that v(S) ≥ v(T) ⇔ S ≿ T if and

only if i orderly responds to j.

Example 14. Consider the power relation of Example 4. For element 1, we have

{1, 3} ≻ {1, 2} ≻ {1} ∼ {1, 2, 3}

and for element 4,
{2, 4} ≻ {4} ≻ {1, 4} ∼ {2, 3, 4}.

Notice that {1, 3} ∼ {2, 4}, {1, 2} ∼ {4}, {1} ∼ {1, 4} and {1, 2, 3} ∼ {2, 3, 4}. Conse-
quently, 1 orderly responds to 4 as well as 4 to 1. By Theorem 14, for any coalitional game that
satisfies relation (4) with respect to ≿ of Example 4, we have that the Banzhaf value of element 1 is
identical to the Banzhaf value of element 4 (a similar consideration can be made between 1 and 3 and
between 3 and 4). One can also verify that 2 orderly responds to 1, but it is not true that 1 orderly
responds to 2. So, again by Theorem 14, for any coalitional game that satisfies relation (4) with
respect to ≿ of Example 4 we have that the Banzhaf value of 2 is strictly larger than the Banzhaf
value of 1 (and the one of 3 and of 4).

Another approach inspired by semivalues and applying to a larger family of power
relation has been introduced in [15], starting with the counterpart of the notion of marginal
contribution in an ordinal framework.
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Definition 12 (Ordinal marginal contribution [15]). Let ≿∈ R(P(N)). For each element
i ∈ N and all S ∈ Ui, we define the ordinal marginal contribution MS

i (≿) of i to coalition S ∪ {i}
in ≿ as follows:

MS
i (≿) =


1 if S ∪ {i} ≻ S,

−1 if S ≻ S ∪ {i},
0 otherwise.

(6)

Clearly, the ordinal marginal contribution of an element i to a coalition S ∪ {i} only
depends on the power relation ≿∈R(P(N)), and not on the choice of a coalitional game
consistent with ≿ according to relation (4). Then, the ordinal Banzhaf relation is simply
defined as a map that associates to each power relation ≿∈ R(P(N)) a ranking over N
induced by the average ordinal marginal contribution of each element of N to all possible
coalitions containing it. Precisely,

Definition 13 (Ordinal Banzhaf relation [15]). Let ≿∈ R(P(N)). The ordinal Banzhaf
ranking R≿

Bh ∈R(N) is such that

i RBh j⇔ ∑
S∈Ui

MS
i (≿) ≥ ∑

S∈Uj

MS
j (≿) (7)

for all elements i, j ∈ N.

Example 15. Consider the power relation from Example 11.
As shown by the sum of ordinal marginal contributions in Table 3, the ordinal Banzhaf ranking

on ≿ is such that 1 I≿Bh 3 P≿
Bh 2.

Table 3. Ordinal marginal contributions derived from the power relation in Example 11.

S ∈ U1 MS
1 (≽) S ∈ U2 MS

2 (≽) S ∈ U3 MS
3 (≽)

∅ 1 ∅ 1 ∅ 1

{2} −1 {1} 1 {1} 1

{3} 1 {3} −1 {2} −1

{2, 3} 1 {1, 3} −1 {1, 2} 1

∑S∈Ui
mS

i (≿) 2 0 2

Since the ordinal Banzhaf relation is represented by a numerical score, it is obvious
that it always provides a ranking over the elements of N. It is less obvious that the weighted
majority relation with weights ŵ yields a ranking in general. Nevertheless, in [15] the
authors proved that the weighted majority relation with weights ŵ and the ordinal Banzhaf
relation coincide on linear power relations.

Theorem 2 ([15]). Let ≿∈ L(P(N)). Then, R≿
Bh(≿) = P≿

ŵ.

As a consequence of Theorem 2, and as already stated in the previous section, the
weighted majority relation with weights ŵ is a well-defined ranking solution when it is
applied to the domain of linear power relations.

A social ranking that is strongly based on models of coalition formation has been
introduced in [16]. More precisely, in [16] the authors study a notion of set-valued social
ranking that is defined as a set-valued function R̄ : R(P(N)) ⇒ R(N) associating to
each power relation a subset of rankings over the individuals R̄≿ ⊆R(N). In particular,
core stability, a widely studied notion in the field of coalition formation games [27,28], is a
central notion for the set-valued social ranking studied in [16]. To introduce this notion,
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we need some further notations. A partition Π = {Π1, . . . , Πm}, for some integer m ≤ N,
where N is a collection of m non-empty subsets of N that are disjoint (i.e., Πh ∩Πl = ∅
for all h, l ∈ {1, . . . , m}) and cover N (i.e.,

⋃m
h=1 Πh = N). Given a partition Π of N and an

individual i ∈ N, we denote as Π(i) the (unique) coalition in Π containing i.
Now, given a partition Π of N and a power relation ≿∈ R(P(N)), we say that Π

is blocked by a non-empty coalition S ∈ A if S ≻ Π(i) for all i ∈ S. So, a partition Π is
considered blocked by a coalition S when, for every individual i within S, coalition S attains
a higher rank in the power relation, compared to the rank of the coalition within Π that
contains i. The intuition here is that, if individuals prefer to stay in top-ranked coalitions,
each individual’s inclination leans toward S over the coalition assigned to them by partition
Π (in other words, Π is not “stable”). A partition Π is referred to as a core-partition if it
achieves stability, meaning it is not blocked by any coalition S. Formally, a partition Π of
N is core-stable in ≿∈ R(P(N)) if for each S ∈ P(N), S ̸= ∅, there exists i ∈ S such that
Πi ≿ S. The set of core-stable partitions in ≿ is denoted by C(≿).

Example 16. Consider again the power relation ≿ of Example 1. The set of core-stable
partitions in ≿ is as follows:

C(≿) =
{

Π = {{1, 2, 3}}, Π′ = {{1, 3}, {2}}, Π′′ = {{1}, {2, 3}}
}

.

As remarked in [16], the non-emptiness of the core-partition social ranking can be
directly proved as a consequence of some results shown in [29]. A simple procedure
has been proposed in [16] to compute an element of a core-partition social rankings. We
introduce the procedure as the following pseudo-code (Algorithm 1).

Algorithm 1: Finding core-partitions on power relations

Input: A power relation ≿∈R(P(N)) and its quotient order in the form
Σ1 ≻ · · · ≻ Σl ;

Output: A coalitions structure Π = {S0, . . . , Sm} ∈ C(≿);
t← 0;
Π← {∅};
for k=1 to l do

Σ0
k ← Σk;

end
while

⋃l
k=1 Σt

k ̸= ∅ do
i← min{j ∈ {1, . . . , l} : Σt

j ̸= ∅};
Π← Π ∪ {St}, with St ∈ Σt

i , St ̸= ∅;
for k=1 to l do

It
k ← {C ∈ Σt

k : St ∩ C ̸= ∅};
Σt+1

k ← Σt
k \ It

k;
end
t← t + 1;

end

Based on the fact that the set of core-stable partitions is always non-empty, in [16]
the authors introduce the notion of core-partition social ranking as the set-valued social
ranking associating to each power ranking ≿∈R(P(N)) the set of rankings “induced” by
partitions Π, as follows:
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Definition 14 (Core-partition social ranking [16]). The core-partition social ranking is the
map set-valued social ranking R̄C : R(P(N)) ⇒ R(N) associating to each power ranking
≿∈R(P(N)) the set of rankings

R̄≿
C = {R ∈R(N) : ∃Π ∈ C(≿) s.t. R is induced by Π},

where a ranking R induced by a partitions Π is such that

i R j⇔ Π(i) ≿ Π(j).

Example 17. Continue to consider Example 16. The core-partitions on ≿ is

R̄≿
C =

{
{1 I 2 I 3}, {1 I 3 P 2}, {2 I 3 P 1}

}
6. An R Package for Social Ranking Computation

The socialranking package in R, available on CRAN, serves as a practical tool for
researchers interested in experimenting with these social ranking methodologies. It encom-
passes many of the aforementioned solution concepts and offers the ability to introduce
new ones. This section serves to highlight the fundamental structure and usage of the
package. A more complete guide is available as a vignette on the CRAN page [9].

Vectors of unit types (such as number or character) represent coalitions. For example,
c(1,2,3) is the coalition {1, 2, 3}, c(1) (or just 1) a singleton, and c() the empty set.

Orders between coalitions are represented by a list of lists, wherein each nested list
can be thought of as an equivalence class containing one or more vectors of coalitions.

Trying to construct the power relation ≿ from Example 1, Listing 1 shows how it can be
achieved by passing a list of equivalence classes to PowerRelation(). This function returns
a PowerRelation object. As a more convenient alternative, as.PowerRelation() can be
passed a character string. Here, every alphanumerical character represents an individual
element. Coalitions are ranked intuitively with the ˜ and > symbols.

Listing 1. Creating power relations.

1 library(socialranking)
2 pr <- PowerRelation(equivalenceClasses = list(
3 list(c(1,2,3), c(1,3), c(2,3)),
4 list(c(1,2), c(2)),
5 list(c(1)), list(c(3)), list(c())
6 ))
7 # or , more concise
8 pr <- as.PowerRelation("(123 ∼ 13 ∼ 23) > (12 ∼ 2) > 1 > 3 > {}")
9 pr

10 ## outputs: (123 ∼ 13 ∼ 23) > (12 ∼ 2) > 1 > 3 > {}

Once the PowerRelation object is constructed, it can be passed to a social ranking
function to construct a SocialRanking object, which is an ordinal relation between the
elements. Additionally, ranking solutions make use of some numerical comparisons to
rank its elements, such as the lex-cel comparing vectors θi of the number of occurrences
in each equivalence class, or the ordinal Banzhaf method comparing the number MS

i of
positive versus negative ordinal marginal contributions an element makes by joining a
coalition. These values can also be requested by passing the PowerRelation object to a
scores function, as shown in Listing 2.
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Listing 2. Applying social ranking functions.

1 lexcelRanking(pr)
2 ## 3 > 2 > 1
3

4 # the lexcel vectors of each element
5 lexcelScores(pr)
6 ## $‘1‘
7 ## [1] 2 1 1 0 0
8 ##
9 ## $‘2‘

10 ## [1] 2 2 0 0 0
11 ##
12 ## $‘3‘
13 ## [1] 3 0 0 1 0
14

15 ordinalBanzhafRanking(pr)
16 ## 3 > 2 > 1
17

18 cpMajorityComparison(pr, 1, 2)
19 ## 2 > 1
20 ## D_12 = {3}
21 ## D_21 = {3, {}}
22 ## ...
23

24 copelandRanking(pr)
25 ## 2 > 3 > 1

For introducing one’s own ranking function, Listing 3 demonstrates the simple R0
solution from the introduction, as well as the much more sophisticated Lp-solution from
Definition 5, both of which are not currently present in the package. The function
doRanking() aids us in creating a SocialRanking object.

In the case of R0, it is easy for each element i to determine k such that {i} ∈ Σk. We
construct a vector of numbers wherein each index represents the index k for each element in
pr$elements by calling pr$coalitionLookup(el). Then, elements with a lower number,
implying that its singleton belongs to a higher-ranking equivalence class, will be strictly
preferred over elements with a higher number.

As for Lp, L1Scores() already produces the correct matrix M≿,i for each element
i ∈ N. However, the way the matrices are compared and sorted is fairly different, which
requires either the introduction of new R classes or a custom comparison function which is
passed as a parameter to doRanking(). This comparison function takes two parameters,
say a and b, and returns a positive number if a > b, a negative number if a < b, or 0.

To enhance user experience and encourage further exploration, the package includes a
set of helper functions. These functions streamline common tasks such as generating power
sets with createPowerSet(), augmenting existing PowerRelation objects with append-
MissingCoalitions(), modifying it such that it becomes monotonic (T ⊇ S⇒ T ≿ S), and
dynamically generating permutations of power relations via powerRelationGenerator().
Listing 4 briefly demonstrates these functionalities.
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Listing 3. An implementation of the R0 and Lp-solution.

1 # R_0 ranking only requires the position of coalition {i} for each
element i

2 doRanking(
3 sapply(pr$elements , function(el) pr$coalitionLookup(el)),
4 decreasing = FALSE
5 )
6 ## 2 > 1 > 3
7

8 # defining our L^p comparison function , which takes two matrices a
and b as parameter

9 LpComparison <- function(a, b) {
10 # Find the left -most "1" in the first row for both matrices
11 k_a <- which.max(a[1,])
12 k_b <- which.max(b[1,])
13

14 # If k_a < k_b, then a > b, vice versa
15 if (k_a < k_b) {
16 return (1)
17 } else if (k_a > k_b) {
18 return (-1)
19 } else if (k_a == 1) {
20 # special case where both {i} and {j} are in the first

equivalence class
21 return (0)
22 } else {
23 # If k_a == k_b, then compare the sums for each row
24 k <- k_a-1
25 for (i in 2:nrow(a)) {
26 sum_a <- sum(a[i, 1:k])
27 sum_b <- sum(b[i, 1:k])
28

29 if (sum_a > sum_b) {
30 return (1)
31 } else if (sum_a < sum_b) {
32 return (-1)
33 }
34 }
35 # If all sums are equal , return 0
36 return (0)
37 }
38 }
39 # using the power relation from example 7
40 doRanking(L1Scores(as.PowerRelation("123∼13>12∼23>1∼2>3∼{})")),

compare = LpComparison)
41 ## 1 ∼ 2 > 3

The socialranking package is designed to be a versatile tool for researchers and
practitioners in computational social choice. Its architecture is modular, facilitating the
addition of new social ranking algorithms and methodologies, as illustrated in Listing 3. As
also explained in the vignette [9], contributions from the academic and broader communities
are highly encouraged to enhance the package’s capabilities, improve its reliability, and
broaden its applicability. Such contributions can substantially enrich this open-source
initiative, further establishing it as an additional resource for research in the framework of
social rankings.
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Listing 4. Helper functions in the socialranking package.

1 as.PowerRelation(createPowerset(c("a","b","c"), includeEmptySet =
FALSE))

2 ## abc > ab > ac > bc > a > b > c
3

4 pr <- as.PowerRelation("123 > 24 ∼ 13 > 234 ∼ {}")
5 pr <- appendMissingCoalitions(pr); pr
6 ## 123 > (24 ∼ 13) > (234 ∼ {}) > (1234 ∼ 124 ∼ 134 ∼ 12 ∼ 14 ∼ 23 ∼

34 ∼ 1 ∼ 2 ∼ 3 ∼ 4)
7 pr <- makePowerRelationMonotonic(pr); pr
8 ## (1234 ∼ 123) > (124 ∼ 134 ∼ 234 ∼ 13 ∼ 24) > (12 ∼ 14 ∼ ...)
9

10 gen <- powerRelationGenerator(list(c(1,2), c(1), c(2), c()))
11 gen()
12 ## (12 ∼ 1 ∼ 2 ∼ {})
13 gen()
14 ## (12 ∼ 1 ∼ 2) > {}
15 gen()
16 ## (12 ∼ 1 ∼ {}) > 2
17 # ...

We conclude this section with a numerical example representing an (invented) bicam-
eral legislature on the same lines of the one presented in Section 1 with the objective to
show that the use of our package may offer a concrete opportunity to facilitate the social
ranking computation in practical problems.

Example 18. To illustrate a potential application of the socialranking package in practice,
following the example of a bicameral legislature introduced in Section 1, we consider a situation
with a set N = {1, 2, 3, 4} of four political parties and where the first house is composed by n1 = 9
members while the second house is composed by n2 = 6 members. Following the example in
Section 1, we imagine a country with a bicameral legislature comprising two houses. The n1 = 9
seats in House 1 and n2 = 6 seats in House 2 are distributed between the four major ruling parties,
the Progressive Party (1), the Conservative Party (2), the Green Party (3), and the Libertarian
Party (4), N = {1, 2, 3, 4}. Suppose that each political party in N is represented in the two
respective houses, as shown in Table 4.

Table 4. Distributions of seats in a bicameral legislature.

Party 1 2 3 4 Total

House 1 w1
1 = 4 w1

2 = 2 w1
3 = 2 w1

4 = 1 9

House 2 w2
1 = 3 w2

2 = 2 w2
3 = 0 w2

4 = 1 6

So, the three-valued function representing the outcomes of the coalitions is

f (S) =


2, if ∑i∈S w1

i ≥ 5 and ∑i∈S w2
i ≥ 4;

1, if ∑i∈S w1
i ≥ 5 and ∑i∈S w2

i < 4;
0, otherwise.

One can easily verify that f (S) = 2 for all S ∈ A = {{1, 2}, {1, 4}, {1, 2, 3}, {1, 2, 4},
{1, 3, 4}, N}, f (S) = 1 for all S ∈ B = {{1, 3}, {2, 3, 4}}, and f (S) = 0 for all the remaining
coalitions S ∈ P(N) \ (A ∪ B). Such a function yields the power relation ≿ such that

{1, 2} ∼ {1, 4} ∼ {1, 2, 3} ∼ {1, 2, 4} ∼ {1, 3, 4} ∼ N ≻ {1, 3} ∼ {2, 3, 4} ≻ S,

where all coalitions S ∈ P(N) not explicitly listed belong to the last equivalent class.
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By means of the instructions introduced in this section, we can use our socialranking
package to compute the social rankings presented in this paper. As simple games are monotonic,
inputting the information in R can be greatly simplified by, one, only specifying the minimal
winning coalitions for the first two equivalence classes, and two, utilizing the combination of
appendMissingCoalitions and makePowerRelationMonotonic to make the power relation
object total and monotonic. Alternatively, if one were to experiment more with three-valued simple
games with associated weight vectors, Listing 5 also demonstrates how this could be achieved.

Running the data through all the solutions, it is found that a large majority of social rankings,
precisely lex-cel, dual-lex, L1, L2, Lp∗ , Copeland-like, and ordinal Banzhaf, all yield the same output,
that is, the ranking 1 P≿ 2 I≿ 4 P≿ 3 (note that parties 2 and 4 are equally ranked, despite the
fact that the weight of 2 in each house is strictly larger than the one of 4). Only the Lp and KS-like
solutions give the slightly different ranking 1 P≿ 2 I≿ 3 I≿ 4, where parties 2, 3, and 4 are equally
ranked.

Listing 5. Applying the socialranking package.

1 # only considering the "minimal winning coalitions"
2 pr <- as.PowerRelation(’12 ∼ 14 > 13 ∼ 234’)
3 pr <- appendMissingCoalitions(pr)
4 pr <- makePowerRelationMonotonic(pr)
5

6 # alternative , more specialized method applying to example 18
7 # h1 and h2 are the weight vectors for House 1 and House 2
8 f <- function(S, h1 , h2) {
9 maj1 <- floor(sum(h1)/2) + 1

10 maj2 <- floor(sum(h2)/2) + 1
11 return(
12 if(sum(h1[S]) < maj1) 0 else
13 if(sum(h2[S]) < maj2) 1 else 2
14 )
15 }
16 threeValuedSimpleGameToPowerRelation <- function(h1 , h2) {
17 # assuming h1 and h2 have the same length
18 powerset <- createPowerset (1: length(h1))
19 scores <- sapply(powerset , f, h1 , h2)
20 # doRanking creates a list of index vectors; each vector contains
21 # the indexes in powerset for which their scores are the same
22 eqs <- doRanking(scores)
23 eqs <- lapply(eqs , function(i) powerset[i])
24 return(PowerRelation(eqs))
25 }
26 pr <- threeValuedSimpleGameToPowerRelation(
27 c(4,2,2,1),
28 c(3,2,0,1)
29 )
30

31 lexcelRanking(pr)
32 ## 1 > 2 ∼ 4 > 3
33 kramerSimpsonRanking(pr)
34 ## 1 > 2 ∼ 3 ∼ 4
35 # ...
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7. Conclusions

In this paper, we have undertaken a comprehensive examination of various social
rankings presented in the recent literature. To better understand which social ranking
solution is most suitable for a given application context, we suggest that the interested
readers look at the original papers wherein such solutions were introduced. In fact, almost
all social rankings considered in this paper were originally proposed trough an axiomatic
approach, grounded in properties motivated by specific application contexts. Although
interesting, a comprehensive analysis of those properties from the literature is beyond the
scope of this paper. On the other hand, to guide the interested reader toward the appropriate
choice of a social ranking, we recommend to adopt the following general strategy. If the
application context requires a prioritization in the evaluation of some particular criteria
of performance, such as the positions in a power relation, or other criteria, like the size of
coalitions, we suggest to look at solutions in the family of lexicographic social rankings
(Section 3). Differently, if the objective is to highlight the differences between individuals in
terms of their ability to collaborate with predefined groups, the family of solutions to be
considered should be the one of social rankings based on voting rules (Section 4). Finally, if
the main objective is to rank individuals considering a fairness principle, or even a notion of
stability within coalitions, the family of social rankings inspired by solutions for coalitional
games (Section 5) could be the most suitable one.

Our primary aim has been to provide a self-contained and readily applicable reference
to existing methodologies aimed at ranking elements within a set based on a ranking over
their subsets. It is noteworthy that certain social rankings discussed in this paper have also
been employed in diverse contexts in the related literature, and we herein cite a selection of
illustrative instances.

Algorithm 1 has also been studied in [18], where it served as a preliminary framework
for the integration of coalition formation models with the domain of social rankings. Within
the context of [18], the authors explore alternate models of coalition formation, wherein
rational agents possess preferences over partitions of the agent set. In this framework,
agents take into consideration both the relative ranking of the coalitions they are part
of, as determined by a power relation, and their position in the social ranking computed
within each element of a partition. More sophisticated algorithms presented in [18] take
in as input, in addition to a power relation, the lex-cel to evaluate the position of agents
within coalitions.

Other promising directions for the application of social rankings are in the field of
the value alignment problem [30] where, given a collection of candidate norms, a decision-
maker wants to select the set of norms (called a norm system) that is best “aligned” with
some predefined moral values. Given the preferences of the decision-maker, over moral
values in a value system, and the relations of promotion and demotion between norms and
moral values (also interpreted as norm features) some adaptations of the lex-cel are used
in this framework to generate a ranking over single norms from preferences over sets of
norm features.

The social ranking problem has also been studied under slightly different perspec-
tives. An axiomatic study on a restricted domain of coalitions has been presented in [31].
Computational aspects via numerical simulations of the CP-majority have been analyzed
in [32].
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