
HAL Id: hal-04585273
https://hal.science/hal-04585273

Submitted on 23 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Public Domain

Introduction to Autonomous Navigation and Mapping
for Unmanned Ground Vehicles

Stéphanie Aravecchia

To cite this version:
Stéphanie Aravecchia. Introduction to Autonomous Navigation and Mapping for Unmanned Ground
Vehicles. Georgia Tech-Lorraine; CNRS. 2024. �hal-04585273�

https://hal.science/hal-04585273
https://hal.archives-ouvertes.fr


Introduction to Autonomous Navigation and

Mapping for Unmanned Ground Vehicles

Stéphanie Aravecchia1

1IRL 2958 Georgia Tech - CNRS, 2 rue Marconi, 57070 Metz,

France

May 2024

Abstract

This technical report addresses the fundamental challenges associated

with Navigation and Mapping for Unmanned Ground Vehicles (UGVs),

with a particular focus on wheeled robots. Aimed at students begin-

ning robotics research projects, this document provides an overview of

the fundamentals of UGV navigation and mapping. Notably, it introduces

perception, localization, mapping, and autonomous navigation, with an

emphasis on the associated challenges.

This document is based on [Aravecchia, 2023].

1 Mobile Robots

This section is designed to provide an overview of fundamental concepts in

mobile robotics.

Typically, in the domain of mobile robots, we categorize their abilities into

low-level and high-level functions. This distinction is shown in Figure 1, adapted

from [Siegwart et al., 2011]. This figure illustrates the core concepts of mobile

robots. Read from bottom to top, the diagram outlines low-level to high-level

abilities.

The lower-level abilities are perception and motion control. They capture the

essence of the robot’s interaction with the real world. On the perception side,

the robot acquires information from its surroundings, whereas on the control

1



Figure 1: Key concepts of mobile robots (adapted from [Siegwart et al., 2011]).
The concepts used in this work are highlighted in bold in the diagram.

side, the robot actions translate into real-world consequences. For instance,

by rotating its wheels, the robot moves within its environment. Advancing

up the hierarchy in the diagram, we encounter higher-level abilities, such as

localization, map building and path planning. Localization, directly linked to

perception, represents the robot’s ability to determine its own position. Directly

connected to perception and localization is map building, a key feature of this

work that we will explore in detail later. Similarly, path planning is a high level

ability, typically associated to motion control in the context of mobile robots.

It represents the robot’s ability to navigate robustly through its surroundings.

Reaching the pinnacle of the diagram, cognition tasks come into play. These

tasks involve more abstract functions, such as exploration. All these concepts

find comprehensive explanation in [Siegwart et al., 2011].

It is important to note that the field of mobile robots is vast, encompassing

various types such as aerial robots, underwater robots, and more. Focusing

on ground robots, specifically Unmanned Ground Vehicles (UGVs), there still

exists a wide spectrum of locomotion mechanisms, ranging from legged robots

to tracked robots, including wheeled robots. The choice of locomotion impacts

the right side of the diagram in Figure 1. Motion control depends directly

on the robot locomotion. Indeed, control laws, commands send to the robot’s

actuators, heavily depend on the robot locomotion. Even tasks at a higher level,

2



such as path planning, rely on this specific design aspect. For instance, planning

a path involving stairs may be achievable for a legged robot, but unrealistic for

a one with wheels.

In what follows, we will outline the fundamental concepts introduced here.

1.1 Perception

As introduced before, robot perception is a core concept in mobile robots. Ev-

ery mobile robot is equipped with sensors, and robot sensing is the essence of

robot-environment interaction. By taking measurements using various sensors,

the robot acquires knowledge about its environment. Often, the sensors are clas-

sified between proprioceptive and exteroceptive sensors. While proprioceptive

sensors measure values internally to the robot, exteroceptive sensors measure

information from the robot’s environment. A thorough review of robot sensors is

provided in [Siegwart et al., 2011]. In what follows, we simply present the com-

mon sensors for UGVs, and specifically highlight those necessary to understand

this research.

1.1.1 Proprioceptive sensors

Wheeled robots are generally equipped with at least two proprioceptive sensors:

one or more wheel encoders and one Inertial Measurement Unit (IMU). A wheel

encoder measures the position or the speed of the wheel. In robotics, it is often

an optical incremental encoder. It is a device that contains a mechanical light

chopper that produces a certain number of pulses for each shaft revolution. By

counting the number of pulses, and integrating it in time, the sensor provides

an estimate of the position of the robot. An IMU is a device that contains

different sensors: a gyroscope, an accelerometer, and often a magnetometer.

They provide a measure of the robot’s orientation and inclination. While the

measurements are integrated in time, the sensor provides an estimate of the

robot position and orientation.

1.1.2 Exteroceptive sensors

Exteroceptive sensors are generally split in two categories: passive and active

sensors. While passive sensors measure energy coming from the environment,

active sensors emit their own energy and measure the response.

3



Figure 2: Top-left: external view of the scene. Top-right: image from the cam-
era. Bottom: point-cloud from the Lidar. Top-right and bottom correspond to
what the robot ”sees”. The dashed trapezoid provides an idea of the correspon-
dence between camera and point-cloud. The color in the point-cloud simply
encodes the height, for visualization purpose.

In the outdoor application we consider in this work, a common passive ex-

teroceptive sensor used for localization is a GPS (Global Positioning System).

The GPS is a constellation of satellites that continuously transmit their location

around Earth, in a synchronized way. The GPS receiver reads the transmission

from all the visible satellites, and computes its distance to each satellite through

the arrival time difference in the signals. By combining information on distance

and location of several satellites, it can infer its own position, commonly within

a few meters accuracy. To improve the accuracy of the system, the GPS can be

improved to RTK-GPS (RTK, Real Time Kinematics). An RTK-GPS system

is composed of two receivers: a fixed one, and a mobile one. While the fixed re-

4



ceiver does not move, it computes corrections on the signals it receives from the

satellites’ constellation. It then sends these corrections to the mobile receiver,

that integrates them when inferring its own position. Such a system typically

reaches a centimeter accuracy.

Apart from GPS, mobile robots are typically equipped with other extero-

ceptive sensors directly linked to their task. The most common ones are likely

cameras and Lidars. Although common, these two sensors are fundamentally

distinct. Firstly, cameras are passive sensors, while Lidars are active sensors.

Additionally, their data outputs diverge significantly.

Traditional cameras are sensors that record the light that is reflected on

their environment and output an image. This image is a 2D-projection of the

environment: a grid of pixels. In traditional cameras, each pixel corresponds to

an individual photodetector, that measures the reflected light. This measure is

then encoded into a color model, typically RGB (Red Green Blue). A displayed

image is the addition of the light beams of those three fundamental colors.

Most computer vision applications use RGB images, and RGB cameras are

very common sensors in robotics application. One of their main drawback is

that they do not provide any information on the distance to the object. All

the robot’s surroundings are simply projected on a plane. The functioning of

camera sensors and their output is thoroughly detailed in [Corke et al., 2011].

Lidars, for LIght Detection And Ranging, are drastically different. Firstly,

as they are active sensors, Lidars generate energy, in this case light, to get

a measurement. A Lidar is actually a system emitting light from a rapidly

firing rotating laser. This light travels, and eventually hits an object. The

reflected light energy then returns to the sensor where it is measured. The

sensor measures two quantities. The first is the time it takes for the emitted

light to come back: the time of flight. This time is used to calculate the distance,

or range. The second is the waveform of the pulse of light that is returned to the

sensor. From this waveform, the sensor calculates the intensity of the returned

energy. Secondly, the output of a Lidar is fundamentally different from the

output of a camera. A 3D-Lidar emits laser rays in known directions. From

the direction and the range, the sensor calculates the XYZ coordinates of the

returned point expressed in the center of the Lidar frame, along with an intensity

value. From the returned points, the Lidar outputs a point-cloud: an unordered

collection of points. Each point in the point-cloud contains XYZ coordinates and

the intensity value. Figure 3 provides an example, illustrating that only returned

points are added to the point-cloud. A description of the technology and its

5



associated challenges can be found in [Center and Services, 2012], whereas a

thoroughly detailed study of Lidars and point-clouds is provided by [Vosselman,

2010]. This research deals with mapping with a 3D-Lidar.

α0

α1

α2
α3

α4

x

y

lidar

P0 = (x0, y0, z0, i0)

P1 = (x1, y1, z1, i1)

P2 = (x2, y2, z2, i2)

P3 = (x3, y3, z3, i3)

r0

r1

r2

r3

Figure 3: This figure illustrates 3D-Lidar. The light rays are emitted from
the Lidar, in known directions (angles α). When the ray hits an obstacle, the
distance of the returned point is computed (distances r), along with the intensity
of the signal i. A point P (x, y, z, i) is added to the point-cloud. Rays that does
not return are not in the point-cloud. In this example, although five rays are
emitted, the point-cloud contains only four points.

Finally, we would like to emphasize how the data from a camera and a Lidar

are different. We do so in Figure 2. It shows an external view of the scene,

showing the Husky and its sensors, along with the image from the camera, and

the point-cloud from the Lidar. The image and the point-cloud are what the

robot ”sees” with these sensors.

1.2 Localization

Another core ability of mobile robots, as introduced earlier, lies in localization.

Any image or point-cloud described previously becomes useless if the observa-

tion cannot be linked with its position in the environment. While we previously

explained that certain sensors provide estimations of position and/or orienta-

tion, solving localization is a standalone research subject. In the upcoming

content, the term “pose” simply means position and orientation.

Commonly, the localization is the problem of estimating the robot’s pose in

an external reference frame, from sensor data, using a map of the environment

6



[Fox et al., 2006]. Alternatively, the problem can be reformulated to estimate

at the same time the robot’s pose and the map, making it a SLAM problem

(Simultaneous Localization and Mapping). In this section, we briefly introduce

the challenges linked with localization, and its problem formulation.

Here, we simply introduce the challenges associated with localization. For

readers interested in an in-depth study of localization, [Fox et al., 2006] would

be the authoritative reference book.

1.2.1 Frames

x

y

map

base link θR

x’

y’ x”

y”

lidar
X ′

L

P

Y ′′
P

X ′′
P

XR

YR

map

base link

lidar

Tmap
base link(XR, YR, θR)

T base link
lidar (X ′

L, 0, 0)

Figure 4: Illustration of the concept of frames in a 2D-example. On the left:
different coordinate systems, or frames. The external reference frame is called
map, the robot frame is called base link, and the Lidar frame is called lidar. On
the right, the tree structure storing the transformations between frames.

When considering localization, the primary concept to grasp is linked to

frames. In a robotic system, several frames exist, each defining a different

coordinate system. Solving the localization consists in estimating the robot

pose, in a reference frame, from observations that may be in different frames.

When the problem is formulated in 3D, the pose corresponds to the six degrees

of freedom of the system: its 3D Cartesian coordinates, and its three elemental

rotations, in the reference frame.

We illustrate this concept in Figure 4, with a 2D example. This figure shows

different coordinate systems. First, on the bottom left, themap frame represents

the global coordinate system. Second, the base link frame corresponds to the

current robot pose. In the map frame, this pose is the vector (XR, YR, θR). To

this vector corresponds the transformation between base link and map. Next,

7



the lidar frame corresponds to the coordinate system in which the point-cloud

from the Lidar is expressed. In the base link frame, the lidar pose is the vector

(X ′
L, Y

′
L, θ

′
L). In this particular case, Y ′

L = 0 and θ′L = 0. To this vector corre-

sponds the transformation between lidar and base link. Finally, the coordinates

of the point P1 in the point-cloud are (X ′′
P , Y

′′
P ) in the lidar frame.

In robotics applications, it is convenient to keep track of the relative position

of a frame with respect to another one in a tree structure. Indeed, it is likely

that lidar remains fixed with respect to base link, and that base link will move

with respect to map. By chaining the transformations between frames, we can,

for instance, easily recover the position of the point P in the map frame.

1.2.2 Problem formulation

If a sensor could offer a highly accurate estimation of the robot pose, localization

would not be such a challenging task. However, even if such a perfect sensor

were to exist, a new challenge would emerge: how could we then be certain

of the robot’s position with respect to its environment with absolute certainty

? Moreover, what if we introduced another complication, like the presence of

humans moving in the robot’s surroundings ?

In mobile robotics applications, the fundamental reality is that nothing is

known with absolute precision. Every measurement, from any sensor, carries

some noise. Additionally, every action the robot takes introduces its own noise.

When a command is transmitted to the robot’s actuators, the actual movement

of the robot always slightly deviates from the anticipated trajectory. This can

be attributed to sensor noise, such as in the wheel encoders, but more broadly,

it comes from the challenge of precisely modeling interactions with the envi-

ronment. This, once again, contributes to the noise inherent in the robotics

system.

For these reasons, probabilistic algorithms are the fundamental algorithms

in mobile robotics, as expansively detailed in [Fox et al., 2006]. The key idea of

such algorithms is to represent information by probability distributions over a

whole space of possible hypothesis. In the case of localization, the initial belief

(the initial robot’s pose estimate) is represented by a probability density function

over the space of all locations. Every new sensor measurement (observation) and

every new movement of the robot (action) update the previous belief. Generally,

with enough actions and observations, the probability mass is moved to a single

location, and the robot’s localization is known with a good confidence.

8



This problem formulation is a state estimation, and this description depicts

a Bayes Filter. The two more widely used localization algorithms in mobile

robotics derive from this algorithm: the Kalman filter and the particle filter,

which we simply mention here. Once more, our focus here is on introducing the

localization challenges, and we encourage readers to consult [Fox et al., 2006]

for comprehensive explanations.

2 Mapping

2.1 Fundamentals of mapping

A map is a representation of the environment. The selection of a specific map

representation depends on various factors. First and foremost, if the map is

intended for robot navigation, it must be computed online on the robot, which

introduces a significant computational complexity limitation. Conversely, if the

map is computed offline, this limitation is no longer a concern. Secondly, the

map’s intended purpose and the type of information it needs to store are essential

considerations. Lastly, does the map exclusively stores static objects? Different

map representations are available based on these considerations. We will now

describe a few examples, focusing solely on static maps.

Firstly, a continuous map is an exact decomposition of the environment. It

compiles a list of all objects along with their location. Typically, to manage

computational costs, the objects are selected and abstracted. For instance,

line segments are extracted from sensor data, and their coordinates are stored,

as presented by [Gonzalez et al., 1994]. These types of maps are commonly

employed in indoors applications. Secondly, a discrete map is a discretization of

the environment. These maps typically assume that geometry is the most salient

feature of the environment. Such maps are prevalent in various mobile robotics

applications. We employ them in this research, and we will delve into their

details in the following section. Thirdly, topological maps are graphs that define

nodes and the connectivity between nodes. GPS navigation relies on this map

type, where a node signifies an intersection, and the connections between nodes

represent feasible trajectories. These maps also find widespread application in

robotics, due to their capacity to enable fast search algorithms within them.

More recently, research explored semantic information incorporation into the

map representations. For instance, in a topological map, each node is assigned a

semantic label like ”grass” or ”asphalt”, as shown in [Kostavelis and Gasteratos,

9



Figure 5: Example of a 2D occupancy grid map, mapping the same place de-
picted in Figure 2. Black: pixel corresponding to occupied space, light-grey:
free space, dark-grey: unknown space.

2015].

In the upcoming paragraphs, we will elaborate on a specific type of discrete

map known as the occupancy grid. We will then showcase different challenges

related to mapping.

2.2 Occupancy grids

As previously mentioned, achieving optimal navigation planning stands as one of

the most prevalent objectives for building a map. In other words, the intention

behind the map is to plan the robot trajectory, from its current position, to a

goal. In such a case, the map is directly linked to how the trajectory will be

planned. The most prevalent map in this case is the occupancy grid, a discrete

map. The occupancy grid is a 2D-map, an image, representing the plane the

robot will evolve in. Every cell in this map, each pixel in the image, encodes the

necessary information to compute a safe navigation plan. The simplest form of

occupancy grid contains ternary information: each pixel is either free, occupied

or unknown. A slightly more advanced form of occupancy grid encodes the

occupancy likelihood of each pixel. When the robot is equipped with a Lidar,

every point-cloud provides information. Basically, we know that every return

point corresponds to occupied space, and the ray between the robot and the

return point corresponds to free space. Behind the return point, we do not

have any information. Building the occupancy grid consists in accumulating

10



the robot’s observations in time.

Figure 5 provides an example of an occupancy grid map. This figure show-

cases some mapping features described previously. Firstly, this map is an image,

projected on a plane. The dark-grey areas on the top corners are outside the

map. Secondly, the figure shows the current projection of the 3D-Lidar on a

horizontal plane (red dots). Thirdly, on the map, we can see the occupied space

where those points are projected on the ground (black), the unknown space

behind (middle-grey), and the free space between the robot and the points

(light-grey). Secondly, this figure shows the results of the ray casting opera-

tion. Some previous returned Lidar points have marked the space empty only

between the return point and the robot, leaving unknown space around the rays

(middle-right of the figure). Finally, although this is not obvious in the figure,

it also displays the different frames involved in the mapping. The map is built

in the frame represented by the thick axes. The small axes in the figure are the

lidar frame and the base link frame (the current robot pose in the map).

2.3 3D-grids

A 3D-grid is a generalization in 3D of the 2D-grid we introduced earlier. Such

a map is the discretization of the space into voxels, each voxel containing some

information. That information can be:

1. an occupancy map, where the voxels have 3 states: free, occupied or

unknown;

2. a probability map where each cell contains its probability of occupancy;

3. or something different, where the voxels contain data such as semantic

information.

Here, we focus on the prevailing map representation for outdoor robotics:

probabilistic 3D-grids. The appearance of this map is directly derived from

the resolution, that is, the size of an edge of a voxel. Ideally, the lower the

resolution, the more detailed the map. Figure 6 provides an example of a 3d-

grid map. This map is a representation of the lab shown in Figure 2. Due

to the small vertical field of view of the Ouster-16 3D-Lidar, only a slice of

the lab is actually mapped. Also, because of occlusions, the back side of the

other robot (top right corner) is not observed, and therefore, not mapped. In

this example, the resolution is set to 5cm-side voxels. The resolution should be

11



Figure 6: Example of a 3D-grid map, mapping the same place depicted in 2.
Each cube is a 5cm side voxel, representing only the occupied space. The color
encodes only the height, to help the visualization.

chosen carefully to be consistent at the same time with the type of objects we

want to map in, and the level of noise when building the map, particularly in

the robot localization. As an example, if the position of the robot is known with

an 0.2m2 uncertainty, building a 3D-grid with a 0.05m resolution is not suited

and will lead to a highly noisy map.

2.4 Challenges with mapping

The core of the mapping challenge comes from the fact that the robot is mov-

ing. The robot’s observations are always in the sensor frame. The very frame

attached to the sensor. As shown in Section 1.2, that frame is easily trans-

formed into the robot frame, because the pose of the sensor with respect to the

robot is known, even though some uncertainty remains. The challenge comes

from transforming the robot’s frame into the map frame, the only fixed frame

in time. This challenge is the localization introduced previously. Every robot’s

observation, in the robot’s frame, updates the map. Every error in the estimate

of the robot’s pose in the map leads to errors in the map’s updates. The uncer-

tainty in the robot pose produces uncertainty in the map, as shown in [Chahine

et al., 2021].

An additional issue is linked to the sensor itself. A Lidar is not exempt from

measurement noise. Furthermore, the noise level tends to increase in natural

12



A

B

C

D
(0) (1) (2)

Figure 7: Illustration of the effect of noise on the map, on a toy-case. The
noise is applied either on the localization, on the sensor, or on both. Top: the
simulation: a husky-robot facing a cross-extruded shape. All the other figures
display the point-clouds accumulated for five seconds in a given map frame.
The frame is either the perfect localization from the simulation (0), or a noisy
localization, where we apply a Gaussian noise to (0). We display two level of
noise: (1) and (2). Rows A, B: the Lidar sensor is perfect. Rows C, D: the Lidar
sensor is noisy. Rows A, C: the robot is not moving. Rows B, D: the robot is
moving. If we focus on the cross-extruded shape, we can see that the higher the
noise in the localization and / or on the sensor, the blurrier the shape.

13



environments, due to several factors. For instance, from a laser’s perspective,

trees can behave as semi-transparent structures, thereby inducing errors in the

measurements. The reason is that when laser-rays, light cones in practice, reach

a small object, like a branch, often only a portion of the energy is reflected. This

causes multiple echoes, which are a common source of inaccurate distance read-

ings. For instance, when measuring distance to a small branch, depending on

the amount of vegetation, the intensity of each echo may vary. The distance

reading, associated to the highest intensity echo, may be the small branch, an-

other branch behind, or some larger structure behind the tree, for example. A

comprehensive analysis of this phenomenon is provided by [Vosselman, 2010].

Two other causes of errors in laser measurements, that are particularly abun-

dant in natural environments, are linked to the distance to the objects and the

incidence angle: the error increases with each of them [Laconte et al., 2019].

Figure 7 illustrates the effect of noise on the map. Rows A and B show the

effect of noise only in the localization. Row C depicts the effect of noise on the

Lidar only on the map. Finally, row D exemplifies the effect of a combination

of noise of the lidar and noise on the localization. Looking at column (0), where

the localization is perfect, we can see that the addition of noise in the sensor

blurs the cross extruded shape, but much less than the addition of noise in the

localization (column (2)). The examples in Figure 7 are not maps, but simply

accumulations of point-clouds in time. Regarding maps, especially occupancy

grids, it is worth noting that every point-cloud contributes to the map. Indeed,

every return point in the point-cloud, with its noise, is transformed into the

map frame, with the noise in the transformation, and used to update the map.

In that case, the occupancy likelihood of the pixel containing the returned point

is increased, the occupancy likelihood of the pixels traversed by the laser ray

are decreased.

2.5 Purpose of mapping

Often, robot mapping is intrinsically linked to the autonomous navigation of the

robot. Planning a trajectory within an occupancy grid consists in computing

a trajectory from the robot’s current pose to the goal, while ensuring it stays

in free space and maintains a safe distance from obstacles. This computation

relies on the values associated with the pixels of the occupancy grid, that is,

the occupancy likelihoods. Optimal planning in a 2D-plane may be considered a

solved research problem, and several algorithms exist to compute optimal plans.

14



It is worth noting that we are specifically discussing here global planning, which

involves going from point A to point B. The distance from A to B can be large,

and in addition to the global plan, the robot actually needs to follow what is

called a local plan, reactive for example to moving obstacles, and to be controlled

on this local plan. Planning will be briefly presented later in this manuscript.

However, there are cases where the purpose of the map is not the planning.

For instance, it may be the need to build a representation of a scene enabling

its monitoring, such as in [Chahine et al., 2022].

3 Autonomous Navigation

Autonomous navigation is a high-level task in mobile robotics. It consists of

enabling for the robot to move autonomously and robustly in its environment.

Autonomous navigation is divided in three components: global planning, local

planning and control. Exploration is a higher level task that consists in choosing

the next goal. Often, global planning is part of the exploration task, as we will

see right after.

First, we focus on the three navigation tasks.

3.1 Global Planning

Global planning consists in planning a safe trajectory from the current position

of the robot, A, to its target position, B. Planning such a trajectory requires

several components. First, we need to define where the robot can or cannot

go in the map. If we take the example of a 2D-occupancy grid map, we can

assume the robot can navigate safely in free space. Two questions would be:

can it navigate safely close to obstacles ? Can it navigate safely in unknown

space ? Answering those questions require the computation of an intermediary

component called the cost-map. This cost-map is a 2D-grid where each cell is

associated to a cost. Planning from A to B would then consist in finding the

lower cost trajectory in the set of feasible ones from A to B. A typical cost-

map consists in simply expending the obstacles in the occupancy grid with a

Gaussian Kernel. Cells close to obstacles would then have a higher cost than

those far from obstacles.

More advanced cost-maps would take other factors than simply the distance

to obstacles. For example, the cost of a cell may be linked to the slope of the

terrain it is associated to. Similarly, each cell could be assigned a traversability

15



score depending on the very nature of the terrain. For instance, asphalt is

easily traversable, whereas rocks are not traversable. In the middle, short grass

could be traversable, although less easily than asphalt, and tall grass may be

traversable, but with some risk, and the cost should reflect the level of risk of

planning through each cell. Global planning is finally an optimization to seek

for the cheaper trajectory from A to B. Several algorithms allow to compute

this best trajectory, among which the more broadly used are Djikstra, A*, or

RRT*. We recommend the interested reader to look for [Siegwart et al., 2011]

that provide a comprehensive description of the main planning algorithms.

3.2 Local planning and control

Although local plan and control are out of the scope of this work, we provide to

the reader high-level information about what they are in the context of mobile

robots, and again invite the reader to look for [Siegwart et al., 2011], a reference

book in mobile robots.

Local planning enables the local adaptation of the robot to the global plan.

The more obvious reason is moving obstacle avoidance. By definition, it is not

possible to plan a path from A to B avoiding moving obstacles. This reactive

behavior is what local planning deals with. Local planning is reactive planning

to keep executing the general trajectory from A to B, while taking into account

local changes.

Control is the final step in autonomous navigation. It consists in computing

and applying the commands that will drive the robot to follow the local plan.

4 Exploration

4.1 Exploration with frontier points

As introduced before, in an exploration problem, we consider a volume unknown

at the beginning. The robot moves into this volume, and at the same time gath-

ers information and reduces the unknown. Crafting an exploration policy con-

sists in defining the rule to choose where the robot should go next. That policy

is directly linked to the reason why the robot has to explore the environment.

Generally, whether it be only for its navigation, or for other purposes, the map

is directly linked to the exploration. Let us assume the map is a 2d-occupancy-

grid map introduced before. This map encodes the occupancy likelihood of each

16



pixel, and therefore contains information about occupied space, empty space,

and unknown space. Occupied and empty space together are the known volume,

the remaining is the unknown volume. From this frontier between the known

and unknown volume [Yamauchi, 1997] introduced the concept of frontier points.

A frontier point is a point, within the known volume, with at least an unknown

neighbor. From this concept derives the first autonomous exploration policy,

also called closest frontier exploration. In closest frontier exploration, the next

goal is always the closest from the current robot position in the set of reach-

able frontier points. This decision-making process, that drives the choice of the

next goal to visit, is called the exploration policy. The primary objective of a

closest-frontier exploration policy is to rapidly reduce the unknown in the map.

Another traditional exploration policy, derived from frontier points, consists in

randomly sampling the goal among the frontier points rather than choosing the

closest. This policy is commonly referred to as random frontier exploration.

In a typical exploration mission, the sequence of actions involves: setting the

goal, moving to the goal, updating the map, setting a new goal, and repeating

this cycle. However, this behavior is not necessarily linear. For instance, the

map can be updated while the robot moves. Similarly, the next goal is often

regularly sampled, without waiting for the robot to reach the current goal. This

approach is used because, due to map updates while the robot is moving, a goal

that is a few seconds old may no longer be the optimal choice. In traditional

policies, the cycle is over when the exploration is considered complete. This de-

termination is often based on specific criteria, such as mission time, or achieving

a minimal percentage of the volume being known.

Figure 8 provides an illustration of the concept of frontier points. The cur-

rent position of the robot is the green square. A, B and C are the main clusters

of frontier points (some frontier points are not in A, B or C). Depending on

the exploration policy, the robot may pick a goal in A (closest), in B (highest

density of unknown points for instance), or either in C (random for instance).

Whereas out of the scope of this work, it should be mentioned that the

concept of frontier point exploration is often extended to multi-agents. Indeed,

when the objective is to discover the volume as quickly as possible, having robots

cooperate to build a common map is an appealing solution, as proposed initially

by [Burgard, Wolfram Mark, Moors Dieter, Fox Reid and Sebastian, 2000].

17



Figure 8: Illustration of the concept of frontier points in an occupancy grid.
The current position of the robot is the green square. A, B and C are the main
clusters of frontier points

4.2 Next Best View

As mentioned earlier, the choice of the next goal depends not only on the target

destination, but also on the path the robot will take. During the execution of

the path, observations continuously update the map. Because of this continuous

update, a new goal is typically chosen during the execution of the path. In

this context, the robot’s actuation is driven by the objective of maximizing

perception efficiency, a strategy commonly referred to as Next-Best-View (NBV)

or active sensing

NBV is an active research topic in various contexts. For instance, [Bar-

tolomei et al., 2020] selects NBVs based on their ”perceptual informativeness”

to minimize localization error. The underlying idea is that when the primary

sensor is a camera, avoiding featureless areas increases the performance of visual

inertial odometry algorithms.

When NBV and exploration are linked, the exploration policy is the function

defining a balance between the need to maximize the efficiency of the percep-

tion (the information gain), and some cost (for example, the distance to the

candidate), to select the best goal for the exploration task. Often, exploration

policies are linked to simultaneous localization and mapping (SLAM). SLAM,

18



introduced earlier in this chapter (Section 1.2), is an optimization that seeks at

the same time to find the map, and the poses, or history of poses, of the robot.

When exploration and SLAM are linked, the gain is often formulated to reduce

both map and localization uncertainty, as in [Stachniss et al., 2005]. Beyond

SLAM, the objective of the NBV selection, within the context of exploration,

often revolves around finding the path that maximizes space discovery, as shown

in [Bircher et al., 2016] for instance.

References

[Aravecchia, 2023] Aravecchia, S. (2023). Map Quality Criteria for Autonomous

Exploration in Natural Environment. PhD thesis, Université de Lorraine,

France.

[Bartolomei et al., 2020] Bartolomei, L., Teixeira, L., and Chli, M. (2020).

Perception-aware Path Planning for UAVs using Semantic Segmentation.

In IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), pages 5808–5815.

[Bircher et al., 2016] Bircher, A., Kamel, M., Alexis, K., Oleynikova, H., and

Siegwart, R. (2016). Receding horizon next-best-view planner for 3D explo-

ration. Proceedings - IEEE International Conference on Robotics and Au-

tomation, 2016-June:1462–1468.

[Burgard, Wolfram Mark, Moors Dieter, Fox Reid and Sebastian, 2000]

Burgard, Wolfram Mark, Moors Dieter, Fox Reid, S. T. and Sebastian

(2000). Collaborative Multi-Robot Exploration. In IEEE international

conference on robotics and automation.

[Center and Services, 2012] Center, N. O. and Services, A. A. N. C. (2012).

Lidar 101 : An Introduction to Lidar Technology , Data , and Applications.

NOAA Coastal Services Center, (November):76.

[Chahine et al., 2022] Chahine, G., Pradalier, C., Chahine, G., Pradalier, C.,

Alignment, S.-a., and Outdoor, N. (2022). Semantic-aware spatio-temporal

Alignment of Natural Outdoor Surveys To cite this version : HAL Id :

hal-03738518 Semantic-aware spatio-temporal Alignment of Natural Outdoor

Surveys.

19



[Chahine et al., 2021] Chahine, G., Vaidis, M., Pomerleau, F., and Pradalier,

C. (2021). Mapping in unstructured natural environment: a sensor fusion

framework for wearable sensor suites. SN Applied Sciences, 3(5):1–14.

[Corke et al., 2011] Corke, P. I., Jachimczyk, W., and Pillat, R. (2011).

Robotics, vision and control: fundamental algorithms in MATLAB. Springer.

[Fox et al., 2006] Fox, D., Thrun, S., and Burgard, W. (2006). Probabilistic

Robotics. Kybernetes.

[Gonzalez et al., 1994] Gonzalez, J., Ollero, A., and Reina, A. (1994). Map

building for a mobile robot equipped with a 2D laser rangefinder. Proceedings

- IEEE International Conference on Robotics and Automation, (pt 3):1904–

1909.

[Kostavelis and Gasteratos, 2015] Kostavelis, I. and Gasteratos, A. (2015). Se-

mantic mapping for mobile robotics tasks: A survey. Robotics and Au-

tonomous Systems, 66:86–103.

[Laconte et al., 2019] Laconte, J., Deschênes, S. P., Labussière, M., and Pomer-

leau, F. (2019). Lidar measurement bias estimation via return waveform

modelling in a context of 3D mapping. Proceedings - IEEE International

Conference on Robotics and Automation, 2019-May:8100–8106.

[Siegwart et al., 2011] Siegwart, R., Nourbakhsh, I. R., and Scaramuzza, D.

(2011). Introduction to autonomous mobile robots.

[Stachniss et al., 2005] Stachniss, C., Grisetti, G., and Burgard, W. (2005).

Information gain-based exploration using rao-blackwellized particle filters.

Robotics: Science and Systems, 1:65–72.

[Vosselman, 2010] Vosselman, G. (2010). Airborne and Terrestrial Laser Scan-

ning. Whittles Publishing.

[Yamauchi, 1997] Yamauchi, B. (1997). Frontier-based approach for au-

tonomous exploration. Proceedings of IEEE International Symposium on

Computational Intelligence in Robotics and Automation, CIRA, pages 146–

151.

20


