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Acceleration profile for aircraft
seat design.

💡( equivalent to stopping a TGV
at full speed in 2s! )













MÜ(t) +KU(t) = MΓinertie (t) + F ext (t)
︸ ︷︷ ︸

F

X ∈ Ω, t ∈]0, T ]

U(t) = 0 X ∈ Γ, t ∈]0, T ]

U(0) = U̇(0) = 0 X ∈ Ω, t = 0

Load induced by a 90-kg
passenger.

F ext (t)

• Variable separation adapted to the industrial problem

• A priori method (no database required)

• Solves the equation from physics

• Adpated to unstructured mesh-like data

• Does not depend on the number of nodes and edges in the input graph, only in the number of
input features (through permutation-invariant aggregate function)

• High flexibility and generalisability
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New seat design:
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Fast and Physically
consistent solution
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If:

res > η

Add a PGD mode
on the fly!

5-Proposed algorithm and results:

Galerkin projection on P :

-POD trick-
use a suitable scalar product to precondition the problem,
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Finally, we only solve the small ODE system (r × r):

Outputs

Inputs

only 1 forward step
online phase

• Mesh connectivity

• Node type

• Maximum node loading

• ...

errorU =
‖Uex −UGNN‖U
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initialization with 1% errorU

with an additional PGD mode,
we have 0.1% errorU

plateau to investigate
and understand...

convergence up to our criterion

4-Database:
The small database (500 seats) contains a wide variety of seats with very different

mechanical characteristics:

2-The Proper Generalized Decomposition (PGD):

3-Graph Neural Networks (GNN):

Our GNN learns less information than approaches in the literature:
the learning time (offline phase) is therefore much faster.

1-Loading case:

Developed spatial convolution layer:

Popular approach in the literature:

mode
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inputs outputs • Autoregressive approach

• Inference time proportional to
number of time steps Nt

• Error increases during simulation
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📚[Ladevèze, 1999]

📚[Kipf & Welling, 2017]

📚[ Brandstetter, 2022]

📚[Pfaff et al. , 2021]

📚[Pfaff et al., 2021]

We only consider seats never seen by the network during training
(test base).

📚[ Huang et al., 2018]

Good accuracy on predicted
space mode:
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This work was granted access to the HPC resources of IDRIS under the allocation 2023-[AD011014260] made by GENCI.

For the 50 seats tested, we obtained an errorU of less than 1%
immediately after the GNN-POD phase.

Furthermore, as soon as an on-the-fly PGD mode is added,
we obtain an errorU of at least less than 0.1% for all the seats tested.

In all cases, we solve the physical equation:
physics has the final say!
For all the seats tested, we speed up the calculation thanks
to the prediction of GNN spatial modes, but if this were not the case,
we wouldn’t take longer than a reduced-order PGD model.

Finite element operator calculation: M et K

We want to caclulate the time modes: λ

GNN-POD(-PGD)


