
HAL Id: hal-04585018
https://hal.science/hal-04585018v2

Submitted on 29 Aug 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A hybrid numerical methodology coupling Reduced
Order Modeling and Graph Neural Networks for

non-parametric geometries: applications to structural
dynamics problems

Victor Matray, Faisal Amlani, Frédéric Feyel, David Néron

To cite this version:
Victor Matray, Faisal Amlani, Frédéric Feyel, David Néron. A hybrid numerical methodology coupling
Reduced Order Modeling and Graph Neural Networks for non-parametric geometries: applications to
structural dynamics problems. Computer Methods in Applied Mechanics and Engineering, 2024, 430,
pp.117243. �10.1016/j.cma.2024.117243�. �hal-04585018v2�

https://hal.science/hal-04585018v2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Computer Methods in Applied Mechanics and Engineering 430 (2024) 117243

A
0
(

Contents lists available at ScienceDirect

Comput. Methods Appl. Mech. Engrg.

journal homepage: www.elsevier.com/locate/cma

A hybrid numerical methodology coupling reduced order modeling
and Graph Neural Networks for non-parametric geometries:
Applications to structural dynamics problems
Victor Matray a, Faisal Amlani a,∗, Frédéric Feyel b,a, David Néron a

a Université Paris-Saclay, CentraleSupélec, ENS Paris-Saclay, CNRS, LMPS - Laboratoire de Mécanique Paris-Saclay, Gif-sur-Yvette, France
b Safran Tech, Digital Sciences & Technologies Department, Magny-les-Hameaux, France

A R T I C L E I N F O

Keywords:
Reduced-order modeling
Non-parametric geometries
Graph Neural Networks
Deep learning
Proper generalized decomposition
Finite element methods

A B S T R A C T

This work introduces a new approach for accelerating the numerical analysis of time-domain
partial differential equations (PDEs) governing complex physical systems. The methodology is
based on a combination of a classical reduced-order modeling (ROM) framework and recently-
introduced Graph Neural Networks (GNNs), where the latter is trained on highly heterogeneous
databases of varying numerical discretization sizes. The proposed techniques are shown to
be particularly suitable for non-parametric geometries, ultimately enabling the treatment of a
diverse range of geometries and topologies. Performance studies are presented in an application
context related to the design of aircraft seats and their corresponding mechanical responses to
shocks, where the main motivation is to reduce the computational burden and enable the rapid
design iteration for such problems that entail non-parametric geometries. The methods proposed
here are straightforwardly applicable to other scientific or engineering problems requiring a
large-number of finite element-based numerical simulations, with the potential to significantly
enhance efficiency while maintaining reasonable accuracy.

1. Introduction

Numerical simulations are essential tools in a variety of scientific disciplines, including design engineering, physics, biology, and
economics. They often involve resolving complex models governed by physical or phenomenological laws that can be mathematically
described by partial differential equations (PDEs). In solid mechanics, the resolution of these models relies mainly on mesh-based
numerical methods requiring discretization in space and time, the most widely-used of which is the Finite Element Method (FEM).
In recent decades, a great deal of work [1–9] has been undertaken to improve and extend classical FEM formulations in order
to encompass a wider variety of both linear and nonlinear material behavior to the extent that FEM-based simulations are now
ubiquitous in science and engineering [1,5,10].

However, despite advances in computing capacity in recent years, the computational cost of FEM-based solvers remains
significant and often limiting for highly-sensitive engineering or scientific applications such as those related to aeronautical
design [11–13] (the primary motivating context of this contribution). Iterating over a design space is necessary for engineers to
develop optimized configurations [14–16], and each design may require some sort of computational mechanical analysis. Hence,
it is highly advantageous and important to have very fast calculation tools that can enable rapid pre-dimensioning/pre-sizing

∗ Corresponding author.
E-mail addresses: victor.matray@ens-paris-saclay.fr (V. Matray), faisal.amlani@ens-paris-saclay.fr (F. Amlani), frederic.feyel@safrangroup.com (F. Feyel),

david.neron@ens-paris-saclay.fr (D. Néron).
vailable online 25 July 2024
045-7825/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.cma.2024.117243
Received 21 May 2024; Received in revised form 15 July 2024; Accepted 15 July 2024

https://www.elsevier.com/locate/cma
https://www.elsevier.com/locate/cma
mailto:victor.matray@ens-paris-saclay.fr
mailto:faisal.amlani@ens-paris-saclay.fr
mailto:frederic.feyel@safrangroup.com
mailto:david.neron@ens-paris-saclay.fr
https://doi.org/10.1016/j.cma.2024.117243
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cma.2024.117243&domain=pdf
https://doi.org/10.1016/j.cma.2024.117243
http://creativecommons.org/licenses/by/4.0/

Computer Methods in Applied Mechanics and Engineering 430 (2024) 117243V. Matray et al.
of mechanical components from the initial design stage, i.e., providing adequately accurate estimations of the corresponding
mechanical response and behavior without immediately requiring expensive finite element simulations. Indeed, such tools could
help circumvent expensive full-field analyses of modifications incurred during the design phase of a project, potentially resulting
in substantial time savings during validation stages. Fast approximate tools can ultimately give development teams the leeway to
propose original designs (even those that are radically different from the standard) whose effectiveness can be quickly evaluated
without the need for computationally costly full order modeling using FEM.

1.1. Acceleration by reduced-order modeling (ROM) approaches

A common technique for reducing the computational burden of large-scale FEM simulations is known as reduced-order modeling
(ROM) [17–19]. Reduced-order models exploit the mathematical separability of solution fields in a full physical model, allowing
one to solve a smaller, less-costly problem while maintaining control over the error in approximation [20,21]. A notable class of
potent reduction techniques relies on creating a low-dimensional space using a reduced-order basis (ROB) [22]. Construction of
such a space involves an initial offline learning phase, where the high-fidelity problem (e.g., full-order FEM) is solved, after which
appropriate snapshots are carefully selected. Subsequently, in the online phase, the original high-fidelity problem is often tackled
using a projection, typically employing a Galerkin-type approach (although alternative methods are also feasible [23]). For an
in-depth review of such projection-based methods, readers are encouraged to consult [17] and the associated references.

The focus of this work is on linear structural dynamics problems, where the most common ROM technique is the use of the Proper
Orthogonal Decomposition (POD) [24–26]. POD has also demonstrated superior capabilities to well-established modal analysis
techniques which are also widely used [27]. The principle of this approach is to build a ROB from intelligently-selected snapshots
taken from previously-calculated solutions. Techniques such as the Reduced Basis Method (RBM) [20,21] offer automatic selection
procedures to determine the most relevant snapshots. RBMs can also be used to certify the results derived from the reduced model
for any parameter contained in the PDE. For a deep overview, the interested reader can refer to [28] and the references therein.
Note that ROB methods can also be extended to non-linear PDEs, e.g., via the Discrete Empirical Interpolation Method [29]. These
aforementioned ROB methods are generally referred to as a posteriori methods and their costs are characterized by the time needed
to calculate the database (offline) and the time needed to solve the reduced model (online).

In a mathematically-related but fundamentally-different approach, the Proper Generalized Decomposition (PGD) [18,30,31]
provides an alternative technique for low-rank resolution, but a priori. This is accomplished by generating the ROB on-the-fly.
Similarly to POD, the PGD method was initially proposed for space–time variables (known as radial approximations [30]). However,
PGD has since been extended to other parameters such as those defining material properties [18]. Non-linear equations can also be
considered with this approach, e.g., by use of the LATIN-PGD algorithm [32–34].

Although reduced-order models are becoming more increasingly used in practice [33,35], they are only truly effective when
the problem can be parameterized (e.g., for describing material properties, loading characteristics, or geometries [36]), and even
more so in the context of multi-query simulations [31]. Geometric considerations, in particular, often require that the number of
degrees-of-freedom remains constant among the offline training set when constructing a ROB (so that the information contained in
the previously-calculated snapshots can be re-evaluated). This ‘‘geometry parameterization’’ restriction is the most limiting condition
in the context of design innovation and iteration since, in essence, a very original structure born of an engineer’s imagination may
not necessarily share the same parameterizations of other (even similar) designs.

When geometry is parametrizable (e.g., by length or width and even more when the topology evolves), ROM techniques
are already efficient [36,37]. However, their applicability is limited to geometries that can be parameterized by a few control
points [36]. General techniques include Free-Form Deformation (FFD) [38,39] as well as interpolation using Radial Basis Functions
(RBF) [40,41]. These methods define parameters as the shifting of specific control points that determine the morphing of the domain.
For instance, in [42], airfoil profiles of the NACA family are studied using RBMs in the context of inverse design for aircraft wings.
In [43], another approach is employed where a multi-parametric PGD is used to obtain numerical maps for a rocket launcher
component whose geometry is parameterized with two control points that are added to the spatial and temporal parameters of the
PGD.

When the geometry is non-parametric (e.g., can be of any arbitrary shape or size), strategies for ROM are difficult to apply. The
geometries do not share the same spatial dimension (after FEM discretization), making classical ROB projection methods infeasible.
There are also recently-introduced approaches based on mesh morphing [44,45], the aim of which is to learn the transformation that
transfers any mesh to a reference mesh, which then enables a common spatial dimension to be obtained without a priori knowledge of
the geometry parameterization. Searching for this transformation is equivalent to determining an on-the-fly parameterization of the
geometries in the database, and assumes that the new geometries tested will have the same parameterization. In [44], this technique
is coupled with a ROM to simulate blood flow. Similarly, in [45], a similar strategy is applied to a database generated with five
known material parameters and one unknown geometric parameter, which is then coupled to a Gaussian process method. Learning
the morphing transformations as well as choosing reference meshes is not very straightforward [45]. Indeed, these transformations
cannot necessarily be generalized, particularly when the topology of the mesh changes [46].

The goal of the present work is to propose a more general approach that requires neither parameterizing the geometry with
a finite number of control points nor learning the morphing transformation, ultimately enabling consideration of completely
unstructured meshes of highly-variable degrees-of-freedom.
2

Computer Methods in Applied Mechanics and Engineering 430 (2024) 117243V. Matray et al.

i
r
o

o
{

g
i

1.2. Acceleration by deep learning-based approaches

An alternative class of methods that have been gaining interest for more rapidly and efficiently approximating solutions to PDEs
s the burgeoning field of deep learning, which has now touched almost all scientific disciplines [47,48]. Deep learning has shown
emarkable capability in predicting non-linear relationships with physical data [49]. Similarly to classical reduced-order modeling,
ne needs to distinguish between two computational cost scales: the offline learning/training time (which is often quite long) and the

online model inference time (which is very short—possibly real-time). A great deal of recent work has consisted of trying to enrich
deep learning models with physical knowledge [47,50]. To this end, there are three main types of approaches. The first, proposed
in [51] and often referred to as ‘‘physics-informed’’ (or ‘‘learning bias’’), consists of including physical knowledge in the loss function
used to train the neural networks. The idea is to construct a loss function as the sum of a term that accounts for deviations from
target data (error) and a term that penalizes non-physical behavior. A second approach, often referred to as ‘‘physics-augmented’’ (or
‘‘inductive bias’’), consists in introducing physical knowledge directly into the architecture of the neural network [52]. For example,
in [53], the neural network is constrained to be convex in the same way as the thermodynamic potential that the authors set out
to learn. Similarly, in [54], a positive dissipation is constrained to satisfy the second law of thermodynamics. A third approach,
classically referred to as ‘‘observation bias’’ [55], aims to intelligently introduce a data structure underlain by physical knowledge.
Hence, the deep neural network (DNN) is exposed directly to the observed data and is expected to capture the underlying physical
process via training.

Other learning-based approaches that may ignore this physical knowledge a priori – instead focusing on representations adapted
to physical simulation data – also show remarkable capabilities. This is the case of approaches based on Graph Neural Networks
(GNN), initially proposed in [56], which have become very popular in several communities: in fluid mechanics for Navier–Stokes
equations (e.g., [57,58]), in meteorology for global weather prediction (e.g., [59]), in biomechanics for describing the mechanics of
human body organs (e.g., [60]), in Newtonian mechanics (e.g., [61]), and in solid mechanics (e.g., [62,63]). Several recent works
have also improved this approach by explicitly incorporating physical knowledge (see [54] and references therein). Such methods
offer interesting extrapolation capabilities and are particularly well-suited for their application to a variety of geometries [64] (which
is an important consideration for the structural design context of this work).

GNN and other deep learning approaches are based on training a model from a database which, in the motivating industrial
applications of the present work, represents an opportunity to reuse the high-fidelity computations produced by other designs
and engineering projects that are kept in databases. It should be noted that in this framework, the amount of available data is
often limited, and this constraint is taken into account in the proof-of-concept work presented here. In addition, deep learning
models (in general) face uncertainty as to the validity of their outputs which, together with their more-often-than-not lack of
interpretability [47,65], often hinder their certification and widespread acceptance in engineering. For this reason as well, the idea
of combining deep learning approaches (e.g., GNN) with well-established solvers used in practice may reveal promising directions.

1.3. Present work

This contribution proposes a new numerical methodology to provide near real-time structural mechanical analysis combining the
two distinct approaches discussed above: classical ROM methods and deep learning. The general idea is to use the latter to predict the
former for any arbitrary discretization size and geometric shape (in order to address the limitations of classical approaches as outlined
above). More formally, we consider a set of 𝑁 independent geometries {𝜴data

𝑝 }𝑝={1,…,𝑁} (which do not share any geometric parameter
r discretization size, as simplified in Fig. 1), where each configuration is associated with a reference solution obtained by FEM:
𝐔data
𝑝 }𝑝={1,…,𝑁}. We then determine the associated ROBs designated by {𝑷 data

𝑝 }𝑝={1,…,𝑁} (for example, via PGD). In order to provide
predictions for a geometry 𝜴new that may fall outside of the scope of treatment via the original ROBs, this work proposes the use of
GNN to provide a surrogate general ROB generator that provides 𝑷GNN , that is trained via supervised learning on {𝑷 data

𝑝 , }𝑝={1,…,𝑁}.
The solution 𝐔new of the full field is then obtained by a Galerkin projection on 𝑷GNN, similarly to a classical ROM approach. Note
that from this 𝐔new solution it is possible to enrich it with new PGD modes, calculated in the usual way if this is necessary to obtain
a satisfactory solution. A summary of the overall method, which we call GNN-PGD generator, is presented as a flow chart in Fig. 2.

Again, the ultimate aim is to enable consideration of much wider and more general ranges of geometries and topologies
(i.e., a ROB built on very heterogeneous databases). The algorithmic framework we propose here aims to overcome the constraints
mentioned in the previous subsection of traditional ROM approaches by exploiting the flexibility and inference speed of GNNs.
The manuscript is organized as follows: Section 2 describes the governing PDE of interest as well as the construction of (finite
element-based) reference solutions. Thus, Section 3 describes the proposed solver combining a GNN architecture with a classical
ROM algorithm. Finally, Section 4 presents a relevant proof-of-concept case study applying the new method to a problem of aircraft
seat design, including performance comparisons with more conventional autoregressive GNN approaches [58].

2. Governing equations

This section details the elastodynamics equations that govern our problem of interest (Section 2.1) as well as the finite element
method employed in this work for the construction of the full-order solutions

{

𝐔data
𝑝

}

𝑝={1,…,𝑁}
associated with non-parameterized

eometries
{

𝜴data
𝑝

}

𝑝={1,…,𝑁}
(Section 2.2). The latter is used for the supervised learning of the proposed methodology introduced
3

n Section 3.

Computer Methods in Applied Mechanics and Engineering 430 (2024) 117243V. Matray et al.
Fig. 1. Example illustrations of 𝑁 non-parameterized 𝜴𝑝 geometries with possibly different discretization sizes.

Fig. 2. A flowchart diagram introducing the steps of the proposed GNN-PGD methodology (detailed in Section 3).

2.1. Elastodynamics system

Let 𝒙 ∈ 𝜴 ⊂
{

𝜴data
𝑝

}

𝑝={1,…,𝑁}
, where 𝜴 ⊂ R𝑑 (𝑑 = 1, 2, 3). We denote the boundary of 𝜴 by 𝜕𝜴 which can be decomposed

into 𝜕𝜴 = 𝜕𝜴𝒖 ∪ 𝜕𝜴𝝈 , where 𝜕𝜴𝒖 (respectively 𝜕𝜴𝝈) represents the parts of the domain boundary where Dirichlet (respectively
Neumann) boundary conditions are imposed, with 𝜕𝜴𝒖 ∩𝜕𝜴𝝈 = ∅. With a time interval of interest given by 𝑰 = [0, 𝑇] for some final
time 𝑇 ∈ R+, we define the following vector spaces:

∙ (𝜴) = 1(𝜴) =
{

𝒖 ∈ 𝑳2(𝜴),∇𝒖 ∈ 𝑳2(𝜴)
}

∙ (𝜴; 𝒖) =
{

𝒖 ∈ 1(𝜴), 𝒖 ∣ = 𝒖
}

4

𝑑 𝜕𝜴𝒖 𝑑

Computer Methods in Applied Mechanics and Engineering 430 (2024) 117243V. Matray et al.
∙ (𝜴; 𝟎) = 1
0 (𝜴) =

{

𝒖 ∈ 1(𝜴), 𝒖 ∣𝜕𝜴𝒖
= 𝟎

}

∙ ℎ(𝜴) =
{

𝒖 ∈ (𝜴), 𝒖(𝒙) =
∑𝑁𝑥
𝑖=1 𝝋𝑖(𝒙)𝑢𝑖

}

∙ = 𝑳2(𝑰 ,R) with norm ‖ ∙ ‖𝑰 =
(

∫𝑰 ∙
2 d𝑡

)1∕2

The governing elastodynamics PDE is given by

𝜌�̈� = 𝐝𝐢𝐯𝝈 + 𝒇𝑑 , (𝒙, 𝑡) ∈ 𝜴⊗ , (1)

where 𝒇𝑑 = 𝒇𝑑 (𝒙, 𝑡) is an external volumetric force and where, for notational simplicity, we define �̈� = 𝜕2𝒖∕𝜕𝑡2 throughout this
paper. Dirichlet and Neumann boundary conditions on 𝜕𝜴 = 𝜕𝜴𝒖 ∪ 𝜕𝜴𝝈 are given by

{

𝒖 = 𝒖𝑑 , (𝒙, 𝑡) ∈ 𝜕𝜴𝒖 ⊗ (a)
𝝈 ⋅ 𝒏 = 𝑭𝑑 , (𝒙, 𝑡) ∈ 𝜕𝜴𝝈 ⊗ (b),

(2)

where 𝑭 𝑑 = 𝑭 𝑑 (𝒙, 𝑡) is an external force surface density and where 𝝈 is the stress tensor given by 𝝈 = 𝑲 ∶ 𝜺 for (𝒙, 𝑡) ∈ 𝜴⊗ (𝑲 is
the Hookean elastic operator and 𝜺 is the small deformation strain tensor). For all simulations in this contribution, the material is
assumed to be linear elastic, homogeneous, and isotropic.

2.2. Reference solution using the finite element method

This section provides a brief description of the construction of the reference solutions that are used to construct the reduced
databases that are used to train the GNN of Section 3.2.

2.2.1. Weak formulation and semi-discretization in space
As in conventional FEM [1–9], Dirichlet boundary conditions are imposed strongly: the unknown field 𝒖(𝒙, 𝑡) is represented at

each instant 𝑡 in the space of functions defined by 𝜴 that satisfy a priori the Dirichlet conditions of Eq. (2a). Hence, for the weak
formulation, we consider test functions 𝒗∗ ∈ (𝜴; 𝟎) (i.e., the space of kinematically admissible functions at zero), yielding a system
for the unknown 𝒖(𝒙, 𝑡) given by

⎧

⎪

⎨

⎪

⎩

m(𝒗∗, 𝒖) + k(𝒗∗, 𝒖) = f(𝒗∗; 𝑡), 𝒖 ∈ (𝜴; 𝒖𝑑),∀𝒗∗ ∈ (𝜴; 𝟎),
𝒖(𝒙, 0) = 𝒖0, (𝒙, 𝑡) ∈ 𝜴⊗ {0},
�̇�(𝒙, 0) = �̇�0, (𝒙, 𝑡) ∈ 𝜴⊗ {0},

(3)

where the scalar products m(⋅, ⋅) and k(⋅, ⋅) and the linear form f (⋅; 𝑡) are defined respectively by

⎧

⎪

⎨

⎪

⎩

m(𝒗∗, 𝒖) = ∫𝜴 𝜌�̈�𝒗
∗d𝛺,

k(𝒗∗, 𝒖) = ∫𝜴 𝝈 ∶ 𝜺 (𝒗∗) d𝜴,
f (𝒗∗; 𝑡) = ∫𝜴 𝒇𝑑𝒗∗d𝛺 + ∫𝜕𝜴𝝈

𝑭𝑑𝒗∗d𝑆.
(4)

The system given by (3) can be resolved by a Galerkin approach that searches for the solution in a subspace ℎ(𝜴) ⊂ (𝜴) of
finite dimension 𝑁𝑥 with a basis given by 𝜱 = [𝝋1,… ,𝝋𝑁𝑥]. Hence an approximate solution at each time 𝑡 to 𝒖 can be represented
as 𝒖ℎ = 𝜱𝐮(𝑡) where 𝐮(𝑡) ∈ R𝑁𝑥 are the corresponding coefficients in the approximation basis [𝝋1,… ,𝝋𝑁𝑥]. The semi-discretized
problem in space hence consists of solving the following system for the displacement vector 𝐮 ∶ → R𝑁𝑥 :

⎧

⎪

⎨

⎪

⎩

M�̈�(𝑡) +K𝐮(𝑡) = 𝐟 (𝑡),
𝐮(0) = 𝐮0,
�̇�(0) = 𝐯0,

(5)

where M = m(𝜱,𝜱) is the mass matrix, K = k(𝜱,𝜱) is the stiffness matrix, and 𝐟 (𝑡) = f(𝜱; 𝑡) is a generalized force. The vectors
𝐮0 ∈ R𝑁𝑥 and 𝐯0 ∈ R𝑁𝑥 are respective coefficients of 𝒖0 and �̇�0 in the approximation basis 𝜱 (where, again, �̇� = d𝐮∕ d𝑡 and
�̈� = d2𝐮∕ d𝑡2).

2.2.2. Time integration
The final ODEs in Eq. (5) can be integrated in time using a classical Newmark scheme [66] (a commonly-employed approach [31,

67]). Specifically, we utilize an implicit scheme with average acceleration, which leads to a conservative and stable algorithm. The
time interval of interest 𝑰 = [0, 𝑇] can be discretized into 𝑡𝑛 = (𝑛−1)𝛥𝑡, 𝑛 = 1,… , 𝑁𝑡 for 𝛥𝑡 = 𝑇 ∕(𝑁𝑡−1). Time is discretized uniformly
with a timestep 𝛥𝑡. The corresponding discretized space in time (of size 𝑁𝑡), is henceforth denoted 𝛥𝑡, and hence 𝐔 ∈ ℎ(𝜴)⊗ 𝛥𝑡
where 𝐔 denotes the discrete space–time solution field.

3. Methodology

This section details the methodology introduced in Fig. 2 of the introduction: the generation of the classical ROB sets
{𝑷 data

𝑝 }𝑝={1,…,𝑁} that are each associated with a non-parametric geometry
{

𝜴data
𝑝

}

𝑝={1,…,𝑁}
(Section 3.1); the proposed GNN-PGD

model trained on {𝑷 data
𝑝 } in order to construct/predict a ROB for an unknown geometry 𝜴test (Section 3.2); and the Galerkin

projection step employed to solve the corresponding time-dependent ODE given by Eq. (5) (Section 3.3). A summary of the overall
5

methodology is presented in Section 3.4.

Computer Methods in Applied Mechanics and Engineering 430 (2024) 117243V. Matray et al.

p

a

(

3.1. Database generation

PGD [18,30,31] is employed to compress the reference FEM solutions of Section 2.2 in the form of separated variable mode
roducts, i.e., each reduced-order basis contained in {𝑷 data

𝑝 }𝑝={1,…,𝑁} corresponds to PGD spatial modes. Modes produced by such a
decomposition have been shown to provide a better representation of a solution than the eigenmodes of the structure [27], especially
for non-linear problems [31].
In order to explain the principles of PGD we temporarily use a continuous formulation of the referential problem of Eq. (1). Given a
known solution 𝒖(𝒙, 𝑡) ∶ 𝜴×𝑰 → (𝜴)⊗, the method of separating space–time variables via PGD consists of seeking an appropriate
pproximation 𝒖𝑀 ∈ (𝜴)⊗ of 𝒖(𝒙, 𝑡) in the form given by [32]

𝒖(𝒙, 𝑡) ≈ 𝒖𝑀 (𝒙, 𝑡) =
𝑀
∑

𝑚=1
𝜦𝑚(𝒙)𝜆𝑚(𝑡), (6)

where 𝜦𝑚 ∈ (𝜴) is a spatial mode and 𝜆𝑚 ∈ is a temporal mode (their product, 𝜦𝑚𝜆𝑚, is often called a space–time mode [32]).
The total number of modes 𝑀 is called the rank of the approximation [32].

The construction of mode 𝑚 is typically obtained through a greedy algorithm that seeks a rank 1 approximation and minimizes
its error with respect to the approximation error of rank 𝑚 − 1 [18,32,68], i.e.,

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜦𝑚, 𝜆𝑚 = argmin
 (𝜴)×

⎛

⎜

⎜

⎜

⎝

‖

‖

‖

‖

‖

‖

‖

‖

𝒖(𝒙, 𝑡) − 𝒖𝑚−1(𝒙, 𝑡)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

approximation error of rank 𝑚 − 1

− 𝜦𝑚(𝒙)𝜆𝑚(𝑡)
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

new approximation of rank 1

‖

‖

‖

‖

‖

‖

‖

‖

2

𝑳𝟐

⎞

⎟

⎟

⎟

⎠

𝒖𝑚−1(𝒙, 𝑡) =
𝑚−1
∑

𝑘=1
𝜦𝑘(𝒙)𝜆𝑘(𝑡)

, (7)

where ‖𝑢‖𝑳2 =
(

∫ ∫𝜴 𝒖2(𝒙, 𝑡)d𝜴dt
)1∕2. Defining 𝜟𝒖 = 𝒖−𝒖𝑚−1 and exploiting stationarity, Eq. (7) can be solved as a coupled problem

given by [32]:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∀𝜆∗ ∈ ,∫𝐼
𝜆∗

(

∫𝜴
(𝜟𝒖 −𝜦𝑚𝜆𝑚)𝜦𝑚d𝜴

)

dt = 0 ⟺ 𝜆𝑚 =
∫𝜴 𝜟𝒖𝜦𝑚𝑑𝜴

∫𝜴 𝜦2
𝑚𝑑𝜴

= 𝑓𝑢(𝜦𝑚)

∀𝜦∗ ∈ (𝜴),∫𝜴
𝜦∗

(

∫𝐼
(𝜟𝒖 −𝜦𝑚𝜆𝑚)𝜆𝑚dt

)

d𝜴 = 0 ⟺ 𝜦𝑚 =
∫𝐼 𝜟𝒖𝜆𝑚dt
∫𝐼 𝜆2𝑚dt

= 𝑔𝑢(𝜆𝑚)
(8)

The solutions 𝜆𝑚,𝜦𝑚 exist and are unique up to a multiplicative factor. In order to ensure overall uniqueness of the solutions in (8),
the spatial mode is usually normalized [32]. A fixed-point algorithm, using stagnation of the temporal mode as a stopping criterion,
can be used to find such solutions with guaranteed convergence since seeking the best rank 𝑟 approximation with a given 𝜟𝒖 can
be shown to be equivalent to a generalized eigenvalue problem [68].

In practice, the final rank 𝑀 is selected based on an error 𝜖 that serves as the stopping criterion for the greedy algorithm, i.e.,
‖

‖

𝒖 − 𝒖𝑀‖

‖

2
𝑳2

‖𝒖‖2
𝑳𝟐

⩽ 𝜖. (9)

This ultimately enables automatic selection of the optimal number of modes for a given 𝜖, which can be computationally
advantageous [31,68] over SVD-based approaches (such as POD) that require calculation of the complete set of modes of the original
field 𝒖 [67] in order to form an approximation or basis.

In the discrete sense (where the FEM-based reference solution is given by 𝐔 ∈ ℎ(𝜴)⊗𝛥𝑡), one seeks the separated basis above
in the corresponding finite-dimensional space, i.e., ∀𝑚,𝜦𝑚 ∈ ℎ(𝜴),𝝀𝑚 ∈ 𝛥𝑡, and hence the reduced-order approximation is given
by

𝐔 ≃ 𝐔𝑀 =
𝑀
∑

𝑚=1
𝜦𝑚 ⊗ 𝝀𝑚. (10)

Although 𝑁𝑥×𝑁𝑡 real numbers are needed to store the full field 𝐔, the representation for 𝐔𝑀 in Eq. (10) requires only 𝑀×(𝑁𝑥+𝑁𝑡)
real numbers for 𝑀 ≪ 𝑁𝑥.

Hence for each element of the set of arbitrary geometries
{

𝜴data
𝑝

}

𝑝={1,…,𝑁}
, the associated ROB (via a PGD on their corresponding

reference solutions as described above) can be given by

𝑷 data
𝑝 = Span

(

{

𝜦data
𝑝,𝑚

}

𝑚={1,…,𝑀}

)

, (11)

where ∙data denotes the labeled data for a training database. It is important to note that the ROBs in
{

𝑷 data
𝑝

}

𝑝={1,…,𝑁}
are obtained by

different and independent PGD decompositions and therefore have different spatial discretizations designated by 𝑁𝑝
𝑥 . The property

that allows us to manipulate meshes with different discretizations is specific to GNNs and is detailed in the next subsection. The
set of each ROB, {𝑷 data

𝑝 , }𝑝={1,…,𝑁}, constitutes the complete database for the supervised learning employed in the GNN component
detailed in the following subsection) of the GNN-PGD generator introduced in this work.
6

Computer Methods in Applied Mechanics and Engineering 430 (2024) 117243V. Matray et al.

a

w

Fig. 3. Illustration of a message passing layer on a three-stage graph. Neural networks symbolize functions whose parameters can be adjusted by learning (here
pplied to node three of the example graph of 𝑛 = 7 nodes).

3.2. Deep learning on graphs: Graph Neural Networks (GNNs)

The following presents an overview of GNNs and additionally details the implementation of our proposed architecture. As a
reminder, the aim of the GNN-PGD generator is to propose a ROB to describe the solution field of a new, arbitrary, geometry
𝜴test. In order to accomplish this, the GNN-PGD generator is trained on the database ({𝑷 data

𝑝 }𝑝={1,…,𝑁}) presented in the previous
subsection. Fig. 3 provides an illustrative summary of the main steps of a GNN.

3.2.1. Overview of GNN
The formalism of graph neural networks (GNNs) offers a powerful approach for data processing of numerical problems involving

meshes. A mesh can be interpreted as a graph comprising nodes 𝑖 for 𝑖 = 1,… , 𝑛 linked by edges. These nodes and edges contain
features 𝒙𝑖 and 𝒆𝑖𝑗 respectively. The graph also contains mesh connectivity information in the form of an adjacency matrix 𝑨 (which
is simply a reformulation of the connectivity table deriving from an FEM problem). As an example, the adjacency matrix of the graph
in Fig. 3 is given by

𝑨 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 1 0 0 0 0 0
1 0 1 1 0 0 0
0 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 0 1 0 1 1
0 0 0 0 1 0 0
0 0 0 0 1 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠𝑛×𝑛

In this work, we consider undirected graphs, which result in symmetrical 𝑨 adjacency matrices. Moreover, we do not add any
self-loops to the nodes [69], which enables a diagonal of zeros in 𝑨.

GNNs are recognized as a generalization of Convolutional Neural Networks (CNNs) applied to graph-structured data. Tradition-
ally, CNNs have been used for Cartesian grid-structured data such as images [70]. This generalization enables GNNs to detect and
understand complex structures in data by applying convolution-like operations, making them extremely effective for, e.g., regression
tasks.

Our proposed architecture uses the Message-Passing GNN (MP-GNN) formalism [69], which is a mathematical formulation local
to the node level. In MP-GNN models, the latent feature vector 𝒉𝑖 of a given node 𝑖 is derived by employing a permutation-invariant
aggregator function ⨁, such as a sum or a mean, over the feature vectors of its neighbors (𝑖). Additionally, each neighbor’s feature
vector may undergo transformation by a function 𝜓 . Subsequently, ⨁ may undergo further transformation by another function 𝜙.
This sequence of operations constitutes a GNN layer [69]. Formally, the equation governing the feature vector 𝒉(𝑙+1)𝑖 of a node 𝑖 in
the subsequent GNN layer 𝓁 + 1 can be expressed as

𝒉(𝓁+1)𝑖 = 𝜙
⎛

⎜

⎜

⎝

𝒉𝓁𝑖 ,
⨁

𝑗∈ (𝑖)
𝜓
(

𝒉𝓁𝑖 ,𝒉
𝓁
𝑗

)
⎞

⎟

⎟

⎠

, (12)

hich is illustrated in Fig. 3.
Each layer 𝓁 is thus defined by the three functions (

⨁

, 𝜓, 𝜙). The message transmission function 𝜓 and the update function 𝜙
are learnable and enable us to exhibit the important graph characteristics required for learning. The aggregation function ⨁ is not
learnable and must be permutation invariant. This latter characteristic ensures that the order and number of neighboring nodes
7

Computer Methods in Applied Mechanics and Engineering 430 (2024) 117243V. Matray et al.

c

s

3

S
s
A

𝑖
e
c

n
n
p
t
(
w

i
l
i
t
a
d
t

Fig. 4. Illustration of a message passing layer on a three-stage graph applied to another discrete mesh of different size and dimension. The steps for the
onvolution are identical to that of the example mesh in Fig. 3. Only the Message Transmission step is different since the connectivity of node 3 of this particular

graph is different from that of Fig. 3. The aggregate function produces an output state of the same size as that of the example in Fig. 3.

has no impact on the dimension of the aggregation result. This flexibility enables GNN to handle graphs of varying sizes, making
them a powerful tool for regression applications on graph-structured data, and therefore potentially on physical problems requiring
meshing of any arbitrary size. In order to illustrate this property, we have represented the same convolution operation in Fig. 4 as
that in Fig. 3, but on a node of a completely different mesh with a different discretization. The only condition required for us to
invoke such a convolution is that the dimension of the characteristics at a node be identical between the two graphs, which is the
case here where each node’s characteristics are modeled by a column of dimension 3 (representing the feature inputs). Indeed, this
enables handling meshes of varying sizes and dimensions since it is a node-by-node representation. For further details, the reader
is referred to [71]. Another reason for using GNNs, beyond the fact that they can handle very heterogeneous meshes, is their
inference time complexity, which is linear with the number of nodes, i.e., (𝑛) [71]. This property is particularly advantageous for
their use in the context of building a reduced model since they are very competitive with conventional matrix-based methods that
have, at best, similar computational complexity (using sparse iterative solvers, although such approaches require carefully-chosen,
often problem-dependent, preconditioners [72]) and that have, at worst, (𝑛2) (for a sparse system [73]) or (𝑛3) (for a dense
ystem [74]).

.2.2. GNN-PGD implementation and training strategy
The most commonly-found approach for physical problems [57,59–61], originally proposed in [58], is known as MeshGraphNet.

uch a method employs an encode-process-decode architecture of [56], which consists of several multilayer perceptrons (MLPs) [75]
hared between all nodes of the graph. This architecture is invoked to design our GNN-PGD algorithm, which is summarized in
lgorithm 2 (described with a local perspective, at the scale of node 𝑖, for clarity, an detailed in this section). In addition to the

connectivity matrix 𝑨 of the graph, the input to the GNN-PGD procedure contains 𝑘 characteristics (to be considered) of each mode
, i.e., 𝒙𝑖 ∈ R𝑘 (forming a row of a matrix we call 𝑿). These characteristics are specific to the 𝜴 geometry and can include, for
xample, the position of the nodes or the type of boundary conditions to which they are subjected (Dirichlet or Neumann). This is
larified with further details that are presented in Section 4.

For a general output 𝑷 = [𝒑1,… ,𝒑𝑛]⊤, the goal is to predict an image of the ROB associated with the geometry 𝜴, i.e., at each
ode 𝑖, we predict the output 𝒑𝑖 ∈ R𝑔 . Since the ROB is associated with 𝑀 spatial modes, and since GNN provides results at the
ode level, each node has 𝑔 = 𝑀 × 𝑑 features (with 𝑑 = 1, 2, 3, the dimension of the problem). In other words, 𝒑𝑖 contains the
rojections of the ROB 𝑷 along the different 𝑑 dimensions of the 𝜴 geometry. In the training phase, this output 𝑷 is compared to
he given labeled training data

{

𝑷 data
𝑝

}

𝑝={1,…,𝑁}
in order to adjust the weights of the GNN-PGD generator. In the inference phase

online phase), we designate this output by 𝑷 new
GNN. A summary of the notation and nomenclature for the GNN-PGD proposed in this

ork is given in Table 1.
The three steps in Algorithm 2 are as follows. In the first step (Encode), an MLP is utilized to transform the input quantities 𝒙𝑖

nto a latent space of dimension 𝐻 . In this work, we employ a two-layer MLP with SiLU activation functions [76] and a normalization
ayer on the output [77]. The second step (Process) employs the GNN layers. Details of the MLP architecture used here are given
n Table 2. In addition to the information provided by previous layers, the corresponding message functions 𝜓 (𝑙) take into account
he non-transformed physical quantities 𝒙𝑖 (known as skip-connections, as proposed in DenseNet [78]). After each convolution,
n instance normalization layer [79] is applied in order to improve convergence and stability of the learning phase without a
ependence on the batch size used during learning [77] (unlike batch normalization layers [80]). Our proposed method employs
8

he same input and output dimensions (of size 𝐻) during this process phase, thanks to our choice of MLP architecture and the use

Computer Methods in Applied Mechanics and Engineering 430 (2024) 117243V. Matray et al.
Algorithm 2: GNN-PGD description
GNN-PGD (𝑿,𝑨)

inputs : 𝒙𝑖 input feature vector of node 𝑖
𝑨 graph adjacency matrix
output: 𝒑𝑖 output feature vector of node 𝑖
Encode

𝒉0𝑖 = MLPnode_encoder(𝒙𝑖)
Process

for 0 ⩽ 𝓁 ⩽ 𝐿 − 1 do

𝒉(𝓁+1)𝑖 = 𝜙𝓁

⎛

⎜

⎜

⎜

⎜

⎝

𝒉𝓁𝑖 ,
⨁

𝑗∈ (𝑖) 𝜓
𝓁

⎛

⎜

⎜

⎜

⎜

⎝

𝒉𝓁𝑖 ,𝒉
𝓁
𝑗 , 𝒙𝑖 − 𝒙𝑗

⏟⏟⏟
skip-connections

⎞

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎠

Instance Normalization of 𝒉(𝓁+1)𝑖

Decode
𝒑𝑖 = MLPnode_decoder(𝒉𝐿𝑖)

return 𝒑𝑖;

Table 1
Nomenclature of symbols used to describe the proposed GNN-PGD algorithm.

Structure of graph inputs

𝐺 = (𝑉 ,𝐸) A graph; 𝑉 and 𝐸 are sets of vertices and edges,
𝑛, 𝑚 Numbers of vertices and edges in 𝐺; |𝑉 | = 𝑛, |𝐸| = 𝑚,
 (𝑖) 1-hop neighborhood of 𝑖,
𝑨 ∈ R𝑛×𝑛 The graph adjacency matrices.

Structure of GNN computations

𝐿, The number of GNN layers,
𝑘, The number of input node features,
𝑔, The number of output node features,
𝑿 ∈ R𝑛×𝑘, Input node features matrix,
𝑷 ∈ R𝑛×𝑔 , Outputs node features matrix,
𝒙𝑖 ,𝒑𝑖 ,𝒉𝓁

𝑖 , Input, output, and hidden feature vector of a node 𝑖 (layer 𝓁).

Table 2
Description of the architectures of the various MLPs employed to build the GNN-PGD algorithm.

Function Inputs size Outputs size Details Learnable?

MLPnode_encoder(∙) k H linear ; SiLU ; linear ; SiLU ; LayerNorm

𝜓𝓁 (∙) H H linear ; SiLU ; linear ; SiLU
⨁

(∙) H H mean function

𝜙𝓁 (∙) H H linear ; SiLU ; linear ; SiLU

MLPdecoder(∙) H q linear ; SiLU ; linear

of a permutation-invariant aggregation function. The final third step (Decode) in Algorithm 2 transforms the process output from
the latent dimension 𝐻 to the physical output dimension 𝑔. In order to achieve this, we use another two-layer MLP (with SiLU as
the activation function for the first layer) and a linear activation function for the output layer. The architectures described above
are summarized in Table 2.

For each batch 𝑏, the loss function employed in this work for the supervised training of the GNNs is a Mean Squared Error (MSE)
function that is weighted by hyperparameters

{

𝜂𝑚
}

𝑚={1,…,𝑀} (each associated with a spatial mode that comprises the ROB 𝑷) and
is given by

𝑏 =
𝑀
∑

𝜂𝑚MSE
(

𝜦𝑏,𝑚 −𝜦data
𝑏,𝑚

)

, (13)
9

𝑚=1

Computer Methods in Applied Mechanics and Engineering 430 (2024) 117243V. Matray et al.
Table 3
Hyperparameters that are optimized for the
GNN-PGD learning using a Design of Ex-
periments (DOE) procedure known as Latin
Hypercube Sampling (LHS) [84].

Hyperparameters

𝐻 dimension of the latent space,
𝐿 numbers of GNN layers,
𝜂𝑚 weight of learned modes,
𝛼 the learning rate,
𝛾 the weight decay,
𝑏𝑠 the batch size.

where 𝜦𝑏,𝑚 is the 𝑚th mode associated with the ROB 𝑷 of batch 𝑏, and where 𝜦data
𝑏,𝑚 is the 𝑚th mode associated with the data 𝑷 data

𝑏 .
Hence the total loss is simply given by

 =
𝑁batch
∑

𝑏=1
𝑏. (14)

Using this loss function, optimization for training proceeds with a stochastic gradient descent algorithm AdamW [81], which
incorporates 𝑳2 regularization on the GNN weights to prevent overfitting. This algorithm is controlled by two hyperparameters:
the learning rate 𝛼 and the ’’weight decay’’ 𝛾 (for regularization). A noise percentage of 5% of the average value of 𝑿 is added to
the inputs of the GNN-PGD in order to improve the regularization of the network. [82].

A generalized summary of the GNN-PGD hyperparameters employed in this work is provided in Table 3. These hyperparameters
can significantly influence the quality of learning and, consequently, the performance of the final trained GNN-PGD model. In
order to optimize these hyperparameters—typically an exploratory and experimental task [45,83]—we propose the use of a specific
method based on a systematic design of experiments (DOE) that is characterized by two types of variables: the maximum number of
models to be tested (100 in all subsequent results of this paper), and the intervals of values that the aforementioned hyperparameters
are permitted to take in each model (discrete or continuous). The choice of interval bounds for the various hyperparameters is
essentially guided by similar work on GNNs from which we have drawn inspiration [54,58,60,62]. This choice favors sparse networks
and therefore intervals with low hyperparameter bounds. Only the number of messages passing layers 𝐿 are chosen according to
considerations of the meshes in our database. Indeed, our search for the hyperparameter 𝐿 has been consistent with the average
diameter of the graphs in the database, i.e., the greatest possible distance that can exist between two vertices in a graph. The
diameter thus corresponds to the maximum message passing layers necessary in order to transmit information between two extreme
nodes of the graph. The 100 models are generated using the DOE method called maximum projection Latin Hypercube Sampling
(LHS), which enables an efficient exploration of all the different possible model combinations [84]. The general idea is to train
these 100 models of different values of hyperparameters for a reasonable number of epochs and then select the most relevant model
based on a common metric. The models identified as most relevant or accurate are then re-trained for a larger number of epochs.

At the end of the offline phase (see Fig. 2) described in this section, a GNN-PGD generator is obtained, which constructs a ROB
𝑷GNN = GNN−PGD(𝜴new) for a new (arbitrary) geometry 𝜴new. As described in the following section, this ROB can then be used to
solve the associated ROM for the complete problem.

3.3. Galerkin projection on the trained ROB

To complete the solver, Eq. (5) for 𝑛 × 𝑑 degrees-of-freedom is solved in the form of a product of functions with separated
variables, similar to common methods of projection onto reduced bases [17,19,27], i.e.,

𝐮new(𝑡) = 𝑷 new
GNN𝝀(𝑡), (15)

where 𝑷 new
GNN is the ROB in space obtained by GNN as described in the previous section. In order to obtain the corresponding temporal

coefficients of the general solution given by Eq. (15), we utilize a standard Galerkin-type projection approach [27] which results in
an ODE-system given by

𝑷 new
GNN

⊤ ⋅M 𝑷 new
GNN�̈�(𝑡)
⏟⏞⏞⏟⏞⏞⏟
�̈�new(𝑡)

+𝑷 new
GNN

⊤ ⋅K 𝑷 new
GNN𝝀(𝑡)
⏟⏞⏞⏟⏞⏞⏟
𝐮new(𝑡)

= 𝑷 new
GNN

⊤ ⋅ 𝐟 (𝑡), (16)

which is a system of 𝑀 ODEs (for each spatial mode 𝑖 = 1,… ,𝑀) for the corresponding 𝑀 temporal unknowns 𝝀(𝑡) =
(𝜆1(𝑡),… , 𝜆𝑀 (𝑡))⊤. The cost of solving this linear system is very low, since the size of the operators to be inverted is 𝑀 ≪ 𝑛 × 𝑑.
Once the unknown 𝜆𝑖(𝑡) are obtained from solving Eq. (16), the complete space–time solution can be reconstructed via Eq. (15) (or,
more explicitly, Eq. (6)).

For noise that may result in the 𝑷 new
GNN prediction, what follows is a proposed procedure describing how one can account for such

errors. Indeed, one can reasonably expect a prediction of the GNN-PGD generator that is not identical to the reference 𝑷 . In the next
subsection, we present a noise-reducing strategy and apply it to a simulated example of artificial Gaussian noise to demonstrate its
efficacy.
10

Computer Methods in Applied Mechanics and Engineering 430 (2024) 117243V. Matray et al.

q
a

T
f

w
b
I
d
c
t

Fig. 5. Effect of the presence of noise in the ROB on the resolution of the projected equation. Three modes have been used to generate the ROB.

3.3.1. Noise effect and resolution strategy
In order to investigate and ultimately mitigate the impact that noise, which may be present in spatial modes, can have on the

uality of the projection and resolution of (16), we consider the ‘‘true’’ (or ‘‘exact’’) modes of the PGD decomposition (i.e., those that
re constructed for the database given by

{

𝜦data
𝑚

}

𝑚={1,…,𝑀}). Gaussian noise of different levels is applied to all degrees-of-freedom
of the structure, and the intensity is adjusted by a percentage of the maximum value of the modes amplitude. The corresponding
‘‘noisy’’ modes are denoted

{

𝜦noisy
𝑚

}

𝑚={1,…,𝑀}
and constitute a new reduced basis given by

𝑷 noisy = Span
(

{

𝜦noisy
𝑚

}

𝑚={1,…,𝑀}

)

. (17)

Fig. 5 presents the angle formed between the two vector spaces 𝑷 and 𝑷 noisy as a function of percentage of artificial noise added
for an example ROB solution comprised of three modes. If 𝑷 and 𝑷 noisy are column vectors of unit length, this unique angle is the
same as arccos(|𝑷 ⊤𝑷 noisy|) such that if the angle between the two subspaces is small, the two spaces are nearly linearly dependent.
It can be observed that for low levels of noise, these two vector spaces are very close. However, for noise levels close to 100%, these
two vector spaces are almost orthogonal.

Fig. 5 additionally presents the evolution of the 𝑳2 error in the field 𝐔new (relative to the reference solution 𝐔ex) as a function
of the noise added to 𝑷 noisy, defined by the expression

error =
‖𝐔ex − 𝐔new

‖
‖𝐔ex‖

,% ‖ ∙ ‖ =
(

∫𝛺×
∙2 d𝛺d𝑡

)1∕2
.

wo cases are presented: a canonical case and a filtered case. The former corresponds to the evolution of the error solving the original
orm of the ODE system (given by Eq. (16)), i.e.,

𝑷 ⊤
noisy ⋅M 𝑷 noisy�̈�(𝑡)

⏟⏞⏞⏟⏞⏞⏟
�̈�noisy(𝑡)

+𝑷 ⊤
noisy ⋅K 𝑷 noisy𝝀(𝑡)

⏟⏞⏞⏟⏞⏞⏟
𝐮noisy(𝑡)

= 𝑷 ⊤
noisy ⋅ 𝐟 (𝑡). (18)

The filtered curve corresponds to the error when solving a preconditioned formulation of (16) which, in general, is given by

𝑷 ⊤
noisy ⋅ SM 𝑷 noisy�̈�(𝑡)

⏟⏞⏞⏟⏞⏞⏟
�̈�noisy(𝑡)

+𝑷 ⊤
noisy ⋅ SK 𝑷 noisy𝝀(𝑡)

⏟⏞⏞⏟⏞⏞⏟
𝐮noisy(𝑡)

= 𝑷 ⊤
noisy ⋅ S𝐟 (𝑡), (19)

here S ∈ R(𝑛×𝑑)2 can be interpreted as a filter or a preconditioner. Here, a preconditioner of S = K−1 has been utilized, inspired
y [85], where a preconditioned norm with operator S = K−1 is proposed (referred to as the reconditioned equilibrium gap (REG)).
n [85], the concept of ‘‘spectral sensitivity’’ is introduced in order to quantify the sensitivity of different norms, constructed with
ifferent operators (such as the stiffness operator K), towards the presence of noise from displacement field measurements (the
ontext of that study is the identification of nonlinear behavior laws from experimental measurements by image correlation). Indeed,
11

he K operator has a high spectral sensitivity [85], reflecting its high sensitivity to noise, unlike the M operator. Such sensitivity can

Computer Methods in Applied Mechanics and Engineering 430 (2024) 117243V. Matray et al.

t
a
4
a
t
f
l
T

be attributed to the differential nature of K (see Eqs. (4) and (5)). On the other hand, it is the integrating nature of S that can correct
the undesirable effects of such noise. Indeed, if we accept the derivative nature of K (the product of derivatives of shape functions
in Eq. (4)), the inverse operation transforms K−1 into an integrating operator. Another way to interpret this is to consider it from
a frequency space point-of-view. Choices other than S = K−1 can accomplish the same objective, as long as they contain the same
regularization properties of K−1. For the preliminary (linear) solver proposed here, we employ S = K−1 as a proof-of-concept: despite
the prohibitive cost of calculating K−1 in a linear elastodynamics context, such cost remains negligible for nonlinear problems [85]
(which is the long-term objective of the methodology presented in this paper).

Fig. 5 illustrates the significant improvement that can be attained by using the filtering/preconditioning strategy (Eq. (19)) versus
solving the original canonical ODE system (Eq. (18)). Indeed, for all levels of noise in 𝑷noisy, the former results in significantly lower
error; this implies that solving the unfiltered system of Eq. (18) is very sensitive to the noise present in 𝑷noisy and may possibly lead
to a very polluted ROB that has poor approximation capabilities of the original FEM system of interest. For all numerical experiments
of Section 4, the preconditioned system given by Eq. (19) is employed to obtain the temporal coefficients 𝜆𝑖(𝑡).

3.4. Summary of our methodology

Algorithm 3 presents a summary of the overall methodology (additionally summarized in the introductory Fig. 2).
Algorithm 3: Methodology summary

Offline phase
(

{

𝜴data
𝑝 ,𝐔data

𝑝

}

𝑝={1,…,𝑁}

)

inputs :
{

𝜴data
𝑝 ,𝐔data

𝑝

}

𝑝={1,…,𝑁}
, known geometries and associated high-fidelity solution fields,

output: GNN−PGDgenerator: trained GNN model,
Database compression

for 0 ⩽ 𝑝 ⩽ 𝑁 do
creation of the ROB 𝑷 data

𝑝 from the PGD compression of the high fidelity field 𝐔data
𝑝 ,

return
{

𝑷 data
𝑝

}

𝑝={1,…,𝑁}

GNN-PGD training
Supervised learning of GNN-PGD on

{

𝑷 data
𝑝

}

𝑝={1,…,𝑁}
return GNN-PGD generator

return GNN-PGD generator

Online phase
(

𝜴new,M,K, 𝐟 , S
)

inputs : 𝜴new: new geometry (unknown to GNN-PGD generator and not parameterized), M,K,𝑭 ,S: and its associated
operators

output: 𝐔new: full displacement field solution
GNN-PGD inference

𝑷 new
GNN = GNN−PGD(𝜴new): ROB proposal by GNN inference,

return 𝑷 new
GNN

Galerkin projection
𝑷 new

GNN
⊤ ⋅ SM𝑷 new

GNN�̈�(𝑡) + 𝑷 new
GNN

⊤ ⋅ SK𝑷 new
GNN𝝀(𝑡) = 𝑷 new

GNN
⊤ ⋅ S𝐟 (𝑡)

smart Galerkin projection on 𝑷 new
GNN, and resolution of the system ODE,

return 𝝀(𝑡)
𝐮(𝑡) = 𝑷 new

GNN𝝀(𝑡): full displacement field
return 𝐔new

4. Performance/case study: simulating aircraft seat response to crash loads

In order to assess the performance of our proposed solver, we consider a case study relevant to structural design, in particular
owards the problem of presizing/predimensioning of aircraft parts subjected to sudden loadings. The aircraft industry uses the
cceleration (or deceleration) loading profile depicted in Fig. 6 in order to assess the strength of aircraft seats according to regulation
9 CFR Part 572, Subpart B [11]. This loading simulates the deceleration experienced by an aircraft in the event of a collision with
n obstacle. The sizing criteria focus on both the mechanical integrity of the seat components as well as the physical safety of
he passenger. In the proof-of-concept methodology presented here, passenger modeling is not taken into account, and the analysis
ocuses solely on structural integrity. The acceleration load illustrated in Fig. 6 is applied as an inertial force at the seat structure
evel and also as a loading force at the seating surface (equivalent to the deceleration force experienced by a 90-kg passenger).
hese two contributions are reflected in the loading term 𝐟 (𝑡) in the right-hand-side of Eq. (5).
12

Computer Methods in Applied Mechanics and Engineering 430 (2024) 117243V. Matray et al.
Fig. 6. Loading of interest.

Fig. 7. Database generation. The different spatial discretizations of the geometries {𝜴data
𝑝 , }𝑝={1,…,𝑁=500} are denoted by 𝑁𝑝

𝑥 (the total number of degrees-of-freedom
for the 2D meshes).

4.1. Database generation

A database is generated using finite element simulations for the training of the GNN-PGD. In order to accommodate the common
restrictions of industrial applications, we use a reasonably small number of geometries: 500, similarly to [45]. Out of these 500
airplane seats, 80% (𝑁 = 400 seats) are chosen to constitute the training set (i.e., the seats seen by the GNN-PGD for adjusting
parameter weights through learning), i.e., {𝜴data

𝑝 , }𝑝={1,…,𝑁=400} different geometries in the training database. Another 10% (50 seats)
of the original 500-seat database is used for the validation set, representing seats unknown to the network but used to fine-tune
the learning process in order to prevent overfitting by employing early-stopping criteria [86]. The remaining 10% (50 seats) make
up the test set on which the GNN performance is evaluated after training, representing new 𝜴new geometries that are completely
unknown to the GNN-PGD model (see Algorithm 3). We note that the original high-fidelity space–time fields

{

𝐔data
𝑝

}

𝑝={1,…,500}
,

whose solutions are facilitated by FEM, have very similar separability properties. Indeed, by setting a stopping criterion of the PGD
mode generation algorithm to 𝜀 = 10−3 in Eq. (9), we obtain a decomposition rank of 𝑀 = 3 for all set of seats, and hence train
with and keep only 𝑀 = 3 modes in the ROB. A summary of the database generation procedure is provided in Fig. 7.

For the proof-of-concept presented here, we utilize a 2D modeling approach with the assumption of plane deformations (extension
of the overall methodology to three-dimensions is straightforward). The material considered is Aluminum 6082-T6, commonly used
in the aerospace industry [11], and is further assumed to be homogeneous and linear elastic isotropic. In order to generate the
database from which the seats in Fig. 8 are extracted, we employ five geometric parameters: the radii of each of the curved holes
and the (𝑥, 𝑦) position of the interior hole’s center. Although these parameters are crucial for database generation, we recall that the
solver proposed here is for non-parametric geometries, and hence are not considered beyond database generation (similarly to other
approaches [44,45]). Indeed, such parameters are specifically unknown to the GNN-PGD model for the motivations of this paper
(cf. Section 1). The meshes are generated by the open-source software package GMSH [87] with T3 linear elements. In our context,
we assume that the input meshes possess good quality in terms of element aspect ratios and node densities, which are adapted to
the regularity of the fields of interest. The temporal scheme utilized to solve problem (5) is the Newmark scheme [66], particularly
the implicit formulation with average acceleration. A temporal convergence study results in a choice of an optimal number of time
steps corresponding to 𝑁𝑡 = 1000. The finite element solver for generating the high-fidelity database (described in Sections 2.2.1
and 2.2.2) is self-implemented in an in-house MATLAB code.

4.1.1. Database characteristics
Fig. 9 presents database statistics in the form of histograms. It can be seen that the number of degrees-of-freedom varies

considerably from seat to seat, with a total database standard deviation of 58 degrees-of-freedom and an amplitude of 275 degrees-
of-freedom between the two extrema. Recall that these differences in degrees-of-freedom render conventional ROM approaches as
impossible to apply on heterogeneous databases such as the one considered here.
13

Computer Methods in Applied Mechanics and Engineering 430 (2024) 117243V. Matray et al.
Fig. 8. Example of three seats from the database to illustrate the fixed nodes and seating surface.

Fig. 9. Statistical analysis of the database used for training, validation, and testing.

The middle and right panels of Fig. 9 also highlight the diversity in the overall mechanical behavior of the seats based on
displacement and maximum von Mises stress, respectively. Furthermore, the distribution of seats is clearly non-Gaussian. This
variability poses a significant challenge for learning and understanding the underlying patterns in seat mechanics.

4.2. GNN-PGD implementation details and parameters

This section details the specific parameters employed in this case study for the GNN-PGD model introduced in Section 3.2.2. All
algorithms were implemented with the pytorch library [88] using pytorch-geometric [89]. The input matrix 𝑿 ∈ R𝑛×𝑘 (Table 1) is
composed of information on the coordinates of the node (two components, 𝑥 and 𝑦), the type of node (free or fixed, as a boolean),
the maximum-in-time of the generalized force 𝐟 (𝑡) at node 𝑖 (two spatial components, 𝑓𝑥 and 𝑓𝑦). Hence at each node, there are
𝑘 = 5 elements of input. Recall that the generic output of the GNN-PGD generator is 𝑷 ∈ R𝑛×𝑔 ; hence the projection of the 𝑀 = 3
PGD modes here associated with each seat yields 𝑔 = 3 × 2 = 6.

For improving learning performance of our GNN-PGD method, the input data is also pre-processed as follows. The input quantities
(𝑿) are normalized according to the mean and standard deviation statistics of the training set, and the output quantities (𝑷) are
standardized according to the maximum and minimum of the training set.

The hyperparameters determined for these test cases are produced by a DOE (as described in Section 3.2.2) for 100 different
models (i.e., with different hyperparameters on each) over 700 epochs. The Table 4 shows the resulting hyperparameters associated
with the best model, which is then utilized for training over a larger number of epochs until an early learning stopping criterion is
reached. The final GNN-PGD generator has a number of 65 022 learnable parameters.
14

Computer Methods in Applied Mechanics and Engineering 430 (2024) 117243V. Matray et al.
Fig. 10. Evolution of the loss function of the GNN-PGD generator associated with the hyperparameters of Table 4. Every 10 epochs, the loss function is evaluated
on the validation database (i.e., the subset not used for training) in order to check that the model is capable of generalizing without over-adjusting. This validation
calculation also serves as an early stopping criterion for training.

Table 4
The final hyperparameters employed for the results of this section.
Hyperparameters 𝐻 𝐿 𝜂1 𝜂2 𝜂3 𝛼 𝛾

Values 24 15 10 1 100 3 × 10−3 5 × 10−3

Fig. 10 presents the corresponding evolution of the loss as a function of epochs for the corresponding GNN-PGD model during
the training phase (see Eq. (14)). We note that the GNN-PGD model updates its parameters as many times as there are batches in
the training set (400 in our case). The training has been carried out on 4 Nvidia V100 GPUs and lasted 4 h and 25 min (including
hyperparameter optimization).

4.3. GNN-PGD learning results

We analyze the results of the GNN-PGD training by evaluating its performance on the 50 seats in the test set
{

𝜴test
𝑝

}

𝑝={1,…,50}
,

i.e., seats unknown to and unseen by the GNN-PGD. The GNN-PGD’s objective is to construct the
{

𝑷 test
𝑝

}

𝑝={1,…,50}
ROBs of the 50 as

best as it can. As described earlier, these ROBs are composed of 𝑀 = 3 PGD spatial modes (to be predicted by the GNN-PGD). We
quantify the error between the GNN-PGD’s inference prediction

{

𝑷 GNN
𝑝

}

𝑝={1,…,50}
and the labeled ROBs

{

𝑷 test
𝑝

}

𝑝={1,…,50}
obtained

from the reference field decomposition. The metric used is the normalized root-mean-square error (RMSE) for each of the 𝑀 = 3
modes predicted, and the results are presented in Fig. 11.

Results demonstrate the ability of GNN-PGD to predict with good accuracy the ROBs associated with the unknown (test) seat
geometries. Indeed, errors on predicted modes are small: less than 5% for Mode 1, less than 10% Mode 2, and less than 15% for
Mode 3. We note that, as evidenced in Fig. 11, the errors increase on average with the rank of the predicted mode. However, a
mode’s contribution to the complete solution decreases with its rank, hence the objective is to capture the very first (and most
significantly contributing) modes most accurately. An analysis of the seats that lie on the higher end of the error plots yields no
discernible pattern to the particular geometries that have slightly higher errors. A visual comparison with the corresponding true
reference modes (‘‘Ground Truth’’), including a plot of the difference, of the first, second and third spatial mode solutions predicted
by GNN-PGD are provided in Figs. 12, 13, and 14, respectively. These figures demonstrate the ability of the proposed GNN-PGD
solver to very accurately capture both global and local behavior found in the very different modes. Indeed, the local shape of a spatial
mode depends on the geometry considered, and GNN-PGD seems able to capture these differences. Fig. 15 additionally presents a
similar comparison for Mode 3 on a different geometry than Fig. 14, further illustrating the large variations that can be found in the
15

Computer Methods in Applied Mechanics and Engineering 430 (2024) 117243V. Matray et al.
Fig. 11. Results on the modes learned by the GNN-PGD. Errors are calculated between the GNN-PGD spatial modes of displacement and the corresponding
labeled PGD spatial modes in the database.

Fig. 12. Example of the first mode predicted by GNN-PGD for seat 1 from the test database, together with the ground truth and error.

Fig. 13. Example of the second mode predicted by GNN-PGD for seat 10 from the test database, together with the ground truth and error.
16

Computer Methods in Applied Mechanics and Engineering 430 (2024) 117243V. Matray et al.
Fig. 14. Example of the third mode predicted by GNN-PGD for seat 23 from the test database, together with the ground truth and error.

Fig. 15. Example of the third mode predicted by GNN-PGD for seat 44 from the test database, together with the ground truth and error.

various modes between geometries, and the ability of GNN-PGD to accurately capture and predict such disparate behavior between
different seats. The results in general indicate the ability of GNN-PGD to predict well a ROB for a new geometry, which can then
be used to obtain the complete associated spatio-temporal field via Galerkin projection (Section 3.3).

4.3.1. Error of the fully-reconstructed space–time fields
Using the ROBs predicted above, we analyze the complete space–time field error associated with the test geometries { 𝜴test

𝑝
}𝑝={1,…,50}. As described in Section 3.3, the temporal component can be obtained from a Galerkin projection of the predicted
ROBs

{

𝑷 GNN
𝑝

}

𝑝={1,…,50}
. The resulting space–time solutions, denoted

{

𝐔GNN
𝑝

}

𝑝={1,…,50}
, are compared with the FEM reference fields

{

𝐔test
𝑝

}

𝑝={1,…,50}
. The resulting normalized space–time 𝑳2(𝜴,) errors (i.e., over all space and time) are presented in Fig. 16. One can

observe < 5% errors for all tested seat geometries
{

𝜴test
𝑝

}

𝑝={1,…,50}
. Fig. 17 presents for a test seat the evolution of the displacement

of an arbitrary location (node) over time for the reference method (FEM, given by 𝑈𝑒𝑥) as well as for the method developed here,
noting the dynamic nature of the seat’s mechanical response. As can be observed, the GNN-PGD solution has an excellent qualitative
agreement with the exact FEM solution. Such performance is promising from an iterative engineering design standpoint, as discussed
in the introduction.

4.3.2. Comparison with other approaches
We compare the results of our proposed GNN-PGD solver with commonly-found autoregressive approaches from literature [54,

58,83]. All other GNN methods, as far as the authors know, construct the temporal solution timestep-by-timestep by feeding back
the prediction of the time step 𝑡𝑖 as an input to the GNN in order to predict the next time step 𝑡𝑖+1. A summary of these standard
approaches is illustrated in Fig. 18.
17

Computer Methods in Applied Mechanics and Engineering 430 (2024) 117243V. Matray et al.
Fig. 16. Distribution of the normalized space–time 𝑳2(𝜴,) error for the reconstructed fields of the test geometries
{

𝜴test
𝑝

}

𝑝={1,…,50}
.

Fig. 17. Displacement of an arbitrary node (whose location is indicated in red) over time, where 𝑼 𝑥
𝑒𝑥 and 𝑼 𝑥

𝐺𝑁𝑁−𝑃𝐺𝐷 are the 𝑥-axis displacements of the
reference field (FEM) and the field obtained with our proposed methodology, respectively. 𝑼 𝑦

𝑒𝑥 and 𝑼 𝑦
𝐺𝑁𝑁−𝑃𝐺𝐷 denote the 𝑦-axis displacements of the reference

field (FEM) and the field obtained with our proposed methodology, respectively. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

Fig. 18. Illustration of a standard GNN-AR autoregressive approach employed as a benchmark comparison for the proposed GNN-PGD method.
18

Computer Methods in Applied Mechanics and Engineering 430 (2024) 117243V. Matray et al.
Fig. 19. Comparison of the time evolution of the spatial 𝑳2(𝜴) error between the GNN-AR approach [58,83] and our proposed GNN-PGD approach for the test
set

{

𝜴test
𝑝

}

𝑝={1,…,50}
.

We similarly implemented the standard autoregressive approach (GNN-AR) via pytorch, following [58,83]. The same hyperpa-
rameter optimization strategy (with a DOE, as described in Section 3.2.2) is employed in order to train the GNN-AR for comparative
purposes. Fig. 19 presents a comparison of temporal evolution of the spatial 𝑳2 errors between the GNN-PGD introduced in this
work and GNN-AR for all 50 test cases. Results demonstrate a well-known drawback of the timestep-by-timestep GNN-AR approach:
an error increase as a function of time (rollout error increase [58,83])—for our test cases, up to 15%. Conversely, our proposed
GNN-PGD approach does not suffer from such an increase in error over time; in fact, it remains bounded with a maximum error
of only 5% over all timesteps. Additionally, we find that the learning time (offline time) associated with the GNN-AR approach
(16h40) is significantly higher than the GNN-PGD approach (4h25). This is expected since the autoregressive approach considers all
𝑁𝑡 = 1000 snapshots of each geometry in the training database, whereas GNN-PGD only considers the 𝑀 = 3 spatial modes associated
with these geometries (and reconstructs the temporal component via projection and a computationally-inexpensive resolution of the
corresponding ODEs of Eq. (16)). Another advantage of the GNN-PGD approach over the GNN-AR approach is the number of calls
to the GNN network. In the case of an autoregressive approach, the number of calls to the network is linked to the number of time
steps required in the simulation (e.g., 1000), whereas for the GNN-PGD approach, only one evaluation is required, which translates
into a shorter inference time (online time) for the GNN-PGD approach.

4.3.3. Generalization ability of GNN-PGD to infer other topologies
In order to test GNN-PGD’s generalization capabilities for predicting a ROB on topologies that are highly different from those

with which it has been trained (including very different discretizations), we consider the seats illustrated in Fig. 20, which contain
two or three holes in the interior of the mesh (as opposed to only one used in training, validation, and testing, see Fig. 8).

Figs. 21 illustrates and compares Mode 1 to the ground truth for two circular holes in a seat. Clearly, GNN-PGD is able to capture
the general behavior of the mode, with a maximum error of only 15%. Similarly, 22 illustrates and compares Mode 2 for a geometry
containing three holes, which also indicates a good approximation to the ground truth. A quantification of the 𝑳2 norm spatial error
for all predicted modes for each of these two cases (two and three holes) is presented in Table 5, along with the complete space–time
𝑳2(𝜴,) norm for the final reconstructed solutions.

Although the errors are much higher than those presented for a single hole (on which our GNN-PGD was trained), they are entirely
reasonable from an iterative design standpoint. Indeed, for the two new topologies tested, we obtain a final error over the entire
space–time field of less than 18%, which demonstrates the remarkable capability of the GNN-PGD solver to generalize to completely
different geometries. For pre-dimensioning or pre-sizing of structures, such errors are more than sufficient to approximate various
mechanical quantities without having to run full FEM simulations. Indeed, with this level of error, we can reliably have access to
a reasonable approximation for the pre-dimensioning/pre-sizing application context of this work. We recall that the objective is to
enable rapid conceptual iterative design of engineering structures in order to identify the most promising candidates for eventual
(costly) full-field simulations. Our methodology could thus be fully integrated into a context of topological optimization [90,91],
which a topic of particular importance for new manufacturing processes such as 3D printing [92]. Indeed, in the context of multi-
objective topological optimization [90,92], a fast solver capable of handling different topologies, such as the one developed here,
could enable a broader and above all faster exploration of original designs. Nevertheless, our approach will need to be improved in
terms of performance (i.e., error) to be reasonably used in this context. One can for example, train the GNN-PGD with several types
of topologies to increase its generalization capabilities and improve accuracy for new topologies that are input in the GNN-PGD
solver.
19

Computer Methods in Applied Mechanics and Engineering 430 (2024) 117243V. Matray et al.
Fig. 20. Example of two seats, exterior to the original database, of very different topologies (i.e., multiple holes).

Fig. 21. Mode 1 predicted by GNN-PGD (trained on one hole) on a topology with two holes.

Fig. 22. Mode 2 predicted by GNN-PGD (trained on one hole) on a topology with three holes.
20

Computer Methods in Applied Mechanics and Engineering 430 (2024) 117243V. Matray et al.

l
d
m
m
s
a
p
m

e
a
d
p
e

C

t
m
D

D

i
t
r

D

A

w
P
f
t

Table 5
Errors of the GNN-PGD approach for topologies containing more holes than the training data set.

Mode 1 𝑳2(𝜴) error Mode 2 𝑳2(𝜴) error Mode 3 𝑳2(𝜴) error 𝐔GNN 𝑳2(𝜴,) error

16% 15% 30% 16%

17% 16% 27% 18%

5. Conclusion

This contribution introduces a new methodology that combines a Galerkin projection-based model reduction method with a deep
earning algorithm based on GNNs in order to generate a ROB for an arbitrary geometry of arbitrary discretization size. Results
emonstrate that the proposed GNN-PGD solver can produce reduced order models for non-parametric geometries (where usual
odel reduction tools are limited [36,43]). The algorithm proposed and analyzed in this work carries significant advantages over
ore conventional GNN methods, both in terms of computational cost (training and inference) as well as numerical error. A case

tudy related to the motivating engineering and industrial applications of this work (structural design) has also been presented, using
reasonably-sized database that results in a GNN-PGD solver that provides low errors that are appropriate for pre-dimensioning or
re-sizing of, e.g., aircraft seats. For such configurations, we have additionally demonstrated a strong capability of the GNN-PGD
ethod to generalize to topologies that are clearly different from training and validation databases.

The proof-of-concept provided in this contribution demonstrates promise for future extensions and other applications. For
xample, one can incorporate more physics into the GNN-PGD generator so as to be able to generate more modes with even greater
ccuracy. Towards this, future work is planned for the inclusion of finite element operators, derived from the physical PDEs, as
irect inputs to the graph (inspired by [74]). More importantly, future work entails extending the GNN-PGD method to non-linear
roblems, e.g., the material non-linearities that are very present in the aeronautical world [11–13]. For such contexts, a possible
nrichment of the predicted space–time solution (post-processing) may also be required.

RediT authorship contribution statement

Victor Matray: Writing – review & editing, Writing – original draft, Visualization, Validation, Software, Methodology, Investiga-
ion, Formal analysis, Conceptualization. Faisal Amlani: Writing – review & editing, Writing – original draft, Supervision, Project ad-
inistration, Conceptualization. Frédéric Feyel: Writing – review & editing, Supervision, Project administration, Conceptualization.
avid Néron: Writing – review & editing, Supervision, Project administration, Conceptualization.

eclaration of competing interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing
nterests: Frederic Feyel reports a relationship with Safran Tech that includes: employment. If there are other authors, they declare
hat they have no known competing financial interests or personal relationships that could have appeared to influence the work
eported in this paper.

ata availability

Data will be made available on request.

cknowledgments

This work was granted access to the HPC resources of IDRIS under the allocation 2023-[AD011014260] made by GENCI. This
ork was performed using HPC resources from the ‘‘Mésocentre’’ computing center of CentraleSupélec, École Normale Supérieure
aris-Saclay and Université Paris-Saclay supported by CNRS and Région Île-de-France (https://mesocentre.universite-paris-saclay.
r/). Finally, the authors would like to express their sincere gratitude to Safran Tech for supporting this research and for providing
21

he motivating application contexts.

https://mesocentre.universite-paris-saclay.fr/
https://mesocentre.universite-paris-saclay.fr/
https://mesocentre.universite-paris-saclay.fr/

Computer Methods in Applied Mechanics and Engineering 430 (2024) 117243V. Matray et al.
References

[1] L. Sabat, C.K. Kundu, History of finite element method: A review, in: B.B. Das, S. Barbhuiya, R. Gupta, P. Saha (Eds.), Recent Developments in Sustainable
Infrastructure, Singapore, 2021, pp. 395–404.

[2] J.P. Wolf, The Scaled Boundary Finite Element Method, John Wiley & Sons, 2003.
[3] E. Burman, S. Claus, P. Hansbo, M.G. Larson, A. Massing, Cutfem: discretizing geometry and partial differential equations, Internat. J. Numer. Methods

Engrg. 104 (7) (2015) 472–501.
[4] J.P. Wolf, C. Song, The scaled boundary finite-element method–a fundamental solution-less boundary-element method, Comput. Methods Appl. Mech.

Engrg. 190 (42) (2001) 5551–5568.
[5] W.K. Liu, S. Li, H.S. Park, Eighty years of the finite element method: Birth, evolution, and future, Arch. Comput. Methods Eng. 29 (6) (2022) 4431–4453.
[6] B. Cockburn, G.E. Karniadakis, C.-W. Shu, Discontinuous Galerkin Methods: Theory, Computation and Applications, vol. 11, Springer Science & Business

Media, 2012.
[7] T.-P. Fries, T. Belytschko, The intrinsic XFEM: a method for arbitrary discontinuities without additional unknowns, Internat. J. Numer. Methods Engrg. 68

(13) (2006) 1358–1385.
[8] U. Lee, Spectral Element Method in Structural Dynamics, John Wiley & Sons, 2009.
[9] T. Belytschko, R. Gracie, G. Ventura, A review of extended/generalized finite element methods for material modeling, Modelling Simul. Mater. Sci. Eng.

17 (4) (2009) 043001.
[10] B. Zhu, The Finite Element Method: Fundamentals and Applications in Civil, Hydraulic, Mechanical and Aeronautical Engineering, John Wiley & Sons,

2018.
[11] G. Tzanakis, A. Kotzakolios, E. Giannaros, V. Kostopoulos, Structural analysis of a composite passenger seat for the case of an aircraft emergency landing,

Appl. Mech. 4 (1) (2023) 1–19, number: 1publisher2: Multidisciplinary Digital Publishing Institute.
[12] L. Cavagna, S. Ricci, L. Travaglini, NeoCASS: an integrated tool for structural sizing, aeroelastic analysis and mdo at conceptual design level, Prog. Aerosp.

Sci. 47 (8) (2011) 621–635.
[13] B. Fredriksson, Advanced numerical methods for analysis and design of aircraft structures, Int. J. Veh. Des. 7 (3–4) (1986) 306–336.
[14] E. Karagoz, J. Tai, D. Sarojini, D. Mavris, Design space reduction using clustering in aircraft engine design, in: 2019 IEEE Aerospace Conference, IEEE,

2019, pp. 1–8.
[15] L. Zhu, N. Li, P. Childs, Light-weighting in aerospace component and system design, Propul. Power Res. 7 (2) (2018) 103–119.
[16] S.A. Ardila-Parra, C.M. Pappalardo, O.A.G. Estrada, D. Guida, Finite element based redesign and optimization of aircraft structural components using

composite materials, IAENG Int. J. Appl. Math. (2020).
[17] P. Benner, S. Gugercin, K. Willcox, A survey of projection-based model reduction methods for parametric dynamical systems, SIAM Rev. 57 (2015) 483–531.
[18] F. Chinesta, P. Ladeveze, E. Cueto, A short review on model order reduction based on proper generalized decomposition, Arch. Comput. Methods Eng. 18

(4) (2011) 395–404.
[19] G. Rozza, Reduced basis approximation and error bounds for potential flows in parametrized geometries, Commun. Comput. Phys. 9 (1) (2011) 1–48.
[20] Y. Maday, E.M. Rønquist, A reduced-basis element method, J. Sci. Comput. 17 (2002) 447–459.
[21] G. Rozza, M. Hess, G. Stabile, M. Tezzele, F. Ballarin, C. Gräßle, M. Hinze, S. Volkwein, F. Chinesta, P. Ladeveze, et al., Model Order Reduction Volume

2 Snapshot-Based Methods and Algorithms, De Gruyter, 2020.
[22] D. Amsallem, M.J. Zahr, C. Farhat, Nonlinear model order reduction based on local reduced-order bases, Internat. J. Numer. Methods Engrg. 92 (10)

(2012) 891–916.
[23] K. Carlberg, M. Barone, H. Antil, Galerkin. v, Least-squares Petrov–Galerkin projection in nonlinear model reduction, J. Comput. Phys. 330 (2017) 693–734.
[24] L. Sirovich, Turbulence and the dynamics of coherent structures. i. coherent structures, Quart. Appl. Math. 45 (3) (1987) 561–571.
[25] K. Lu, Y. Jin, Y. Chen, Y. Yang, L. Hou, Z. Zhang, Z. Li, C. Fu, Review for order reduction based on proper orthogonal decomposition and outlooks of

applications in mechanical systems, Mech. Syst. Signal Process. 123 (2019) 264–297.
[26] G. Kerschen, J. c. Golinval, A.F. Vakakis, L.A. Bergman, The method of proper orthogonal decomposition for dynamical characterization and order reduction

of mechanical systems: an overview, Nonlinear Dynam. 41 (2005) 147–169.
[27] A. Radermacher, S. Reese, A comparison of projection-based model reduction concepts in the context of nonlinear biomechanics, Arch. Appl. Mech. 83

(8) (2013) 1193–1213.
[28] J.S. Hesthaven, G. Rozza, B. Stamm, et al., Certified Reduced Basis Methods for Parametrized Partial Differential Equations, vol. 590, Springer, 2016.
[29] P. Tiso, D.J. Rixen, Discrete empirical interpolation method for finite element structural dynamics, in: G. Kerschen, A. Carrella D. Adams (Eds.), Conference

Proceedings of the Society for Experimental Mechanics Series, New York, NY, in: Topics in Nonlinear Dynamics, vol. 1, 2013, pp. 203–212.
[30] P. Ladevèze, Sur une famille d’algorithmes en mécanique des structures, Sur une famille d’algorithmes en mécanique des structures 300 (2) (1985) 41–44,

place: Paris publisher2: Gauthier-Villars.
[31] A. Daby-Seesaram, A. Fau, P.-E. Charbonnel, D. Néron, A hybrid frequency-temporal reduced-order method for nonlinear dynamics, Nonlinear Dynam. 111

(15) (2023) 13669–13689.
[32] P. Ladevèze, Nonlinear Computational Structural Mechanics: New Approaches and Non-Incremental Methods of Calculation, Springer Science & Business

Media, 1999.
[33] R. Scanff, D. Néron, P. Ladevèze, P. Barabinot, F. Cugnon, J.-P. Delsemme, Weakly-invasive LATIN-PGD for solving time-dependent non-linear parametrized

problems in solid mechanics, Comput. Methods Appl. Mech. Engrg. 396 (2022) 114999.
[34] C. Heyberger, P.-A. Boucard, D. Néron, Multiparametric analysis within the proper generalized decomposition framework, Comput. Mech. 49 (3) (2012)

277–289.
[35] F. Casenave, A. Gariah, C. Rey, F. Feyel, A nonintrusive reduced order model for nonlinear transient thermal problems with nonparametrized variability,

Adv. Model. Simul. Eng. Sci. 7 (1) (2020) 22.
[36] G. Rozza, H. Malik, N. Demo, M. Tezzele, M. Girfoglio, G. Stabile, A. Mola, Advances in reduced order methods for parametric industrial problems in

computational fluid dynamics, 2018, arXiv preprint arXiv:1811.08319.
[37] A. Lupini, B.I. Epureanu, On the use of mesh morphing techniques in reduced order models for the structural dynamics of geometrically mistuned blisks,

Mech. Syst. Signal Process. 127 (2019) 262–275.
[38] T.W. Sederberg, S.R. Parry, Free-form deformation of solid geometric models, in: Proceedings of the 13th Annual Conference on Computer Graphics and

Interactive Techniques, 1986, pp. 151–160.
[39] G. Rozza, A. Koshakji, A. Quarteroni, et al., Free form deformation techniques applied to 3d shape optimization problems, Commun. Appl. Ind. Math. 4

(2013) 1–26.
[40] M.D. Buhmann, Radial basis functions, Acta Numer. 9 (2000) 1–38.
[41] A. Morris, C. Allen, T. Rendall, CFD-based optimization of aerofoils using radial basis functions for domain element parameterization and mesh deformation,

Internat. J. Numer. Methods Fluids (2008).
[42] T. Lassila, G. Rozza, Parametric free-form shape design with PDE models and reduced basis method, Comput. Methods Appl. Mech. Engrg. 199 (23) (2010)

1583–1592.
22

http://refhub.elsevier.com/S0045-7825(24)00499-7/sb1
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb1
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb1
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb2
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb3
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb3
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb3
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb4
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb4
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb4
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb5
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb6
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb6
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb6
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb7
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb7
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb7
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb8
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb9
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb9
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb9
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb10
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb10
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb10
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb11
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb11
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb11
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb12
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb12
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb12
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb13
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb14
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb14
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb14
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb15
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb16
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb16
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb16
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb17
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb18
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb18
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb18
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb19
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb20
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb21
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb21
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb21
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb22
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb22
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb22
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb23
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb24
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb25
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb25
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb25
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb26
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb26
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb26
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb27
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb27
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb27
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb28
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb29
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb29
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb29
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb30
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb30
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb30
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb31
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb31
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb31
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb32
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb32
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb32
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb33
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb33
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb33
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb34
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb34
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb34
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb35
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb35
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb35
http://arxiv.org/abs/1811.08319
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb37
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb37
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb37
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb38
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb38
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb38
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb39
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb39
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb39
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb40
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb41
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb41
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb41
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb42
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb42
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb42

Computer Methods in Applied Mechanics and Engineering 430 (2024) 117243V. Matray et al.
[43] C. Amaury, PGD-Abaques virtuels pour l’optimisation géométrique des structures (Ph.D. thesis), Université Paris-Saclay, 2016.
[44] D. Ye, V. Krzhizhanovskaya, A.G. Hoekstra, Data-driven reduced-order modelling for blood flow simulations with geometry-informed snapshots, J. Comput.

Phys. 497 (2024) 112639.
[45] F. Casenave, B. Staber, X. Roynard, MMGP: a Mesh Morphing Gaussian Process-based machine learning method for regression of physical problems under

nonparametrized geometrical variability, Adv. Neural Inf. Process. Syst. 36 (2024).
[46] M. Alexa, Recent advances in mesh morphing, in: Computer Graphics Forum, vol. 21, Wiley Online Library, 2002, pp. 173–198.
[47] G.E. Karniadakis, I.G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, L. Yang, Physics-informed machine learning, Nat. Rev. Phys. 3 (6) (2021) 422–440.
[48] E. Cueto, F. Chinesta, Thermodynamics of learning physical phenomena, Arch. Comput. Methods Eng. 30 (8) (2023) 4653–4666.
[49] L. Lu, P. Jin, G.E. Karniadakis, Deeponet: Learning nonlinear operators for identifying differential equations based on the universal approximation theorem

of operators, 2019, arXiv preprint arXiv:1910.03193.
[50] S.R. Vadyala, S.N. Betgeri, J.C. Matthews, E. Matthews, A review of physics-based machine learning in civil engineering, Results Eng. 13 (2022) 100316.
[51] M. Raissi, P. Perdikaris, G. Karniadakis, Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving

nonlinear partial differential equations, J. Comput. Phys. 378 (2019) 686–707.
[52] Q. Hernández, A. Badías, F. Chinesta, E. Cueto, Thermodynamics-informed neural networks for physically realistic mixed reality, Comput. Methods Appl.

Mech. Engrg. 407 (2023) 115912.
[53] A. Benady, E. Baranger, L. Chamoin, NN-mCRE: A modified constitutive relation error framework for unsupervised learning of nonlinear state laws with

physics-augmented neural networks, Internat. J. Numer. Methods Engrg. 125 (8) (2024) e7439.
[54] Q. Hernández, A. Badías, F. Chinesta, E. Cueto, Thermodynamics-informed graph neural networks, IEEE Trans. Artif. Intell. (2022) 1.
[55] A. Kashefi, D. Rempe, L.J. Guibas, A point-cloud deep learning framework for prediction of fluid flow fields on irregular geometries, Phys. Fluids 33 (2)

(2021) 027104.
[56] P.W. Battaglia, J.B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. Zambaldi, M. Malinowski, A. Tacchetti, D. Raposo, A. Santoro, R. Faulkner, et al., Relational

inductive biases, deep learning, and graph networks, 2018, arXiv preprint arXiv:1806.01261.
[57] Z. Li, A.B. Farimani, Graph neural network-accelerated Lagrangian fluid simulation, Comput. Graph. 103 (2022) 201–211.
[58] T. Pfaff, M. Fortunato, A. Sanchez-Gonzalez, P.W. Battaglia, Learning mesh-based simulation with graph networks, 2020, arXiv preprint arXiv:2010.03409.
[59] R. Lam, A. Sanchez-Gonzalez, M. Willson, P. Wirnsberger, M. Fortunato, A. Pritzel, S. Ravuri, T. Ewalds, F. Alet, Z. Eaton-Rosen, W. Hu, A. Merose,

S. Hoyer, G. Holland, J. Stott, O. Vinyals, S. Mohamed, P. Battaglia, GraphCast: Learning skillful medium-range global weather forecasting, 2022, arXiv
preprint arXiv:2212.12794.

[60] D. Dalton, H. Gao, D. Husmeier, Emulation of cardiac mechanics using Graph Neural Networks, Comput. Methods Appl. Mech. Engrg. 401 (2022) 115645.
[61] S. Bishnoi, R. Bhattoo, S. Ranu, N. Krishnan, Enhancing the inductive biases of graph neural ode for modeling dynamical systems, 2022, arXiv preprint

arXiv:2209.10740.
[62] S. Deshpande, S.P. Bordas, J. Lengiewicz, Magnet: A graph u-net architecture for mesh-based simulations, Eng. Appl. Artif. Intell. 133 (2024) 108055.
[63] R. Gulakala, B. Markert, M. Stoffel, Graph neural network enhanced finite element modelling, PAMM 22 (1) (2023) e202200306.
[64] M. Nastorg, M.-A. Bucci, T. Faney, J.-M. Gratien, G. Charpiat, M. Schoenauer, An implicit GNN solver for Poisson-like problems, 2023, arXiv preprint

arXiv:2302.10891.
[65] Y. Zhang, P. Tiňo, A. Leonardis, K. Tang, A survey on neural network interpretability, IEEE Trans. Emerg. Top. Comput. Intell. 5 (5) (2021) 726–742.
[66] N.M. Newmark, A method of computation for structural dynamics, J. Eng. Mech. Div. 85 (3) (1959) 67–94.
[67] L. Boucinha, A. Gravouil, A. Ammar, Space–time proper generalized decompositions for the resolution of transient elastodynamic models, Comput. Methods

Appl. Mech. Engrg. 255 (2013) 67–88.
[68] A. Nouy, A priori model reduction through proper generalized decomposition for solving time-dependent partial differential equations, Comput. Methods

Appl. Mech. Engrg. 199 (23–24) (2010) 1603–1626.
[69] W.L. Hamilton, Graph Representation Learning, Morgan & Claypool Publishers, 2020.
[70] Y. LeCun, K. Kavukcuoglu, C. Farabet, Convolutional networks and applications in vision, in: Proceedings of 2010 IEEE International Symposium on Circuits

and Systems, IEEE, 2010, pp. 253–256.
[71] M. Besta, T. Hoefler, Parallel and distributed graph neural networks: An in-depth concurrency analysis, IEEE Trans. Pattern Anal. Mach. Intell. (2024).
[72] Y. Saad, Iterative Methods for Sparse Linear Systems, SIAM, 2003.
[73] K. Yang, H. Pouransari, E. Darve, Sparse hierarchical solvers with guaranteed convergence, Internat. J. Numer. Methods Engrg. 120 (8) (2019) 964–986.
[74] B. Donon, Z. Liu, W. Liu, I. Guyon, A. Marot, M. Schoenauer, Deep statistical solvers, Adv. Neural Inf. Process. Syst. 33 (2020) 7910–7921.
[75] F. Rosenblatt, The perceptron: a probabilistic model for information storage and organization in the brain., Psychol. Rev. 65 (6) (1958) 386.
[76] S. Elfwing, E. Uchibe, K. Doya, Sigmoid-weighted linear units for neural network function approximation in reinforcement learning, Neural Netw. 107

(2018) 3–11.
[77] Y. Wu, K. He, Group normalization, in: Proceedings of the European Conference on Computer Vision, ECCV, 2018, pp. 3–19.
[78] G. Huang, Z. Liu, L. Van Der Maaten, K.Q. Weinberger, Densely connected convolutional networks, in: Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2017, pp. 4700–4708.
[79] D. Ulyanov, A. Vedaldi, V. Lempitsky, Instance normalization: The missing ingredient for fast stylization, 2016, arXiv preprint arXiv:1607.08022.
[80] S. Ioffe, C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift, in: International Conference on Machine

Learning, PMLR, 2015, pp. 448–456.
[81] I. Loshchilov, F. Hutter, Decoupled weight decay regularization, 2017, arXiv preprint arXiv:1711.05101.
[82] C.F.G.D. Santos, J.P. Papa, Avoiding overfitting: A survey on regularization methods for convolutional neural networks, ACM Comput. Surv. 54 (10s)

(2022) 1–25.
[83] J. Brandstetter, D. Worrall, M. Welling, Message passing neural pde solvers, 2022, arXiv preprint arXiv:2202.03376.
[84] V.R. Joseph, E. Gul, S. Ba, Maximum projection designs for computer experiments, Biometrika 102 (2) (2015) 371–380.
[85] S. Roux, F. Hild, Optimal procedure for the identification of constitutive parameters from experimentally measured displacement fields, Int. J. Solids Struct.

184 (2020) 14–23.
[86] L. Rice, E. Wong, Z. Kolter, Overfitting in adversarially robust deep learning, in: International Conference on Machine Learning, PMLR, 2020, pp. 8093–8104.
[87] C. Geuzaine, J.-F. Remacle, Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities, Internat. J. Numer. Methods Engrg.

79 (11) (2009) 1309–1331.
[88] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, et al., Pytorch: An imperative style,

high-performance deep learning library, Adv. Neural Inf. Process. Syst. 32 (2019).
[89] M. Fey, J.E. Lenssen, Fast graph representation learning with PyTorch geometric, 2019, arXiv preprint arXiv:1903.02428.
[90] O. Sigmund, K. Maute, Topology optimization approaches: A comparative review, Struct. Multidiscip. Optim. 48 (6) (2013) 1031–1055.
[91] J. Wu, O. Sigmund, J.P. Groen, Topology optimization of multi-scale structures: a review, Struct. Multidiscip. Optim. 63 (2021) 1455–1480.
[92] Z. Jihong, Z. Han, W. Chuang, Z. Lu, Y. Shangqin, W. Zhang, A review of topology optimization for additive manufacturing: Status and challenges, Chin.

J. Aeronaut. 34 (1) (2021) 91–110.
23

http://refhub.elsevier.com/S0045-7825(24)00499-7/sb43
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb44
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb44
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb44
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb45
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb45
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb45
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb46
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb47
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb48
http://arxiv.org/abs/1910.03193
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb50
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb51
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb51
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb51
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb52
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb52
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb52
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb53
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb53
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb53
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb54
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb55
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb55
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb55
http://arxiv.org/abs/1806.01261
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb57
http://arxiv.org/abs/2010.03409
http://arxiv.org/abs/2212.12794
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb60
http://arxiv.org/abs/2209.10740
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb62
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb63
http://arxiv.org/abs/2302.10891
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb65
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb66
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb67
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb67
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb67
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb68
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb68
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb68
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb69
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb70
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb70
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb70
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb71
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb72
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb73
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb74
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb75
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb76
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb76
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb76
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb77
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb78
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb78
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb78
http://arxiv.org/abs/1607.08022
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb80
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb80
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb80
http://arxiv.org/abs/1711.05101
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb82
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb82
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb82
http://arxiv.org/abs/2202.03376
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb84
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb85
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb85
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb85
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb86
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb87
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb87
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb87
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb88
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb88
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb88
http://arxiv.org/abs/1903.02428
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb90
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb91
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb92
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb92
http://refhub.elsevier.com/S0045-7825(24)00499-7/sb92

	A hybrid numerical methodology coupling reduced order modeling and Graph Neural Networks for non-parametric geometries: Applications to structural dynamics problems
	Introduction
	Acceleration by reduced-order modeling (ROM) approaches
	Acceleration by deep learning-based approaches
	Present work

	Governing equations
	Elastodynamics system
	Reference solution using the Finite Element Method
	Weak formulation and semi-discretization in space
	Time integration

	Methodology
	Database generation
	Deep learning on graphs: Graph Neural Networks (GNNs)
	Overview of GNN
	GNN-PGD implementation and training strategy

	Galerkin projection on the trained ROB
	Noise effect and resolution strategy

	Summary of our methodology

	Performance/case study: simulating aircraft seat response to crash loads
	Database generation
	Database characteristics

	GNN-PGD implementation details and parameters
	GNN-PGD learning results
	Error of the fully-reconstructed space–time fields
	Comparison with other approaches
	Generalization ability of GNN-PGD to infer other topologies

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

