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ABSTRACT

This work introduces a new approach for accelerating the numerical analysis of time-domain partial
differential equations (PDEs) governing complex physical systems. The methodology is based on
a combination of a classical reduced-order modeling (ROM) framework and recently-introduced
Graph Neural Networks (GNNs), where the latter is trained on highly heterogeneous databases of
varying numerical discretization sizes. The proposed techniques are shown to be particularly suitable
for non-parametric geometries, ultimately enabling the treatment of a diverse range of geometries
and topologies. Performance studies are presented in an application context related to the design of
aircraft seats and their corresponding mechanical responses to shocks, where the main motivation
is to reduce the computational burden and enable the rapid design iteration for such problems that
entail non-parametric geometries. The methods proposed here are straightforwardly applicable to
other scientific or engineering problems requiring a large-number of finite element-based numerical
simulations, with the potential to significantly enhance efficiency while maintaining reasonable
accuracy.

Keywords Reduced-Order Modeling · Non-Parametric Geometries · Graph Neural Networks · Deep Learning · Proper
Generalized Decomposition · Finite Element Methods

1 Introduction

Numerical simulations are essential tools in a variety of scientific disciplines, including design engineering, physics,
biology, and economics. They often involve resolving complex models governed by physical or phenomenological laws
that can be mathematically described by partial differential equations (PDEs). In solid mechanics, the resolution of these
models relies mainly on mesh-based numerical methods requiring discretization in space and time, the most widely-used
of which is the Finite Element Method (FEM). In recent decades, a great deal of work [1, 2, 3, 4, 5, 6, 7, 8, 9] has
been undertaken to improve and extend classical FEM formulations in order to encompass a wider variety of both
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linear and nonlinear material behavior to the extent that FEM-based simulations are now ubiquitous in science and
engineering [1, 10, 5].

However, despite advances in computing capacity in recent years, the computational cost of FEM-based solvers
remains significant and often limiting for highly-sensitive engineering or scientific applications such as those related to
aeronautical design [11, 12, 13] (the primary motivating context of this contribution). Iterating over a design space
is necessary for engineers to develop optimized configurations [14, 15, 16], and each design may require some sort
of computational mechanical analysis. Hence, it is highly advantageous and important to have very fast calculation
tools that can enable rapid pre-dimensioning/pre-sizing of mechanical components from the initial design stage, i.e.,
providing adequately accurate estimations of the corresponding mechanical response and behavior without immediately
requiring expensive finite element simulations. Indeed, such tools could help circumvent expensive full-field analyses
of modifications incurred during the design phase of a project, potentially resulting in substantial time savings during
validation stages. Fast approximate tools can ultimately give development teams the leeway to propose original designs
(even those that are radically different from the standard) whose effectiveness can be quickly evaluated without the need
for computationally costly full order modeling using FEM.

1.1 Acceleration by reduced-order modeling (ROM) approaches

A common technique for reducing the computational burden of large-scale FEM simulations is known as reduced-order
modeling (ROM) [17, 18, 19]. Reduced-order models exploit the mathematical separability of solution fields in a
full physical model, allowing one to solve a smaller, less-costly problem while maintaining control over the error in
approximation [20, 21]. A notable class of potent reduction techniques relies on creating a low-dimensional space
using a reduced-order basis (ROB) [22]. Construction of such a space involves an initial offline learning phase, where
the high-fidelity problem (e.g., full-order FEM) is solved, after which appropriate snapshots are carefully selected.
Subsequently, in the online phase, the original high-fidelity problem is often tackled using a projection, typically
employing a Galerkin-type approach (although alternative methods are also feasible [23]). For an in-depth review of
such projection-based methods, readers are encouraged to consult [17] and the associated references.

The focus of this work is on linear structural dynamics problems, where the most common ROM technique is the
use of the Proper Orthogonal Decomposition (POD) [24, 25, 26]. POD has also demonstrated superior capabilities to
well-established modal analysis techniques which are also widely used [27]. The principle of this approach is to build a
ROB from intelligently-selected snapshots taken from previously-calculated solutions. Techniques such as the Reduced
Basis Method (RBM) [20, 21] offer automatic selection procedures to determine the most relevant snapshots. RBMs
can also be used to certify the results derived from the reduced model for any parameter contained in the PDE. For
a deep overview, the interested reader can refer to [28] and the references therein. Note that ROB methods can also
be extended to non-linear PDEs, e.g., via the Discrete Empirical Interpolation Method [29]. These aforementioned
ROB methods are generally referred to as a posteriori methods and their costs are characterized by the time needed to
calculate the database (offline) and the time needed to solve the reduced model (online).

In a mathematically-related but fundamentally-different approach, the Proper Generalised Decomposition (PGD)
[30, 18, 31] provides an alternative technique for low-rank resolution, but a priori. This is accomplished by generating
the ROB on-the-fly. Similarly to POD, the PGD method was initially proposed for space-time variables (known as
radial approximations [30]). However, PGD has since been extended to other parameters such as those defining material
properties [18]. Non-linear equations can also be considered with this approach, e.g., by use of the LATIN-PGD
algorithm [32, 33, 34].

Although reduced-order models are becoming more increasingly used in practice [35, 33], they are only truly ef-
fective when the problem can be parameterized (e.g., for describing material properties, loading characteristics, or
geometries [36]), and even more so in the context of multi-query simulations [31]. Geometric considerations, in
particular, often require that the number of degrees-of-freedom remains constant among the offline training set when
constructing a ROB (so that the information contained in the previously-calculated snapshots can be re-evaluated).
This “geometry parameterization" restriction is the most limiting condition in the context of design innovation and
iteration since, in essence, a very original structure born of an engineer’s imagination may not necessarily share the
same parameterizations of other (even similar) designs.

When geometry is parametrizable (e.g., by length or width and enven more when the topologu evolves), ROM techniques
are already efficient [36, 37]. However, their applicability is limited to geometries that can be parameterized by a few
control points [36]. General techniques include Free-Form Deformation (FFD) [38, 39] as well as interpolation using
Radial Basis Functions (RBF) [40, 41]. These methods define parameters as the shifting of specific control points that
determine the morphing of the domain. For instance, in [42], airfoil profiles of the NACA family are studied using RBMs
in the context of inverse design for aircraft wings. In [43], another approach is employed where a multi-parametric
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PGD is used to obtain numerical maps for a rocket launcher component whose geometry is parameterized with two
control points that are added to the spatial and temporal parameters of the PGD.

When the geometry is non-parametric (e.g., can be of any arbitrary shape or size), strategies for ROM are difficult
to apply. The geometries do not share the same spatial dimension (after FEM discretisation), making classical ROB
projection methods infeasible. There are also recently-introduced approaches based on mesh morphing [44, 45],
the aim of which is to learn the transformation that transfers any mesh to a reference mesh, which then enables a
common spatial dimension to be obtained without a priori knowledge of the geometry parameterization. Searching
for this transformation is equivalent to determining an on-the-fly parameterization of the geometries in the database,
and assumes that the new geometries tested will have the same parameterization. In [44], this technique is coupled
with a ROM to simulate blood flow. Similarly, in [45], a similar strategy is applied to a database generated with five
known material parameters and one unknown geometric parameter, which is then coupled to a Gaussian process method.
Learning the morphing transformations as well as choosing reference meshes is not very straightforward [45]. Indeed,
these transformations cannot necessarily be generalized, particularly when the topology of the mesh changes [46].

The goal of the present work is to propose a more general approach that requires neither parameterizing the geometry
with a finite number of control points nor learning the morphing transformation, ultimately enabling consideration of
completely unstructured meshes of highly-variable degrees-of-freedom.

1.2 Acceleration by deep learning-based approaches

An alternative class of methods that have been gaining interest for more rapidly and efficiently approximating solutions
to PDEs is the burgeoning field of deep learning, which has now touched almost all scientific disciplines [47, 48]. Deep
learning has shown remarkable capability in predicting non-linear relationships with physical data [49]. Similarly
to classical reduced-order modeling, one needs to distinguish between two computational cost scales: the offline
learning/training time (which is often quite long) and the online model inference time (which is very short—possibly
real-time). A great deal of recent work has consisted of trying to enrich deep learning models with physical knowledge
[47, 50]. To this end, there are three main types of approaches. The first, proposed in [51] and often referred to as
“physics-informed" (or “learning bias"), consists of including physical knowledge in the loss function used to train the
neural networks. The idea is to construct a loss function as the sum of a term that accounts for deviations from target data
(error) and a term that penalizes non-physical behavior. A second approach, often referred to as “physics-augmented"
(or “inductive bias"), consists in introducing physical knowledge directly into the architecture of the neural network [52].
For example, in [53], the neural network is constrained to be convex in the same way as the thermodynamic potential
that the authors set out to learn. Similarly, in [54], a positive dissipation is constrained to satisfy the second law of
thermodynamics. A third approach, classically referred to as “observation bias" [55], aims to intelligently introduce
a data structure underlain by physical knowledge. Hence, the deep neural network (DNN) is exposed directly to the
observed data and is expected to capture the underlying physical process via training.

Other learning-based approaches that may ignore this physical knowledge a priori—instead focusing on representations
adapted to physical simulation data—also show remarkable capabilities. This is the case of approaches based on Graph
Neural Networks (GNN), initially proposed in [56], which have become very popular in several communities: in fluid
mechanics for Navier-Sokes equations (e.g., [57, 58]), in meteorology for global weather prediction (e.g., [59]), in
biomechanics for describing the mechanics of human body organs (e.g., [60]), in Newtonian mechanics (e.g., [61]), and
in solid mechanics (e.g., [62, 63]). Several recent works have also improved this approach by explicitly incorporating
physical knowledge (see [54] and references therein). Such methods offer interesting extrapolation capabilities and are
particularly well-suited for their application to a variety of geometries [64] (which is an important consideration for the
structural design context of this work).

GNN and other deep learning approaches are based on training a model from a database which, in the motivating
industrial applications of the present work, represents an opportunity to reuse the high-fidelity computations produced by
other designs and engineering projects that are kept in databases. It should be noted that in this framework, the amount
of available data is often limited, and this constraint is taken into account in the proof-of-concept work presented here.
In addition, deep learning models (in general) face uncertainty as to the validity of their outputs which, together with
their more-often-than-not lack of interpretability [47, 65], often hinder their certification and widespread acceptance in
engineering. For this reason as well, the idea of combining deep learning approaches (e.g., GNN) with well-established
solvers used in practice may reveal promising directions.

1.3 Present work

This contribution proposes a new numerical methodology to provide near real-time structural mechanical analysis
combining the two distinct approaches discussed above: classical ROM methods and deep learning. The general idea is

3
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to use the latter to predict the former for any arbitrary discretization size and geometric shape (in order to address the
limitations of classical approaches as outlined above). More formally, we consider a set of N independent geometries
{Ωdata

p }p={1,...,N} (which do not share any geometric parameter or discretisation size, as simplified in Figure 1 ), where
each configuration is associated with a reference solution obtained by FEM: {Udata

p }p={1,...,N}. We then determine
the associated ROBs designated by {P data

p }p=1,...,N} (for example, via PGD). In order to provide predictions for a
geometry Ωnew that may fall outside of the scope of treatment via the original ROBs, this work proposes the use of
GNN to provide a surrogate general ROB generator that provides PGNN , that is trained via supervised learning on
{P data

p , }p={1,...,N}. The solution Unew of the full field is then obtained by a Galerkin projection on PGNN, similarly to
a classical ROM approach. Note that from this Unew solution it is possible to enrich it with new PGD modes, calculated
in the usual way if this is necessary to obtain a satisfactory solution. A summary of the overall method, which we call
GNN-PGD generator, is presented as a flow chart in Figure 2.

1

34

6

5

7

2

1

345

6

7

2
8

34

7

16

2
8

5

Figure 1: Example illustrations of N non-parameterized Ωp geometries with possibly different discretization sizes.

Again, the ultimate aim is to enable consideration of much wider and more general ranges of geometries and topologies
(i.e., a ROB built on very heterogeneous databases). The algorithmic framework we propose here aims to overcome
the constraints mentioned in the previous subsection of traditional ROM approaches by exploiting the flexibility and
inference speed of GNNs. The manuscript is organized as follows: section 2 describes the governing PDE of interest as
well as the construction of (finite element-based) reference solutions. Thus, section 3 describes the proposed solver
combining a GNN architecture with a classical ROM algorithm. Finally, section 4 presents a relevant proof-of-concept
case study applying the new method to a problem of aircraft seat design, including performance comparisons with more
conventional autoregressive GNN approaches [58].
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Figure 2: A flowchart diagram introducing the steps of the proposed GNN-PGD methodology (detailed in Section 3).

2 Governing equations

This section details the elastodynamics equations that govern our problem of interest (subsection 2.1) as well as the finite
element method employed in this work for the construction of the full-order solutions

{
Udata

p

}
p={1,...,N} associated

with non-parameterized geometries
{
Ωdata

p

}
p={1,...,N} (subsection 2.2). The latter is used for the supervised learning

of the proposed methodology introduced in section 3.

2.1 Elastodynamics system

Let x ∈ Ω ⊂
{
Ωdata

p

}
p={1,...,N}, where Ω ⊂ Rd (d = 1, 2, 3). We denote the boundary of Ω by ∂Ω which can be

decomposed into ∂Ω = ∂Ωu ∪ ∂Ωσ, where ∂Ωu (respectively ∂Ωσ) represents the parts of the domain boundary
where Dirichlet (respectively Neumann) boundary conditions are imposed, with ∂Ωu ∩ ∂Ωσ = ∅. With a time interval
of interest given by I = [0, T ] for some final time T ∈ R+, we define the following vector spaces:

• U(Ω) = H1(Ω) =
{
u ∈ L2(Ω),∇u ∈ L2(Ω)

}
• U(Ω;ud) =

{
u ∈ H1(Ω),u |∂Ωu= ud

}
• U(Ω;0) = H1

0(Ω) =
{
u ∈ H1(Ω),u |∂Ωu= 0

}
• Uh(Ω) =

{
u ∈ U(Ω),u(x) =

∑Nx

i=1 φi(x)ui

}
• I = L2(I,R) with norm ∥ • ∥I =

(∫
I
•2 dt

)1/2
The governing elastodynamics PDE is given by

ρü = divσ + fd, (x, t) ∈ Ω⊗ I, (1)

where fd = fd(x, t) is an external volumetric force and where, for notational simplicity, we define ü = ∂2u/∂t2

throughout this paper. Dirichlet and Neumann boundary conditions on ∂Ω = ∂Ωu ∪ ∂Ωσ are given by{
u = ud, (x, t) ∈ ∂Ωu ⊗ I (2a)
σ · n = Fd, (x, t) ∈ ∂Ωσ ⊗ I , (2b)

5
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where Fd = Fd(x, t) is an external surface density and where σ is the stress tensor given by σ = K : ε for
(x, t) ∈ Ω⊗ I (K is the Hookean elastic operator and ε is the small deformation strain tensor). For all simulations in
this contribution, the material is assumed to be linear elastic, homogeneous, and isotropic.

2.2 Reference solution using the Finite Element Method

This section provides a brief description of the construction of the reference solutions that are used to construct the
reduced databases that are used to train the GNN of Section 3.2.

2.2.1 Weak formulation and semi-discretization in space

As in conventional FEM [1, 2, 3, 4, 5, 6, 7, 8, 9], boundary conditions are imposed strongly: the unknown field u(x, t)
is represented at each instant t in the space of functions defined by Ω that satisfy a priori the Dirichlet conditions
of Equation (2a). Hence, for the weak formulation, we consider test functions v∗ ∈ U(Ω;0) (i.e., the space of
kinematically admissible functions at zero), yielding a system for the unknown u(x, t) given by

m(v∗,u) + k(v∗,u) = f(v∗; t), u ∈ U(Ω;ud),∀v∗ ∈ U(Ω;0),

u(x, 0) = u0, (x, t) ∈ Ω⊗ {0},
u̇(x, 0) = u̇0, (x, t) ∈ Ω⊗ {0},

(3)

where the scalar products m(·, ·) and k(·, ·) and the linear form f(·; t) are defined respectively by
m(v∗,u) =

∫
Ω
ρüv∗dΩ,

k(v∗,u) =
∫
Ω
σ : ε (v∗) dΩ,

f(v∗; t) =
∫
Ω
fdv

∗dΩ +
∫
∂Ω

Fdv
∗dS.

(4)

The system given by (3) can be resolved by a Galerkin approach that searches for the solution in a subspace Uh(Ω) ⊂
U(Ω) of finite dimension Nx with a basis given by Φ = [φ1, . . . ,φNx

]. Hence an approximate solution at each time
t to u can be represented as uh = Φu(t) where (t) ∈ RNx are the corresponding coefficients in the approximation
basis [φ1, . . . ,φNx

]. The semi-discretized problem in space hence consists of solving the following sytem for the
displacement vector u : I → RNx :


Mü(t) +Ku(t) = f(t),

u(0) = u0,

u̇(0) = v0,

(5)

where M = m(Φ,Φ) is the mass matrix, K = k(Φ,Φ) is the stiffness matrix, and f(t) = f(Φ; t) is a generalized force.
The vectors u0 ∈ RNx and b0 ∈ RNx are respective cofficients of u0 and u̇0 in the approximation basis Φ (where,
again, u̇ = du/ dt and ü = d2u/ dt2).

2.2.2 Time integration

The final ODEs in Equation (5) can be integrated in time using a classical Newmark scheme [66] (a commonly-employed
approach [67, 31]). Specifically, we utilize an implicit scheme with average acceleration, which leads to a conservative
and stable algorithm. The time interval of interest I = [0, T ] can be discretized into tn = (n− 1)∆t, n = 1, ..., Nt for
∆t = T/(Nt − 1). Time is discretized uniformly with a timestep ∆t. The corresponding discretized space in time (of
size Nt), is henceforth denoted I∆t, and hence U ∈ Uh(Ω)⊗ I∆t where U denotes the discrete space-time solution
field.

6



May 28, 2024 Preprint submitted to CMAME

3 Methodology

This section details the methodology introduced in Figure 2 of the introdution: the generation of the classical ROB
sets {P data

p }p={1,...,N} that are each associated with a non-parametric geometry
{
Ωdata

p

}
p={1,...,N} (Section 3.1); the

proposed GNN-PGD model trained on {P data
p } in order to construct/predict a ROB for an unknown geometry Ωtest

(Section 3.2); and the Galerkin projection step employed to solve the corresponding time-dependent ODE given by
Equation (5) (Section 3.3). A summary of the overall methodology is presented in Section 3.4.

3.1 Database generation

PGD [30, 18, 31] is employed to compress the reference FEM solutions of Section 2.2 in the form of separated variable
mode products, i.e., each reduced-order basis contained in {P data

p }p={1,...,N} corresponds to PGD spatial modes. Modes
produced by such a decomposition have been shown to provide a better representation of a solution than the eigenmodes
of the structure [27], especially for non-linear problems [31].

In order to explain the principles of PGD we temporarily use a continuous formulation of the referential problem of the
equation (1). Given a known solution u(x, t) : Ω× I → U(Ω)⊗ I, the method of separating space-time variables via
PGD consists of seeking an appropriate approximation uM ∈ U(Ω)⊗ I of u(x, t) in the form given by [32]

u(x, t) ≈ uM (x, t) =

M∑
m=1

Λm(x)λm(t), (6)

where Λm ∈ U(Ω) is a spatial mode and λm ∈ I is a temporal mode (their product, Λmλm, is often called a space-time
mode [32]). The total number of modes M is called the rank of the approximation [32].

The construction of mode m is typically obtained through a greedy algorithm that seeks a rank 1 approximation and
minimizes its error with respect to the approximation error of rank m− 1 [18, 68, 32], i.e.,

Λm, λm = argminU(Ω)×I


∥∥∥∥∥∥u(x, t)− um−1(x, t)︸ ︷︷ ︸

approximation error of rank m − 1

− Λm(x)λm(t)︸ ︷︷ ︸
new approximation of rank 1

∥∥∥∥∥∥
2

L2


um−1(x, t) =

∑m−1
k=1 Λk(x)λk(t)

, (7)

where ∥u∥L2 =
(∫

I

∫
Ω
u2(x, t)dΩdt

)1/2
. Defining ∆u = u−um−1 and exploiting stationarity, Equation (7) can be

solved as a coupled problem given by [32]: ∀λ∗ ∈ I,
∫
I
λ∗

(∫
Ω
(∆u−Λmλm)ΛmdΩ

)
dt = 0 ⇐⇒ λm =

∫
Ω

∆uΛmdΩ∫
ω
Λ2

mdΩ
= fu(Λm)

∀Λ∗ ∈ U(Ω),
∫
Ω
Λ∗ (∫

I
(∆u−Λmλm)λmdt

)
dΩ = 0 ⇐⇒ Λm =

∫
I
∆uλmdt∫
I
λ2
mdt

= gu(λm)
(8)

The solutions λm,Λm exist and are unique up to a multiplicative factor. In order to ensure overall uniqueness of the
solutions in (8), the spatial mode is usually normalized [32]. A fixed-point algorithm, using stagnation of the temporal
mode as a stopping criterion, can be used to find such solutions with guaranteed convergence since seeking the best
rank r approximation with a given ∆u can be shown to be equivalent to a generalized eigenvalue problem [68].

In practice, the final rank M is selected based on an error ϵ that serves as the stopping criterion for the greedy algorithm,
i.e.,

∥u− uM∥2L2

∥u∥2L2

⩽ ϵ. (9)

This ultimately enables automatic selection of the optimal number of modes for a given ϵ, which can be computationally
advantageous over SVD-based approaches that require calculation of the complete set of modes of the original field u
[67] in order to form an approximation or basis.

In the discrete sense (where the FEM-based reference solution is given by U ∈ Uh(Ω) ⊗ I∆t), one seeks the
separated basis above in the corresponding finite-dimentional space, i.e., ∀m,Λm ∈ Uh(Ω),λm ∈ I∆t, and hence the
reduced-order approximation is given by

U ≃ UM =

M∑
m=1

Λm ⊗ λm. (10)

7
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Although N ×Nt real numbers are needed to store the full field U, the representation for UM in Equation (10) requires
only M × (N +Nt) real numbers for M << N .

Hence for each element of the set of arbitrary geometries
{
Ωdata

p

}
p={1,...,N}, the associated ROB (via a PGD on their

corresponding reference solutions as described above) can be given by

P data
p = Span

({
Λdata

p,m

}
m={1,...,M}

)
, (11)

where •data denotes the labeled data for a training database. The set of each ROB, {P data
p , }p={1,...,N}, constitutes the

complete database for the supervised learning employed in the GNN component (detailed in the following subsection)
of the GNN-PGD generator introduced in this work.

8
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3.2 Deep learning on graphs: Graph Neural Networks (GNNs)

The following presents an overview of GNNs and additionally details the implementation of our proposed architecture.
As a reminder, the aim of the GNN-PGD generator is to propose a ROB to describe the solution field of a new, arbitrary,
geometry Ωtest. In order to accomplish this, the GNN-PGD generator is trained on the database ({P data

p }p={1,...,N})
presented in the previous subsection. Figure 3 provides an illustrative summary of the main steps of a GNN.

3.2.1 Overview of GNN

The formalism of graph neural networks (GNNs) offers a powerful approach for data processing of numerical problems
involving meshes. A mesh can be interpreted as a graph comprising nodes i for i = 1, ..., n linked by edges. These
nodes and edges contain features xi and eij respectively. The graph also contains mesh connectivity information in
the form of an adjacency matrix A (which is simply a reformulation of the connectivity table deriving from an FEM
problem). As an example, the adjacency matrix of the graph in Figure 3 is given by

A =


0 1 0 0 0 0 0
1 0 1 1 0 0 0
0 1 0 1 0 0 0
0 1 1 0 0 0 0
0 0 0 1 0 1 1
0 0 0 0 1 0 0
0 0 0 0 1 0 0


n×n

In this work, we consider undirected graphs, which result in symmetrical A adjacency matrices. Moreover, we don’t
add any self-loops to the nodes [69], which enables a diagonal of zeros in A.

1

2

34

6

5

7 Message function: Update function:Aggregate function:

Figure 3: Illustration of a Message-Passing layer on a three-stage graph. Neural networks symbolize functions whose
parameters can be adjusted by learning (here applied to node three of the example graph of n = 7 nodes).

GNNs are recognized as a generalization of Convolutional Neural Networks (CNNs) applied to graph-structured data.
Traditionally, CNNs have been used for Cartesian grid-structured data such as images [70]. This generalization enables
GNNs to detect and understand complex structures in data by applying convolution-like operations, making them
extremely effective for, e.g., regression tasks.

Our proposed architecture uses the Message-Passing GNN (MP-GNN) formalism [69], which is a mathematical
formulation local to the node level. In MP-GNN models, the latent feature vector hi of a given node i is derived by
employing a permutation-invariant aggregator function

⊕
, such as a sum or a mean, over the feature vectors of its

neighbors N(i). Additionally, each neighbor’s feature vector may undergo transformation by a function ψ. Subsequently,⊕
may undergo further transformation by another function ϕ. This sequence of operations constitutes a GNN layer[69].

Formally, the equation governing the feature vector h(l+1)
i of a node i in the subsequent GNN layer ℓ + 1 can be

expressed as

h
(ℓ+1)
i = ϕ

hℓ
i ,

⊕
j∈N(i)

ψ
(
hℓ
i ,h

ℓ
j

) , (12)

which is illustrated in Figure 3.

9
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Each layer ℓ is thus defined by the three functions (
⊕
, ψ, ϕ). The message transmission function ψ and the update

function ϕ are learnable and enable us to exhibit the important graph characteristics required for learning. The
aggregation function

⊕
is not learnable and must be permutation invariant. This latter characteristic ensures that the

order and number of neighboring nodes has no impact on the dimension of the aggregation result. This flexibility enables
GNN to handle graphs of varying sizes, making them a powerful tool for regression applications on graph-structured
data, and therefore potentially on physical problems requiring meshing of any arbitrary size. For further details, the
reader is reffered to [71].

3.2.2 GNN-PGD implementation and training strategy

The most commonly-found approach for physical problems [60, 57, 59, 61], originally proposed in [58], is known as
MESHGRAPHNET. Such a method employs an encode-process-decode architecture of [56], which consists of several
multilayer perceptrons (MLPs) [72] shared between all nodes of the graph. This architecture is invoked to design our
GNN-PGD algorithm, which is summarized in algorithm 2 (described with a local perspective, at the scale of node i, for
clarity, an ddetailed in this section). In addition to the connectivity matrix A of the graph, the input to the GNN-PGD
procedure contains k characteristics (to be considered) of each mode i, i.e., xi ∈ Rk (forming a row of a matrix we call
X). These characteristics are specific to the Ω geometry and can include, for example, the position of the nodes or the
type of boundary conditions to which they are subjected (Dirichlet or Neumann). This is clarified with further details
that are presented in section 4.

Algorithm 2: GNN-PGD description
GNN-PGD (X,A)

inputs :xi input feature vector of node i
A graph adjency matrix

output :yi output feature vector of node i
Encode

h0
i = MLPnode_encoder(xi)

Process
for 0 ⩽ ℓ ⩽ L− 1 do

h
(ℓ+1)
i = ϕℓ

hℓ
i ,
⊕

j∈N(i) ψ
ℓ

hℓ
i ,h

ℓ
j , xi − xj︸ ︷︷ ︸

skip-connections




Instance Normalisation of h(ℓ+1)
i

Decode
pi = MLPnode_decoder(h

L
i )

return pi;

For a general output P = [p1, ...,pn]
⊤, the goal is to predict an image of the ROB associated with the geometry Ω, i.e.,

at each node i, we predict the output pi ∈ Rg. Since the ROB is associated with M spatial modes, and since GNN
provides results at the node level, each node has g =M × d features (with d = 1, 2, 3, the dimension of the problem).
In other words, pi contains the projections of the ROB P along the different d dimensions of the Ω geometry. In
the training phase, this output P is compared to the given labeled training data

{
P data

p

}
p={1,...,N} in order to adjust

the weights of the GNN-PGD generator. In the inference phase (online phase), we designate this output by P new
GNN. A

summary of the notation and nomenclature for the GNN-PGD proposed in this work is given in Table 1.

The three steps in algorithm 2 are as follows. In the first step (Encode), an MLP is utilized to transform the input
quantities xi into a latent space of dimension H . In this work, we employ a two-layer MLP with SiLU activation
functions [73] and a normalization layer on the output [74]. The second step (Process) employs the GNN layers.
Details of the MLP architecture used here are given in table 2. In addition to the information provided by previous
layers, the corresponding message functions ψ(l) take into account the non-transformed physical quantities xi (known
as skip-connections, as proposed in DenseNet [75]). After each convolution, an instance normalization layer [76] is
applied in order to improve convergence and stability of the learning phase without a dependence on the batch size
used during learning [74] (unlike batch normalization layers [77]). Our proposed method employs the same input and
output dimensions (of size H) during this process phase, thanks to our choice of MLP architecture and the use of a
permutation-invariant aggregation function. The final third step (Decode) in algorithm 2 transforms the process output

10
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Structure of graph inputs
G = (V,E) A graph; V and E are sets of vertices and edges,
n,m Numbers of vertices and edges in G; |V | = n, |E| = m,
N(i) 1-hop neighborhood of i,
A ∈ Rn×n The graph adjacency matrices.

Structure of GNN computations
L, The number of GNN layers,
k, The number of input node features,
g, The number of output node features,
X ∈ Rn×k, Input node features matrix,
P ∈ Rn×g , Outputs node features matrix,
xi,pi,h

ℓ
i , Input, output, and hidden feature vector of a node i (layer ℓ ).

Table 1: Nomenclature of symbols used to describe the proposed GNN-PGD algorithm.

from the latent dimension H to the physical output dimension g. In order to achieve this, we use another two-layer
MLP (with SiLU as the activation function for the first layer) and a linear activation function for the output layer. The
architectures described above are summarized in Table 2.

Function Inputs
Size

Outputs
Size Details Learnable?

MLPnode_encoder(•) k H linear ; SiLU ; linear ; SiLU ; LayerNorm

ψℓ(•) H H linear ; SiLU ; linear ; SiLU⊕
(•) H H mean function

ϕℓ(•) H H linear ; SiLU ; linear ; SiLU

MLPdecoder(•) H q linear ; SiLU ; linear
Table 2: Description of the architectures of the various MLPs employed to build the GNN-PGD algorithm.

For each bath b, the loss function employed in this work for the supervised training of the GNNs is a Mean Squared
Error (MSE) function that is weighted by hyperparameters {ηm}m={1,...,M} (each associated with a spatial mode that
comprises the ROB P ) and is given by

Lb =

M∑
m=1

ηm MSE
(
Λb,m −Λdata

b,m

)
, (13)

where Λb,m is the m-th mode associated with the ROB P of batch b, and where Λdata
b,m is the m-th mode associated

with the data P data
b . Hence the total loss is simply given by

L =

Nbatch∑
b=1

Lb. (14)

Using this loss function, optimization for training proceeds with a stochastic gradient descent algorithm AdamW [78],
which incorporates L2 regularization on the GNN weights to prevent overfitting. This algorithm is controlled by two
hyperparameters: the learning rate α and the ”weight decay” γ (for regularization). A noise percentage of 5% of the
average value of X is added to the inputs of the GNN-PGD in order to improve the regularisation of the network. [79].

A generalized summary of the GNN-PGD hyperparameters employed in this work is provided in Table 3. These
hyperparameters can significantly influence the quality of learning and, consequently, the performance of the final
trained GNN-PGD model. In order to optimize these hyperparameters—typically an exploratory and experimental
task [45, 80]—we propose the use of a specific method based on a systematic design of experiments (DOE) that is
characterized by two types of variables: the maximum number of models to be tested (100 in all subsequent results of
this paper), and the intervals of values that the aforementioned hyperparameters are permitted to take in each model
(discrete or continuous). The 100 models are generated using the DOE method called maximum projection Latin
Hypercube Sampling (LHS), which enables an efficient exploration of all the different possible model combinations [81].

11
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The general idea is to train these 100 models of different values of hyperparameters for a reasonable number of epochs
and then select the most relevant model based on a common metric. The models identified as most relevant or accurate
are then re-trained for a larger number of epochs.

Hyperparameters
H dimension of the latent space,
L numbers of GNN layers,
ηm weight of learned modes,
α the learning rate,
γ the weight decay,
bs the batch size.

Table 3: Hyperparameters that are optimized for the GNN-PGD learning using a Design of Experiments (DOE)
procedure known as Latin Hypercube Sampling (LHS) [81].

At the end of the offline phase (see Figure 2) described in this section, a GNN-PGD generator is obtained, which
constructs a ROB PGNN = GNN-PGD(Ωnew) for a new (arbitrary) geometry Ωnew. As described in the following
section, this ROB can then be used to solve the associated ROM for the complete problem.

3.3 Galerkin projection on the trained ROB

To complete the solver, Equation (5) for n× d degrees-of-freedom is solved in the form of a product of functions with
separated variables, similar to common methods of projection onto reduced bases [27, 19, 17], i.e.,

unew(t) = P new
GNNλ(t), (15)

where P new
GNN is the ROB in space obtained by GNN as described in the previous section. In order to obtain the

corresponding temporal coefficients of the general solution given by Equation (15), we utilize a standard Galerkin-type
projection approach [27] which results in an ODE-system given by

P new
GNN

⊤ ·M P new
GNNλ̈(t)︸ ︷︷ ︸
ünew(t)

+P new
GNN

⊤ ·K P new
GNNλ(t)︸ ︷︷ ︸
unew(t)

= P new
GNN

⊤ · f(t), (16)

which is a system of M ODEs (for each spatial mode i = 1, ...M ) for the corresponding M temporal unknowns
λ(t) = (λ1(t), ..., λM (t))⊤. The cost of solving this linear system is very low, since the size of the operators to be
inverted is M ≪ n× d. Once the unknown λi(t) are obtained from solving Equation (16), the complete space-time
solution can be reconstructed via Equation (15) (or, more explicitly, Equation (6)).

For noise that may result in the P new
GNN prediction, what follows is a proposed procedure describing how one can account

for such errors. Indeed, one can reasonably expect a prediction of the GNN-PGD generator that is not identical to
the reference P . In the next subsection, we present a noise-reducing strategy and apply it to a simulated example of
artificial Gaussian noise to demonstrate its efficacy.

3.3.1 Noise effect and resolution strategy

In order to investigate and ultimately mitigate the impact that noise, which may be present in spatial modes, can have on
the quality of the projection and resolution of (16), we consider the “true" (or “exact") modes of the PGD decomposition
(i.e., those that are constructed for the database given by

{
Λdata

m

}
m={1,...,M}). Gaussian noise of different levels is

applied to all degrees-of-freedom of the structure, and the intensity is adjusted by a percentage of the maximum value of
the modes amplitude. The corresponding “noisy" modes are denoted

{
Λnoisy

m

}
m={1,...,M}

and constitute a new reduced

basis given by

Pnoisy = Span
({

Λnoisy
m

}
m={1,...,M}

)
. (17)

Figure 4 presents the angle formed between the two vector spaces P and Pnoisy as a function of percentage of artificial
noise added for an example ROB solution comprised of three modes. It can be observed that for low levels of noise,
these two vector spaces are very close. However, for noise levels close to 100%, these two vector spaces are almost
orthogonal.

12



May 28, 2024 Preprint submitted to CMAME

Figure 4: Effect of the presence of noise in the ROB on the resolution of the projected equation. Three modes have
been used to generate the ROB.

Figure 4 additionally presents the evolution of the L2 error in the field Unew (relative to the reference solution Uex) as a
function of the noise added to Pnoisy, defined by the expression

errorU =
∥Uex −Unew∥U

∥Uex∥U
,% ∥ • ∥U =

(∫
Ω×I

•2 dΩdt
)1/2

.

Two cases are presented: a canonical case and a filtered case. The former corresponds to the evolution of the error
solving the original form of the ODE system (given by Equation (16)), i.e.,

P⊤
noisy ·M Pnoisyλ̈(t)︸ ︷︷ ︸

ünoisy(t)

+P⊤
noisy ·K Pnoisyλ(t)︸ ︷︷ ︸

unoisy(t)

= P⊤
noisy · f(t). (18)

The filtered curve corresponds to the error when solving a preconditioned formulation of (16) which, in general, is
given by

P⊤
noisy · SM Pnoisyλ̈(t)︸ ︷︷ ︸

ünoisy(t)

+P⊤
noisy · SK Pnoisyλ(t)︸ ︷︷ ︸

unoisy(t)

= P⊤
noisy · Sf(t), (19)

where S ∈ R(n×d)2 can be interpreted as a filter or a preconditioner. Here, a preconditioner of S = K−1 has been
utilized, inspired by [82], where a preconditioned norm with operator S = K−1 is proposed (referred to as the
reconditioned equilibrium gap (REG)). In [82], the concept of “spectral sensitivity" is introduced in order to quantify
the sensitivity of different norms, constructed with different operators (such as the stiffness operator K), towards the
presence of noise from displacement field measurements (the context of that study is the identification of nonlinear
behavior laws from experimental measurements by image correlation). Indeed, the K operator has a high spectral
sensitivity [82], reflecting its high sensitivity to noise, unlike the M operator. Such sensitivity can be attributed to the
differential nature of K (see Equations (4) and (5)). On the other hand, it’s the integrating nature of S that can correct
the undesirable effects of such noise. Choices other than S = K−1 can accomplish the same objective, as long as
they contain the same regularization properties of K−1. For the preliminary (linear) solver proposed here, we employ
S = K−1 as a proof-of-concept: despite the prohibitive cost of calculating K−1 in a linear elastodynamics context, such
cost remains negligible for nonlinear problems [82] (which is the long-term objective of the methodology presented in
this paper).

Figure 4 illustrates the significant improvement that can be attained by using the filtering/preconditioning strategy
(Equation (19)) versus solving the original canonical ODE system (Equation (18)). Indeed, for all levels of noise in
Pnoisy, the former results in significantly lower error; this implies that solving the unfiltered system of Equation (18) is
very sensitive to the noise present in Pnoisy and may possibly lead to a very polluted ROB that has poor approximation
capabilities of the original FEM system of interest. For all numerical experiments of section 4, the preconditioned
system given by Equation (19) is employed to obtain the temporal coefficients λi(t).
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3.4 Summary of our methodology

algorithm 3 presents a summary of the overall methodology (additionally summarized in the introductory Figure 2).

Algorithm 3: Methodology summary

Offline phase
({

Ωdata
p ,Udata

p

}
p={1,...,N}

)
inputs :

{
Ωdata

p ,Udata
p

}
p={1,...,N}, known geometries and associated high-fidelity solution fields,

output :GNN-PGDgenerator: trained GNN model,
Database compression

for 0 ⩽ p ⩽ N do
creation of the ROB P data

p from the PGD compression of the high fidelity field Udata
p ,

return
{
P data

p

}
p={1,...,N}

GNN-PGD training
Supervised learning of GNN-PGD on

{
P data

p

}
p={1,...,N}

return GNN-PGD generator
return GNN-PGD generator

Online phase (Ωnew,M,K, f ,S)
inputs :Ωnew,M,K,F ,S, new geometry (unknown to GNN-PGD generator and not parameterized) and its

associated operators
output :Unew: full displacement field solution
GNN-PGD inference

P new
GNN = GNN-PGD(Ωnew): ROB proposal by GNN inference,

return P new
GNN

Galerkin projection
P new

GNN
⊤ · SMP new

GNNλ̈(t) + P new
GNN

⊤ · SKP new
GNNλ(t) = P new

GNN
⊤ · Sf(t)

smart Galerkin projection on P new
GNN, and resolution of the system ODE,

return λ(t)
u(t) = P new

GNNλ(t): full displacement field
return Unew
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4 Performance/case study: simulating aircraft seat response to crash loads

In order to assess the performance of our proposed solver, we consider a case study relevant to structural design, in
particular towards the problem of presizing/predimensioning of aircraft parts subjected to sudden loadings. The aircraft
industry uses the acceleration (or deceleration) loading profile depicted in Figure 5 in order to assess the strength
of aircraft seats according to regulation 49 CFR Part 572, Subpart B [11]. This loading simulates the deceleration
experienced by an aircraft in the event of a collision with an obstacle. The sizing criteria focus on both the mechanical
integrity of the seat components as well as the physical safety of the passenger. In the proof-of-concept methodology
presented here, passenger modeling is not taken into account, and the analysis focuses solely on structural integrity.
The acceleration load illustrated in Figure 5 is applied as an inertial force at the seat structure level and also as a
loading force at the seating surface (equivalent to the deceleration force experienced by a 90-kg passenger). These two
contributions are reflected in the loading term f(t) in the right-hand-side of Equation (5).

t(ms)0

 -16

Figure 5: Loading of interest

4.1 Database generation

A database is generated using finite element simulations for the training of the GNN-PGD. In order to accomodate the
common restrictions of industrial applications, we use a reasonably small number of geometries: 500, similarly to [45].
Out of these 500 airplane seats, 80% (N = 400 seats) are chosen to constitute the training set (i.e., the seats seen by the
GNN-PGD for adjusting parameter weights through learning), i.e., {Ωdata

p , }p={1,...,N=400} different geometries in the
training database. Another 10% (50 seats) of the original 500-seat database is used for the validation set, representing
seats unknown to the network but used to fine-tune the learning process in order to prevent overfitting by employing
early-stopping criteria [83]. The remaining 10% (50 seats) make up the test set on which the GNN performance is
evaluated after training, representing new Ωnew geometries that are completely unknown to the GNN-PGD model
(see algorithm 3). We note that the original high-fidelity space-time fields

{
Udata

p

}
p={1,...,500}, whose solutions are

facilitated by FEM, have very similar separability properties. Indeed, by setting a stopping criterion of the PGD mode
generation algorithm to ε = 10−3 in Equation 9, we obtain a decomposition rank of M = 3 for all set of seats, and
hence train with and keep only M = 3 modes in the ROB. A summary of the database generation procedure is provided
in Figure 6.

Geometry generation 
PGD compression
 and ROB creation Training set 80%

Validation set 10%

Test set 10%

High-fidelity resolution
(FEM)

Storage size: Storage size:

Figure 6: Database generation

For the proof-of-concept presented here, we utilize a 2D modeling approach with the assumption of plane deformations
(extention of the overall methodology to three-dimensions is straightforward). The material considered is Aluminum
6082-T6, commonly used in the aerospace industry [11], and is further assumed to be homogeneous and linear elastic
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isotropic. In order to generate the database from which the seats in Figure 7 are extracted, we employ five geometric
parameters: the radii of each of the curved holes and the (x, y) position of the interior hole’s center. Although these
parameters are crucial for database generation, we recall that the solver proposed here is for non-parametric geometries,
and hence are not considered beyond database generation (similarly to other approaches [45, 44]). Indeed, such
parameters are specifically unknown to the GNN-PGD model for the motivations of this paper (cf. section 1). The
meshes are generated by the open-source software package GMSH [84] with T3 linear elements. In our context, we
assume that the input meshes possess good quality in terms of element aspect ratios and node densities, which are
adapted to the regularity of the fields of interest. The temporal scheme utilized to solve problem (5) is the Newmark
scheme [66], particularly specifically the implicit formulation with average acceleration. A temporal convergence study
results in an a choice of an optimal number of time steps corresponding to Nt = 1000. The finite element solver for
generating the high-fideleity database (described in subsubsection 2.2.1 and subsubsection 2.2.2) is self-implemented in
an in-house MATLAB code.

seating surface
embedded node

Figure 7: Example of three seats from the database to illustrate the embedded nodes and seating surface.

4.1.1 Database characteristics

Figure 8 presents database statistics in the form of histograms. It can be seen that the number of degrees-of-freedom
varies considerably from seat to seat, with a total database standard deviation of 58 degrees-of-freedom and an
amplitude of 275 degrees-of-freedom between the two extrema. Recall that these differences in degrees-of-freedom
render conventional ROM approaches as impossibly to apply on heterogeneous databases such as the one considered
here.

(a) Histogram of the distribution of the
number of degrees of freedom for the
500 database seats generated.
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(b) Histogram of the distribution of the
maximum simulated displacement of the
500 seats in the generated database.

(c) Histogram of the distribution of
the simulated maximum Von Mises
stress for the 500 seats in the generated
database.

Figure 8: Statistical analysis of the database used for training, validation, and testing.
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The middle and right panels of Figure 8 also highlight the diversity in the overall mechanical behavior of the seats
based on displacement and maximum Von Mises stress, respectively. Furthermore, the distribution of seats is clearly
non-Gaussian. This variability poses a significant challenge for learning and understanding the underlying patterns in
seat mechanics.

4.2 GNN-PGD implementation details and parameters

This section details the specific parameters employed in this case study for the GNN-PGD model introduced in
subsubsection 3.2.2. All algorithms were implemented with the pytorch library [85] using pytorch-geometric [86]. The
input matrix X ∈ Rn×k (Table 1) is composed of information on the coordinates of the node (two components, x and
y), the type of node (free or embedded, as a boolean), the maximum-in-time of the generalized effort f(t) at node i (two
spatial components, fx and fy). Hence at each node, there are k = 5 elements of input. Recall that the generic output
of the GNN-PGD generator is P ∈ Rn×g; hence the projection of the M = 3 PGD modes here associated with each
seat yields g = 3× 2 = 6.

For improving learning performance of our GNN-PGD method, the input data is also pre-processed as follows. The
input quantities (X) are normalized according to the mean and standard deviation statistics of the training set, and the
output quantities (P ) are standardized according to the maximum and minimum of the training set.

Hyperparameters H L η1 η2 η3 α γ
Values 24 15 10 1 100 3× 10−3 5× 10−3

Table 4: The final hyperparameters employed for the results of this section.

The hyperparameters determined for these test cases are produced by a DOE (as described in subsubsection 3.2.2) for
100 different models (i.e., with different hyperparameters on each) over 700 epochs. The table 4 shows the resulting
hyperparameters associated with the best model, which is then utilitized for training over a larger number of epochs
until an early learning stopping criterion is reached. The final GNN-PGD generator has a number of 65 022 learnable
parameters.

Figure 9 presents the corresponding evolution of the loss as a function of epochs for the corresponding GNN-PGD
model during the training phase (see Equation 14). We note that the GNN-PGD model updates its parameters as many
times as there are batches in the training set (400 in our case). The training has been carried out on 4 Nvidia V100
GPUs and lasted 4 hours and 25 minutes (including hyperparameter optimization).

4.3 GNN-PGD learning results

We analyze the results of the GNN-PGD training by evaluating its performance on the 50 seats in the test set{
Ωtest

p

}
p={1,...,50}, i.e., seats unknown to and unseen by the GNN-PGD. The GNN-PGD’s objective is to construct the{

P test
p

}
p={1,...,50} ROBs of the 50 as best as it can. As described earlier, these ROBs are composed of M = 3 PGD

spatial modes (to be predicted by the GNN-PGD). We quantify the error between the GNN-PGD’s inference prediction{
P GNN

p

}
p={1,...,50} and the labeled ROBs

{
P test

p

}
p={1,...,50} obtained from the reference field decomposition. The

metric used is the normalized root-mean-square error (RMSE) for each of the M = 3 modes predicted, and the results
are presented in Figure 10.

Results demonstrate the ability of GNN-PGD to predict with good accuracy the ROBs associated with the unknown
(test) seat geometries. Indeed, errors on predicted modes are small: less than 5% for Mode 1, less than 10% Mode
2, and less than 15% for Mode 3. We note that, as evidenced in Figure 10, the errors increase on average with the
rank of the predicted mode. An analysis of the seats that lie on the higher end of the error plots yields no discernible
pattern to the particular geometries that have slightly higher errors. A visual comparison with the corresponding true
reference modes (“Ground Truth"), including a plot of the difference, of the first, second and third spatial mode solutions
predicted by GNN-PGD are provided in Figures 11, 12, and 13, respectively. These figures demonstrate the ability of
the proposed GNN-PGD solver to very accurately capture both coarse and fine behavior found in the very different
modes. Figure 14 additionally presents a similar comparison for Mode 3 on a diffferent geometry than Figure 13,
further illustrating the large variations that can be found in the various modes between geometries, and the ability of
GNN-PGD to accurately capture and predict such disparate behavior between different seats. The results in general
indicate the ability of GNN-PGD to predict well a ROB for a new geometry, which can then be used to obtain the
complete associated spatio-temporal field via Galerkin projection (subsection 3.3).
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Figure 9: Evolution of the loss function of the GNN-PGD generator associated with the hyperparameters of Table 4.
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(b) Normalized Root Mean Squared Er-
ror (RMSE) histogram for Mode 2 of the
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Figure 10: Results on the modes learned by the GNN-PGD.

4.3.1 Error of the fully-reconstructed space-time fields

Using the ROBs predicted above, we analyze the complete space-time field error associated with the test geometries{
Ωtest

p

}
p={1,...,50}. As described in subsection 3.3, the temporal component can be obtained from a Galerkin projection

of the predicted ROBs
{
P GNN

p

}
p={1,...,50}. The resulting space-time solutions, denoted

{
UGNN

p

}
p={1,...,50}, are

compared with the FEM reference fields
{
Utest

p

}
p={1,...,50}. The resulting normalized space-time L2(Ω, I) errors

(i.e., over all space and time) are presented in Figure 15. One can observe < 5% errors for all tested seat geometries{
Ωtest

p

}
p={1,...,50}. Such performance is promising from an iterative engineering design standpoint, as discussed in the

introduction.

4.3.2 Comparison with other approaches

We compare the results of our proposed GNN-PGD solver with commonly-found autoregressive approaches from
literature [54, 58, 80]. All other GNN methods, as far as the authors know, construct the temporal solution timestep-by-
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Figure 11: Example of the first mode predicted by GNN-PGD for seat 1 from the test database, together with the ground
truth and error.

Figure 12: Example of the second mode predicted by GNN-PGD for seat 10 from the test database, together with the
ground truth and error.

timestep by feeding back the prediction of the time step ti as an input to the GNN in order to predict the next time step
ti+1. A summary of these standard approaches is illustrated in Figure 16.

We similarly implemented the standard autoregressive approach (GNN-AR) via pytorch, following [80, 58]. The same
hyperparameter optimisation strategy (with a DOE, as described in subsubsection 3.2.2) is employed in order to train
the GNN-AR for comparative purposes. Figure 17 presents a comparison of temporal evolution of the spatial L2 errors
between the GNN-PGD introduced in this work and GNN-AR for all 50 test cases. Results demonstrate a well-known
drawback of the timestep-by-timestep GNN-AR approach: an error increase as a function of time (rollout error increase
[80, 58])—for our test cases, up to 15%. Conversely, our proposed GNN-PGD approach does not suffer from such an
increase in error over time; in fact, it remains bounded with a maximum error of only 3% over all timesteps. Additionally,
we find that the learning time (offline time) associated with the GNN-AR approach (16h40) is significantly higher than
the GNN-PGD approach (4h25). This is expected since the autoregressive approach considers all Nt = 1000 snapshots
of each geometry in the training database, whereas GNN-PGD only considers the M = 3 spatial modes associated
with these geometries (and reconstructs the temporal component via projection and a computationally-inexpensive
resolution of the corresponding ODEs of Equation (16)). Another advantage of the GNN-PGD approach over the
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Figure 13: Example of the third mode predicted by GNN-PGD for seat 23 from the test database, together with the
ground truth and error.

Figure 14: Example of the first mode predicted by GNN-PGD for seat 44 from the test database, together with the
ground truth and error.

GNN-AR approach is the number of calls to the GNN network. In the case of an autoregressive approach, the number
of calls to the network is linked to the number of time steps required in the simulation (e.g., 1000), whereas for the
GNN-PGD approach, only one evaluation is required, which translates into a shorter inference time (online time) for
the GNN-PGD approach.

4.3.3 Generalization ability of GNN-PGD to infer other topologies

In order to test GNN-PGD’s generalization capabilities for predicting a ROB on topologies that are highly different
from those with which it has been trained (including very different discretizations), we consider the seats illustrated
in Figure 18, which contain two or three holes in the interior of the mesh (as opposed to only one used in training,
validation, and testing, see Figure 7).

Figures 19 illustrates and compares Mode 1 to the ground truth for two circular holes in a seat. Clearly, GNN-PGD
is able to capture the general behavior of the mode, with a maximum error of only 15%. Similarly, 20 illustrates and
compares Mode 2 for a geometry containing three holes, which also indicates a good approximation to the ground truth.
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Figure 15: Distribution of the normalized space-time L2(Ω, I) error for the reconstructed fields of the test geometries{
Ωtest

p

}
p={1,...,50}.

Initialisation:

Figure 16: Illustration of a standard GNN-AR autoregressive approach employed as a benchmark comparison for the
proposed GNN-PGD method.

Figure 17: Comparison of the time evolution of the spatial L2(Ω) error between the GNN-AR approach [80, 58] and
our proposed GNN-PGD approach for the test set

{
Ωtest

p

}
p={1,...,50}.
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seating surface
embedded node

Figure 18: Example of three seats, exterior to the original database, of very different topologies (i.e., multiple holes).

A quantification of the L2 spatial error for all predicted modes for each of these two cases (two and three holes) is
presented in Table 5, along with the complete space-time L2(Ω, I) for the final reconstructed solutions.

Figure 19: Mode 1 predicted by GNN-PGD (trained on one hole) on a topology with two holes.

Mode 1 L2(Ω)
error

Mode 2 L2(Ω)
error

Mode 3 L2(Ω)
error UGNN L2(Ω, I) error

16% 15% 30% 16%

17% 16% 27% 18%

Table 5: Errors of the GNN-PGD approach for topologies containing more holes than the training data set.

22



May 28, 2024 Preprint submitted to CMAME

Figure 20: Mode 2 predicted by GNN-PGD (trained on one hole) on a topology with three holes.

Although the errors are much higher than those presented for a single hole (on which our GNN-PGD was trained), they
are entirely reasonable from an iterative design standpoint. Indeed, for the two new topologies tested, we obtain a final
error over the entire space-time field of less than 18%, which demonstrates the remarkable capability of the GNN-PGD
solver to generalize to completely different geometries. For pre-dimensioning or pre-sizing of structures, such errors
are more than sufficient to approximate various mechanical quantities without having to run full FEM simulations.

5 Conclusion

This contribution introduces a new methodology that combines a Galerkin projection-based model reduction method
with a deep learning algorithm based on GNNs in order to generate a ROB for an arbitrary geometry of arbitrary
discretization size. Results demonstrate that the proposed GNN-PGD solver can produce reduced order models for non-
parametric geometries (where usual model reduction tools are limited [36, 43]). The algorithm proposed and analyzed
in this work carries significant advantages over more conventional GNN methods, both in terms of computational cost
(training and inference) as well as numerical error. A case study related to the motivating engineering and industrial
applications of this work (structural design) has also been presented, using a reasonably-sized database that results in a
GNN-PGD solver that provides low errors that are appropriate for pre-dimensioning or pre-sizing of, e.g., aircraft seats.
For such configurations, we have additionally demonstrated a strong capability of the GNN-PGD method to generalize
to topologies that are completely different from training and validation databases.

The proof-of-concept provided in this contribution demonstrates promise for future extensions and other applications.
For example, one can incorporate more physics into the GNN-PGD generator so as to be able to generate more modes
with even greater accuracy. Towards this, future work is planned for the inclusion of finite element operators, derived
from the physical PDEs, as direct inputs to the graph (inspired by [87]). More importantly, future work entails extending
the GNN-PGD method to non-linear problems, e.g., the material non-linearities that are very present in the aeronautical
world [11, 12, 13]. For such contexts, a possible enrichment of the predicted space-time solution (post-processing) may
also be required.
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