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Mean-field limit of particle systems with absorption

Gaoyue Guo∗ Milica Tomašević†

October 18, 2023

Abstract

We consider a particle system of singular interaction where particles are removed from the

system once they hit some barrier. We show the wellposedness of the particle system and its

mean-field limit and prove the propagation of chaos.

Keywords: particle system, mean-field games, Fokker-Planck equation, propagation of chaos

1 Introduction

We consider interacting particle systems in 1-d whose components are absorbed as soon as they hit

some barrier, saying zero without loss of generality. Denote by XN,1, . . . ,XN,N the N particles whose

dynamics are given as follows: for i = 1, . . . , N ,

XN,i
t = ZN,i +

∫ t

0
ι(XN,i

s )
1

N

N∑

j=1

b
(
s,XN,i

s ,XN,j
s

)
ι(XN,j

s )ds+

∫ t

0

√
2ι(XN,i

s )dW i
s , ∀t ≥ 0, (1)

where ι(x) := 1{x>0} denotes the indicator function, b : R+ × R2 → R is a measurable drift and

• (ZN,1, . . . , ZN,N ) is a family of exchangeable real valued random variables;

• W 1, . . . ,WN are independent Brownian motions that are independent of (ZN,1, . . . , ZN,N ).

Provided that (1) is well posed, every process XN,i is absorbed as soon as it hits zero, i.e.

XN,i
t = XN,i

τNi ∧t
, ∀t ≥ 0,

where τNi := inf{t ≥ 0 : XN,i
t ≤ 0} stands for the first hitting time of XN,i at zero. An equivalent

formulation to (1) is

dXN,i
t = 1{τNi >t}


 1

N

N∑

j=1

b
(
t,XN,i

t ,XN,j
t

)
1{τNj >t}dt+

√
2dW i

t


 , ∀t ≥ 0.
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We aim to show the propagation of chaos, as N → ∞, of the particle system (1) towards the following

mean-field (non-linear) stochastic differential equation (SDE):

Xt = Z +

∫ t

0
ι(Xs)

(∫

(0,∞)
b(s,Xt, y)µt(dy)

)
ds+

∫ t

0
ι(Xs)

√
2dWs, ∀t ≥ 0, (2)

where µt := L(Xt) stands for the law of Xt.

It is sometimes mathematically more convenient to study the mean-field limit of an interacting

system to avoid, for example, the curse of dimensionality. This is also usually done in mean-field

games literature. However, justifying rigorously the propagation of chaos is central to this reasoning.

Therefore, the goal of this paper is to show the wellposedness of (1) and (2), and more importantly

to establish the propagation of chaos while N → ∞ under suitable hypothesis on the coefficient b

(essentially continuity and boundedness).

The difficulty when dealing with (1) and (2) is that the diffusion coefficient is not uniformly elliptic

due to the presence of the hitting time. In addition, we do not have a priori any regularity on the

law of the hitting time(s). This in some sens means that the cross-interaction of (1) is singular, and

the strength of this interaction is highly related to the number of active particles. Hence, we are not

in the classical framework of [24], but we will see that under boundedness and continuity assumption

on b we can obtain a tightness-consistency result when N → ∞. Enforcing more regularity on b, and

working on the mean-field limit, we will obtain the strong well-posedness of (2) that will ensure the

propagation of chaos result.

In general, interacting particle systems are studied in many different contexts of applications,

including the dynamics of granular media [6, 7], mathematical biology [15, 9], economics and social

networks [19, 17], and deep neural networks [21, 20]. A more detailed exposition can be found, for

example, in [2, 3, 4, 5].

The motivations for studying (1) comes from systemic risk arising in banking systems. Particle

systems of the form (1) that interact through hitting times are largely used to model the evolution of

complex banking networks with mutual exposures, see [18]. Under this framework, a bank defaults

when its capital level drops below zero, and its default causes instantaneous variation of the other

active banks’ drift. In contrast to [18], an alternative modelling framework is that defaults do not

change capital values but affect their dynamic coefficients, see e.g. [16] for the study of the mean-field

limit model with mutual holding. Our model enters this second framework.

We mention here other models of interacting systems and their mean field limits involving hitting

times. In the context of neurosciences and integrate and fire models see [10, 11]. In finance, besides

already mentionned [16, 18], see [1] and the references therein.

We finish this section with a future perspective for studying systems of type (1) in ecological or

biophysical context. In such setting, consider individuals (population in a habitat/group of cells in

a domain) that move in their environment interacting with each other, but when an individual exits

the habitat/domain it never comes back and it no longer influences the mutual interaction. Contrary

to the current setting, this would be more relevant in R2 and with more singularity on the interaction

2



b. One example of a limit model would be in the vein of Keller-Segel systems (see e.g. [14]), but

with homogeneous boundary conditions. There, a population of cells interacts in an attractive way

by following a chemical gradient that it generates and the homogeneous Dirichlet boundary condition

is seen as the disappearance of cells and chemicals near the boundary.

Plan of the paper. The rest of the paper is structured as follows. In Section 2 we give our main

hypothesis and results and we discuss the proof strategies. In Section 3 we deal with the existence and

convergence of the particle system (1). Finally, strong well-posedness for (2) is obtained in Section 4.

Notations For a generic Polish space E, denote by C(E) (resp. P(E)) the set of continuous

functions (resp. probability measures) on E. Set Ω := C(R+) and ΩT := C([0, T ]) for every T > 0.

Note that ΩT can be identified as a subset of Ω since every f ∈ ΩT can be seen as an element f ∈ Ω

by setting f(t) := f(t ∧ T ). Therefore, we say simply ΩT ⊂ Ω without any danger of confusion. Let

F be the coordinate process on Ω, i.e. Ft(f) := f(t) for all f ∈ Ω and t ≥ 0. Define further the

canonical filtration F ≡ (Ft := σ(Fs, s ≤ t))t≥0. In what follows, we need the empirical measures

µN :=
1

N

N∑

i=1

δXN,i and µN
t :=

1

N

N∑

i=1

δ
XN,i

t
, ∀t ≥ 0, (3)

that take values respectively in P(Ω) and P(R+).

2 Main results

Let us start with the following set of assumptions. In every statement, it will be made precise which

of the assumptions below is necessary.

Assumption 1. (i) The measurable function b : R+ × R2 → R is bounded.

(ii) For every t ≥ 0, b(t, ·) is continuous almost everywhere on R2, and for every x ≥ 0 the limits

limy→0 b(s, x, y), limy→0 b(s, y, x) exist.

(iii) b, ∂xb are bounded and Hölder continuous.

Now, we give the definition of strong and weak solution to the non linear process (2).

Definition 2. (i) A process X is said to be a (strong) solution to (2) if it is adapted with respect to

the filtration generated by W and (2) holds for all t ≥ 0 almost surely.

(ii) Q ∈ P(Ω) is called a weak solution to (2) if, with Qt := Q ◦ F−1
t

1. Q0 = ρ;

2. For every ϕ ∈ C2
c (R), the process Mϕ defined by

Mϕ
t := ϕ(Ft)− ϕ(F0)−

∫ t

0
ι(Fs)

(
ϕ′(Fs)

(∫

(0,∞)
b(s, Fs, y)Qs(dy)

)
+ ϕ′′(Fs)

)
ds, ∀t ≥ 0

3



is an F-martingale under Q.

3. Qt[R+] = 1, for all t ≥ 0.

Our first main result is the well-posedness of the limit SDE.

Theorem 3. Let ρ ∈ P(R+). Under Assumption 1-(iii), the mean-field SDE (2) admits a unique

(strong) solution.

For the N -particle system (1), we first prove that there exists a unique weak solution. Then, we

prove tightness for the empirical measure in (3) and that any limit point of the empirical measures

must be a weak solution to (2). This yields the desired propagation of chaos by the uniqueness in

law of the solution to (2).

Theorem 4. 1) Let Assumption 1-(i) hold. Then, for each N ≥ 1, there exists a unique weak

solution (XN,1, . . . ,XN,N ) to the particle system (1).

2) Suppose in addition that Assumption 1-(ii) holds and that µN
0 = 1

N

∑N
i=1 δZN,i converges in

probability to some deterministic measure ρ ∈ P(R+). Then, any (possibly random) limit point

µ of (µN )N≥2 a.s. solves in the weak sense (2) with initial law ρ.

3) Suppose in addition that Assumption 1-(iii) holds. Then, µN converges in probability to the law

of X.

Strategy of the proof. For Theorem 3, the proof of the existence for the McKean-Vlasov SDE

relies on Schauder’s fixed-point theorem. One delicate point here is that the measure that solves

it accumulates dynamically mass in zero, hence the functional on the space of flows of probability

measures for which we would naturally exhibit a fixed point contains an indicator function. This is

not continuous for Wasserstein distance for probability measures, so the space on which we exhibit a

fixed point is enlarged to take into account this dynamical accumulation of mass in zero. It becomes

the product space of flows of probability measures and ΩT .

As for the uniqueness, we study the marginal distributions of any solution X to (2). For t > 0,

we first show that the law of Xt is of the form p(t, x)dx + (1 −
∫
p(t, x)dx)δ0(dx), where p(t, ·) is a

sub-probability density satisfying a parametric Fokker-Planck equation whose coefficients depend on

p itself. We show the one-to-one relation between X and such parametric equation, and the unique-

ness of X is equivalent to that of p satisfying this PDE. Due to the non-linearity, we consider PDEs

of parametric coefficients and estimate the explicit dependency of their solutions on the parameters.

By introducing a suitably defined operator, we prove that the operator is a contraction and thus the

uniqueness result follows.
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For Theorem 4, the existence follows through an application of a Girsanov-Cameron-Martin trans-

form. The boundedness of the coefficient b easily gives the tightness of the sequence of the empirical

measures. The identification of the limit is done through the martingale approach and is more delicate

due to the singularity the stopping time introduces in the drift. We will thus regularize ι(·) and show

that regularized and non-regularized problems are close. In the latter, it will be crucial to use the

fact that individual particles behave like stopped Brownian motions modulo a change of measure. To

make such a change uniform in N , we adopt the strategy of [22] and introduce the Partial Girsanov

transforms (see the discussion after Lemma 5).

We finish this part with a following remark. We believe that the first two parts of Theorem 4

could be adapted to the so called Lq − Lp assumption on b with more involved computations as in

[22]. We leave possible generalizations of assumptions on b for a future work.

3 Proof of Theorem 4

We split this section into three parts. In the first part we show Theorem 4-1). Then, in the second

part we show the tightness of the empirical measures. Finally, in the last part, we show Theorem

4-2). The last claim in Theorem 4 simply follows from uniqueness of solutions to (2) that is, under

more regularity on b, guaranteed by Theorem 4.

3.1 Wellposedness of (1)

We fix an arbitrary N ≥ 1 and show the wellposedness of (1) under only Assumption 1-(i). It suffices

to prove that the particle system (1) has a weak solution on any interval [0, T ]. Pick some filtered

probability space (E, E ,G = (Gt)t≥0,W) that supports random variables Z
N,1

, . . . , Z
N,N

and inde-

pendent Brownian motions W
1
, . . . ,W

N
such that L(ZN,1

, . . . , Z
N,N

) = L(ZN,1, . . . , ZN,N ). Define

processes Y N,i and X
N,i

by

Y N,i
t := Z

N,i
+
√
2W

i
t and X

N,i
t := Y N,i

σN
i ∧t

, ∀t ≥ 0,

where σN
i := inf{s ≥ 0 : Y N,i

s ≤ 0}. Then a straightforward verification yields

X
N,i
t = Z

N,i
+

∫ t

0

√
2ι(X

N,i
s )dW

i
s, ∀t ≥ 0. (4)

Set X
N
t := (X

N,1
t , . . . ,X

N,N
t ) and W t := (W

1
t , . . . ,W

N
t ). For x = (x1, . . . , xN ) ∈ RN , denote

bN,i
t (x) :=

1

N

N∑

j=1

b (t, xi, xj) ι(xj).

and BN
t (x) := (bN,1

t (x), . . . , bN,N
t (x)). As supt≤T ‖BN

t ‖∞ ≤
√
N‖b‖T,∞ < ∞, we introduce the

probability measure QN ∈ P(ΩT ) via the Radon-Nikodym derivative

dQN

dW

∣∣∣∣
T

:= exp

(∫ T

0
BN

u (X
N
u ) · dWu − 1

2

∫ T

0

∣∣∣BN
u (X

N
u )
∣∣∣
2
du

)
=: ZN

T .
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Applying the Cameron-Martin-Girsanov theorem, see e.g. [13, Thm 4.1 p. 191] or [23, Thm. 6.4.2 p.

154], we deduce that

(
Vt := W t −

∫ t

0
BN

s (X
N
s )ds

)

0≤t≤T

is a vector consisting of N independent Brownian motions under QN . In addition, we have in view

of [13, Thm 4.1 p. 191]

X
N,i
t = Z

N,i
+

∫ t

0
ι(X

N,i
s )

1

N

N∑

j=1

b
(
s,X

N,i
s ,X

N,j
s

)
ι(X

N,j
s )ds+

∫ t

0

√
2ι(X

N,i
s )dV i

s , ∀t ∈ [0, T ],

which implies that Q := QN ◦ (X
N
)−1 ∈ P(ΩT ) is a weak solution to (1). The uniqueness in law

follows by [13, Thm 4.2 p. 194]. This concludes the first part of Theorem 4.

3.2 Tightness of {µN}N≥1 and Partial Girsanov transforms

Let us first show the tightness of {µN}N≥1.

Lemma 5. Suppose that µN
0 = 1

N

∑N
i=1 δZN,i converges in probability to some deterministic measure

ρ ∈ P(R+). In addition, let Assumption 1-(i) hold. Then, the sequence of random measures {µN}N≥1

is tight in P(ΩT ) under QN .

Proof. By [24, Prop. 2.2-ii], its tightness results from the tightness of the intensity measure

{EQNµN (·)}N≥1. By symmetry, it suffices to check the tightness of {L(XN,1
t : 0 ≤ t ≤ T )}N≥1. The

boundedness of b yields the existence of some constant C > 0 such that

EQN [|XN,1
t −XN,1

s |4] ≤ C(t− s)4 + CEQN

[∣∣∣∣
∫ t

s
ι(XN,1

u )dW 1
u

∣∣∣∣
4
]
≤ C(t− s)4 + C(t− s)2,

which fulfills the proof.

We notice here that the fact that b is bounded does not only play an important role when showing

tightness, but it will also be crucial for the identification of the limit as it enables us to use the

Girsanov transform. The fact that particles behave as stopped Brownian motions (up to a Girsanov

transform) will be used in what follows. However, passing from the interacting system to the system

of independent stopped Brownian motions has a cost that was not uniform in N (see the existence

section) and as such a full Girsanov transform is not useful when we pass to the limit as N → ∞.

Nevertheless we can use that the individual behaviours are the ones of stopped Brownian motions by

introducing Partial transforms related to (1).

For a fixed r < N that corresponds to r particles that are transformed to independent stopped

Brownian motions and whose influence is removed from the other N − r particles. The cost of such

transforms will be uniform in N . Although for the identification of the limit we will only use the case

r = 1, we give them below for an arbitrary r < N .
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Let us choose, for simplicity, the first r particles to be transformed, and consider the following

reference system defined on the probability space (E, E ,G = (Gt)t≥0,W
(r,N)):





X̂N,i
t = ZN,i +

∫ t

0
ι(X̂N,i

s )dŴ i
s, i ≤ r, t ≤ T

X̂N,i
t = ZN,i +

∫ t

0
ι(X̂N,i

s )dŴ i
s + ι(X̂N,i

s )
1

N

N∑

j=r+1

∫ t

0
b(s, X̂N,i

s , X̂N,j
s )ι(X̂N,j

s )ds, r + 1 ≤ i ≤ N, t ≤ T.

Obviously, it is well-posed as it can be obtained, as in the previous section, from X. We now study

the change of measure between X̂ and X. The corresponding drift vector is

β
(r)
t (x) :=

(
bN,1
t (x), . . . , bN,r

t (x),
1

N

r∑

i=1

b(t, xr+1, xi)ι(xi), . . . ,
1

N

r∑

i=1

b(t, xN , xi)ι(xi)
)
.

In the sequel we will need uniform w.r.t N bounds for moments of

Z
(r)
T := exp

{∫ T

0
β
(r)
t (X̂t) · dWt −

1

2

∫ T

0
|β(r)

t (X̂t)|2dt
}
. (5)

Proposition 6. For any T > 0, γ > 0 and r ≥ 1 there exists C(T, γ, r) s.t.

∀N ≥ 1, EW(r,N) exp

{
γ

∫ T

0
|β(r)

t (X̂t)|2dt
}

≤ C(T, γ, r).

Proof. Observe that

|β(r)
t (x)|2 =

r∑

i=1

|bN,i
t (x)|2 + 1

N2

N∑

j=r+1

( r∑

i=1

b(t, xj+1, xi)ι(xi)
)2

≤ r‖b‖2∞ +
(N − r)r2

N2
‖b‖2∞

This yields the desired result with C(T, γ, r) = e2γTr‖b‖2
∞ .

3.3 Identification of the limit

Now we are ready to identify the limit. Having showed that {µN}N≥1 is tight, we may extract a

convergent subsequence, which is still denoted by {µN}N≥1, of limit µ. Since µN → µ in law in P(Ω),

we have that µN × µN → µ× µ.

It remains to prove that µ is a weak solution to (2). For any ϕ ∈ C2
c (R), the process (Mϕ

t )t≥0,

defined in the martingale problem, should be a µ martingale. To this end, it suffices to show that

for all t > s > 0, all continuous bounded function Φ ∈ C(Ωs), we have Ψ(µ) = 0 a.s., where for

Q ∈ P(Ω),

Ψ(Q) := EQ

[
Φ((Fr)r∈[0,s])

(
ϕ(Ft)− ϕ(Fs)−

∫ t

s
ι(Fu)

[
ϕ′′(Fu) + ϕ′(Fu)

∫

R

b(u, Fu, y)ι(y)Qu(dy)
]
du
)]

,

We observe that for any Q ∈ P(Ω), it holds that Ψ(Q) = Θ(Q⊗Q), where we define for Π ∈ P(Ω2)

Θ(Π) :=

∫

Ω2

Φ((xr)r∈[0,s])
(
ϕ(xt)− ϕ(xs)−

∫ t

s
ι(xu)

[
ϕ′′(xu) + ϕ′(xu)b(u, xu, yu)ι(yu)

]
du
)
Π(dx,dy).

7



We separate the rest of the proof in several steps.

Step 2.1. Here we show that for some constant A, for all N ≥ 2,

E

[
[Θ(µN × µN )]2

]
≤ A

N
. (6)

Applying Itô’s formula on ϕ(XN,i
t ) and summing in N we have that

1

N

N∑

i=1

[
ϕ(XN,i

t )− ϕ(ZN,i)−
∫ t

0
ι(XN,i

s )
[
ϕ′′(XN,i

s )− ϕ′(XN,i
s )

N∑

j=1

1

N
b(s,XN,i

s ,XN,j
s )ι(XN,j

s )ds
]

=
1

N

N∑

i=1

∫ t

0
ι(XN,i

s )ϕ′(XN,i
s )dW i

s.

We recognise in the left hand side of the above expression parts of Θ(µN × µN ). Hence

E

[
[Θ(µN × µN )]2

]
≤ T‖ϕ′‖2∞‖Φ‖2∞

N
.

Step 2.2. for any η ∈ (0, 1], we define a regularised version of the function ι by fη, e.g.

fη := min

(
1, Cη

(
x3

3
+

x5

5
− x4

2

)+
)
, with Cη :=

30

10η + 6η5 − 15η3
.

It is straightforward to check that fη is twice continuously differentiable on R and takes values in

[0, 1]. Accordingly, we define Θη. We have

E[|Ψ(µ)|] ≤E[|Θ(µ⊗ µ)−Θη(µ ⊗ µ)|] + lim sup
N

|E[|Θη(µ× µ)|]− E[|Θη(µ
N ⊗ µN )|]|

+ lim sup
N

E[|Θη(µ
N ⊗ µN )−Θ(µN ⊗ µN )|] + lim sup

N
E[|Θ(µN ⊗ µN )|].

By Step 2.1. the last term converges to zero as N → ∞. The second term converges to zero by weak

convergence and the fact that Θη is continuous and bounded (this is where the continuity in space of

b plays a role). In the next step we will prove that the remaining terms are uniformly small w.r.t. η.

Step 2.3. Let us start with

Iη := lim sup
N

E[|Θη(µ
N ⊗ µN )−Θ(µN ⊗ µN )|].

Observe that

|Θη(µ
N ⊗ µN )−Θ(µN ⊗ µN )| ≤ φ∞ϕ′′

∞

∫ t

s

1

N

∑
|ι(XN,i

u )− fη(X
N,i
u )|du

+ ‖φ‖∞‖ϕ′‖∞‖b‖∞
∫ t

s

1

N2

∑

i,j

|ι(XN,i
u )ι(XN,j

u )− fη(X
N,i
u )fη(X

N,j
u )|du

≤ A

∫ t

s

1

N

N∑

i=1

|ι(XN,i
u )− fη(X

N,i
u )|du,

8



for some A > 0 that may change from line to line. This leads by exchangabilty to

E[|Θη(µ
N ⊗ µN )−Θ(µN ⊗ µN )|] ≤ A

∫ t

s
E|ι(XN,1

u )− f(XN,1
u )|du ≤ A

∫ t

s
Q[0 < XN,1

u < η]du.

Now, we use the partial transformation to transform X1,N to a stopped Brownian motion. This leads

to

E[|Θη(µ
N ⊗ µN )−Θ(µN ⊗ µN )|] ≤ A

∫ t

s
EQ(1,N) [Z

(1)
T 1

{XN,1
u ∈(0,η)}

]du.

Now, using Proposition 6 for r = 1, we get

E[|Θη(µ
N ⊗ µN )−Θ(µN ⊗ µN )|] ≤ A

∫ t

s
P[0 < Wτ∧u < η]1/2du

This leads us to the control of P[Wτ∧u ∈ (0, η)]. The latter converges, for every fixed u > 0, to zero

as η → 0. By dominated convergence we can conclude the desired result.

For the term that remains, we use Fatou’s lemma and the above computation.

E[|Θη(µ⊗ µ)−Θ(µ ⊗ µ)|] ≤ C

∫ t

s

∫

Ω2

1{f(u)∈(0,η)}duµ⊗ µ(df,dy)

≤ C lim
N

∫

Ω

∫ t

s
1{f(u)∈(0,η)}duµ

N (df)

Repeat the above Partial Girsanov transform argument to conclude the proof of 3.

Finally, note that the subset {f ∈ Ω : f(t) ≥ 0,∀t ∈ R+} is closed. Applying the Portmanteau

theorem, we may conclude Q[{f ∈ Ω : f(t) ≥ 0,∀t ∈ R+}] ≥ lim supN→∞QN [{f ∈ Ω : f(t) ≥ 0,∀t ∈
R+}] = 1 and thus Q[Ft ≥ 0, ∀t ≥ 0] = 1.

Next, we show in Section 4 that the mean-filed SDE (2) admits a unique strong solution which is

clearly a weak solution. Combined with Theorem 4-2), this yields the propagation of chaos and thus

proves Theorem 3-3).

4 Proof of Theorem 3

We consider in Section 4 the wellposedness of (2). It is worth noting that, thanks to Section 3.3,

there exists at least a weak solution to (2) under the hypothesis of Theorem 4-2). Nevertheless, to

obtain the uniqueness result for (2), we need more subtle properties for its solution, which requires

more conditions on the coefficient b. This yields, as a by-product, the existence of a (strong) solution

to (2). Therefore, we combine in the first part of Section 4 the derivation of the desired properties

and the existence of solutions to (2) using a fixed-point argument. The second part is devoted to the

uniqueness. In the last subsections we give profs of some technical lemmas.

Throughout this section we fix an arbitrary time horizon T > 0.
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4.1 Proof of the existence

We first deal with the existence. Let P ⊂ P(R+) be the set of probability measures on R+ of finite

first order moment. Define the set of probability flows

PT :=
{
µ = (µt)0≤t≤T : µt ∈ P

}

and recall ΩT is the space of continuous functions on [0, T ]. We endow PT with the metricWT (µ, ν) :=

sup0≤t≤T W(µt, νt) and endow ΩT with the uniform norm ‖ · ‖T . Let dT be the distance on PT ×ΩT

defined by dT ((µ, f), (ν, g)) := WT (µ, ν) + ‖f − g‖T . Rewriting (2) in differential form, one has

dXt = ι(Xt)

[(∫

(0,∞)
b(t,Xt, y)µt(dy)

)
dt+

√
2dWt

]
= 1{τ>t}

[
B
(
t,Xt, µt, µt(R

∗
+)
)
dt+

√
2dWt

]
,

where µt := L(Xt), τ := inf{t ≥ 0 : Xt ≤ 0}, R∗
+ := (0,∞) and B : R+ ×R×P × [0, 1] → R is given

as

B(t, x, λ, a) :=

∫

R+

b(t, x, y)λ(dy) − b(t, x, 0)(1 − a).

Let us introduce the operator Γ on PT × CT defined by

Γ(µ, f) :=
((

L(Y µ,f
t∧τµ,f

)
)
0≤t≤T

, αµ,f
)
,

where αµ,f (t) := P[τµ,f > t], τµ,f := inf{t ≥ 0 : Y µ,f
t ≤ 0} and

Y µ,f
t = Z +

∫ t

0
B(s, Y µ,f

s , µs, f(s))ds+
√
2Wt, ∀t ∈ [0, T ]. (7)

For any (µ, f) ∈ PT × CT , the SDE (7) has a unique solution and thus Γ is well defined. Next we

point out that any fixed point of Γ allows us to construct a solution to (2). Namely, let (µ, f) be

a fixed point of Γ, i.e. L(Y µ,f
t∧τµ,f

) = µt and αµ,f (t) = P[τµ,f > t] = f(t). Then a straightforward

verification yields

dY µ,f
t∧τµ,f

= 1{τµ,f>t}

[
B(t, Y µ,f

t , µt, f(t))dt+
√
2dWt

]

= ι
(
Y µ,f
t∧τµ,f

)
[(∫

(0,∞)
b(t, Y µ,f

t∧τµ,f
, y)µt(dy)

)
dt+

√
2dWt

]
, ∀t ∈ [0, T ],

which implies that (Y µ,f
t∧τµ,f

)0≤t≤T solves (2) up to time T . Therefore, the proposition below ensures

a fixed point of Γ and thus a solution to (2) on [0, T ]. For each L > 0, set

PL
T :=

{
ν ∈ PT : sup

0≤s<t≤T

(∫

R+

x2νt(dx) +
W(νt, νs)

|t− s|1/6
)

≤ L

}

ΩL
T :=

{
f ∈ ΩT : sup

0≤s<t≤T

|f(t)− f(s)|
|t− s|1/6 ≤ L

}
.

Then we have the following proposition.
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Proposition 7. Under suitable conditions, Γ has a fixed point in PT × ΩT .

Proof. The proof of Proposition 7 is a combination of the lemmas below. More precisely, Lemma

8 shows that Γ(PL
T × ΩL

T ) ⊂ Γ(PT × ΩT ) ⊂ PL
T × ΩL

T for some L > 0 large enough. As PL
T × ΩL

T is

compact and Γ is continuous with respect to dT in view of Lemmas 8 and 10, Schauder’s fixed-point

theorem allows to show the existence of (µ, f) ∈ PL
T × ΩL

T such that Γ(µ, f) = (µ, f).

Let Φ : R → [0, 1] the cumulative distribution function of a standard normal distribution, i.e.

Φ(x) :=

∫ x

−∞

1√
2π

e−y2/2dy, ∀x ∈ R.

Lemma 8. PL
T ×ΩL

T is dT−compact for every L > 0.

Proof. The compactness of ΩL
T is straightforward by Arzelà-Ascoli’s theorem. It remains to

treat PL
T . Pick an arbitrary sequence (νn)n≥1 ⊂ PL

T and let us show that it has a convergent

subsequence of limit belonging to PL
T . For each t ∈ [0, T ], note that there exists a weakly convergent

subsequence of (νnt )n≥1 as it is uniformly integrable. Using the diagonal arguments, one may extract

some subsequence, still denoted by (νn)n≥1 for the sake of simplicity, such that (νnt )n≥1 converges

weakly for each t ∈ [0, T ] ∩Q. Combined with the fact
∫

R+

x2νnt (dx) ≤ L, ∀t ∈ [0, T ], n ≥ 1,

the above weak convergence is indeed the convergence under W, i.e. limm,n→∞W(νmt , νnt ) = 0 for

all t ∈ [0, T ] ∩ Q. Next, for each t ∈ [0, T ], take a sequence (tk)k≥1 ⊂ [0, T ] ∩ Q converging to t. For

every ε > 0, one has

lim
m,n→∞

W(νmt , νnt ) ≤ lim
m,n→∞

(
W(νmtk , ν

m
t ) +W(νmtk , ν

n
tk
) +W(νntk , ν

n
t )
)
≤ 2L|tk − t|1/6,

which shows that (νnt )n≥1 is a Cauchy sequence and thus converges under W. Denote ν ≡ (νt :=

limn→∞ νnt )0≤t≤T ∈ PT . One deduces thus W(νt, νs) ≤ L|t − s|1/6 for all t, s ∈ [0, T ] and further

limn→∞WT (ν
n, ν) = 0. Finally, by Fatou’s lemma, one has for every t ∈ [0, T ]

∫

R+

x2νt(dx) ≤ lim inf
n→∞

∫

R+

x2νnt (dx) ≤ L,

which fulfills the proof.

Lemma 9. There exists some constant L > 0 such that Γ(PT × ΩT ) ⊂ PL
T × ΩL

T .

Proof. Take an arbitrary (ν, f) ∈ PT × ΩT . For simplicity we drop the superscript (ν, f) without

any danger of confusion, i.e. Y ≡ Y ν,f , τ ≡ τν,f , etc. Denote further Bt ≡ B(t, Yt, νt, f(t)). For any

0 ≤ t < t+∆t ≤ T , let us estimate respectively W(L(Yτ∧t),L(Yτ∧(t+∆t))) and α(t) − α(t+∆t). By

definition, one has

W(L(Yτ∧t),L(Yτ∧(t+∆t))) ≤ E[|Yτ∧(t+∆t) − Yτ∧t|] = E

[∣∣∣∣∣

∫ τ∧(t+∆t)

τ∧t
Bsds+

√
2dWs

∣∣∣∣∣

]
≤ C

√
∆t.
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Hereafter, C > 0 is used to denote generic constants that may change from line to line, but depends

only on the designated variables. Applying Girsanov’s theorem with

dQ

dP

∣∣∣
t
:= exp

(
−
∫ t

0
λsdWs −

1

2

∫ t

0
λ2
sds

)
, where λs :=

Bs√
2
,

(WQ
t := Wt +

∫ t
0 λsds)0≤t≤T is a Brownian motion under Q and one has

α(t)− α(t+∆t) = P[τ > t]− P[τ > t+∆t]

= EQ

[(
dP

dQ

)

t+∆t

(
ι

(
inf

0≤r≤t
(Z +

∫ r

0

√
2dWQ

s )

)
− ι

(
inf

0≤r≤t+∆t
(Z +

∫ r

0

√
2dWQ

s )

))]

≤ exp

(
3

2

∫ T

0
λ2
sds

)(
Q

[
inf

0≤r≤t
(Z +

∫ r

0

√
2dWQ

s ) > 0

]
−Q

[
inf

0≤r≤t+∆t
(Z +

∫ r

0

√
2dWQ

s ) > 0

])1/2

≤ C

(∫

R+

(
Φ
(
x/

√
2t
)
− Φ

(
x/
√

2(t+∆t)
))

ρ(dx)

)1/2

≤ C∆t1/6,

where the first inequality follows from Hölder inequality. Finally, we see the fact that

E[|Yτ∧t|2] ≤ 3

(
E[|Z|2] + E

[∣∣∣∣
∫ T

0
|Bs|ds

∣∣∣∣
2
]
+ E

[∫ T

0
2ds

])
≤ C,

which allows to conclude the proof.

Lemma 10. Γ : PT × ΩT → PT × ΩT is dT−continuous.

Proof. Let (νn, fn) → (ν, f). Again, we denote for simplicity

Y n ≡ Y νn,fn

Y ≡ Y ν,f

τn ≡ τν
n,fn

τ ≡ τν,f

Bn
t ≡ B(t, Y n

t , νnt , f
n(t)) Bt ≡ B(t, Yt, νt, f(t)), etc.

We estimate first E[sup0≤t≤T |Y n
t − Yt|2] following the classic arguments. For each t ∈ [0, T ], one has

Y n
t − Yt =

∫ t

0

(
B
(
u, Y n

u , νnu , f
n(u)

)
−B

(
u, Yu, νu, f(u)

))
du.

By the Lipschitz continuity of B and the inequality max
(
W(νnu , νu), |fn(u)−f(u)|

)
≤ dT ((ν

n, fn), (ν, f)
)
,

there exists C > 0 large enough such that

E[ sup
0≤s≤t

|Y n
s − Ys|2] ≤ C

(
dT ((ν

n, fn), (ν, f)
)
+

∫ t

0
E[ sup

0≤s≤u
|Y n

s − Ys|2]du
)
, ∀t ∈ [0, T ].

This, combined with Gronwall’s inequality, yields limn→∞ E[sup0≤t≤T |Y n
t − Yt|2] = 0. In particular,

sup0≤t≤T |Y n
t − Yt| converges to zero in probability. Let ε > 0 be arbitrary. The continuity of Y

implies

{τ > t} =
⋃

k∈N

Ak :=
⋃

k∈N

{Ys ≥ 1/k, ∀0 ≤ s ≤ t}.
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Hence, we have that for some k0 ∈ N that P[Ak0 ] > P[τ > t] − ε/2. Since Y n → Y uniformly in

probability, there exists N such that

P[ sup
s∈[0,t]

|Y n
s − Ys| ≥ 1/k0] ≤

ε

2

holds for all n > N . We obtain thus

P[τn > t] ≥ P[Ak0 ∪ { sup
s∈[0,t]

|Y n
s − Ys| > 1/k0}c] ≥ P[τ > t]− ε.

The reverse inequality can be argued similarly, where we note that P[τ ≤ t] = P[inf0≤s≤t Ys ≤ 0] =

P[inf0≤s≤t Ys < 0] as Y is a drifted Brownian motion, and we can rewrite

{ inf
0≤s≤t

Ys < 0} =
⋃

k∈N

{ inf
s∈[0,t]

Ys ≤ −1/k}.

Thus with a similar calculation, we obtain limn→∞ P[τn ≤ t] ≥ P[τ ≤ t]− ε and thus limn→∞ αn(t) =

limn→∞ P[τn > t] = P[τ > t] = α(t). Next, we compute W(L(Y n
τn∧t),L(Yτ∧t)). By definition, one has

W(L(Y n
τn∧t),L(Yτ∧t)) ≤ E[|Y n

τn∧t − Yτ∧t|]. Further,

E[|Y n
τn∧t − Yτ∧t|] = E[|Y n

t − Yt|1{τn>t,τ>t}] + E[|Y n
t |1{τn>t,τ≤t}] + E[|Yt|1{τn≤t,τ>t}]

≤ E[|Y n
t − Yt|] + E[|Y n

t |2]1/2P[τn > t, τ ≤ t]1/2 + E[|Yt|2]1/2P[τn ≤ t, τ > t]1/2.

Repeating the above reasoning, one may show limn→∞ P[τn > t, τ ≤ t] = 0 = limn→∞ P[τn ≤ t, τ > t],

which yields limn→∞W(L(Y n
τn∧t),L(Yτ∧t)) = 0. Having shown

lim
n→∞

W(L(Y n
τn∧t),L(Yτ∧t)) = 0 and lim

n→∞
αn(t) = α(t), ∀t ∈ [0, T ],

the uniform continuity in Lemma 9 finally shows limn→∞ dT (Γ(ν
n, fn),Γ(ν, f)) = 0.

4.2 Proof of the uniqueness

This section is reserved for showing the uniqueness of solution to (2) on [0, T ]. We fix an arbitrary

solution X to (2). We first show the one-to-one relation between X and the parametric nonlinear

Fokker-Planck equation below.

Proposition 11. The uniqueness of X is eauivqlent to the uniqueness of u : R2
+ → R satisfying

∂tu(t, x) = ∂2
xx

(
u(t, x)

)
− ∂x

(
Bµ,α(t, x)u(t, x)

)
, ∀t, x > 0

u(0, x) = ρ(x), u(t, 0) = 0, ∀t, x > 0

β(t) =

∫ ∞

0
u(t, y)dy, ∀t > 0

νt(dx) =
(
1− β(t)

)
δ0(dx) + u(t, x)dx, ∀t > 0

Bν,β(t, x) = B(t, x, νt, β(t)), ∀t, x > 0.

(8)
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Proposition 11 is the basis to adopt the fixed-point argument, and we need the following auxiliary

result to prove it. Denote (µt)t≥0 := (L(Xt))t≥0, τ := inf{t ≥ 0 : Xt ≤ 0} and α(t) := P[τ > t]. For

(ν, f) ∈ PT × ΩT , define the function Bν,f : R+ × R → R by Bν,f (t, x) := B(t, x, νt, f(t)). Then we

have the following proposition.

Proposition 12. Under the hypothesis of Theorem 3 and writting B ≡ Bµ,α, we have the following

results.

1. For each t > 0, there exists a sub-probability density p(t, ·) supported on (0,∞) such that

µt(dx) =
(
1− α(t)

)
δ0(dx) + p(t, x)dx and α(t) =

∫ ∞

0
p(t, x)dx.

2. The family (µt)t≥0 is the unique weak solution to the following Fokker-Planck equation, i.e.

d

dt

∫

R

f(x)µt(dx) =

∫

(0,∞)

[
B(t, x)f ′(x) + f ′′(x)

]
µt(dx), ∀t ∈ (0, T ], (9)

holds for all smooth functions f : R → R of compact support.

3. The function p is a solution to (8), with α, µ and Bµ,α defined above.

Proof. By definition, one may rewrite

µt(dx) =
(
1− α(t)

)
δ0(dx) + ι(x)P[Xt ∈ dx].

(i) Define the SDE for Y by

Yt = Z +

∫ t

0
B(s, Ys)ds+

√
2Wt, ∀t ≥ 0.

Note that Xt = Yt on the event {τ > t}. So, for any Borel set A ⊆ (0,∞), we have

P[Xt ∈ A] = P[Yt ∈ A, τ > t] ≤ P[Yt ∈ A],

which implies that the distribution of Xt restricted on (0,∞) is absolutely continuous with respect

to the distribution of Yt. The latter admits a probability density as B is bounded.

(ii) One has by definition

B(t, x) =

∫

R+

b(t, x, y)µt(dy)− b(t, x, 0)
(
1− α(t)

)
= E[b(t, x,Xt)]− b(t, x, 0)

(
1− α(t)

)
,

which implies, by Lemma 9, that t 7→ Bµ,α(t, ·) is Hölder continuous and ∂xB
µ,α, ∂2

xxB
µ,α are bounded

and Lipschitz in x. For the SDE

Zt = Z +

∫ t

0
ι(Zs)B(s, Zs)ds+

∫ t

0
ι(Zs)

√
2dWs, ∀t ∈ [0, T ] (10)
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X is its solution by definition, where we use the fact that (10) has a unique solution if and only if the

same holds for the corresponding SDE without absorption

dZt = B(t, Zt)dt+
√
2dWt, ∀t ∈ [0, T ].

This is ensured as Bµ,α is Lipschitz in x. Therefore, X is the unique solution of (10) and the family

(µt)t≥0, by Lemma 2.3 of [8], is the unique weak solution to the Fokker-Planck equation

d

dt

∫

R

f(x)νt(dx) =

∫

(0,∞)

[
B(t, x)f ′(x) + f ′′(x)

]
νt(dx), ∀t ∈ (0, T ], f ∈ C∞

c (R). (11)

(iii) To conclude, we apply Lemma 1.10 and Theorem 2.2 of Chapter VI in [12]. Namely, the following

(linear) Fokker-Planck equation on the half space

∂tu(t, x) = ∂2
xx

(
u(t, x)

)
− ∂x

(
B(t, x)u(t, x)

)
, ∀t, x > 0

u(0, x) = ρ(x), u(t, 0) = 0, ∀t, x > 0
(12)

has a unique classical solution u satisfying for some C > 0

|∂tu(t, x)| + |∂xu(t, x)|+ |∂2
xxu(t, x)| ≤

C

t

∫ ∞

0
exp

(
−(x− y)2

Ct

)
ρ(y)dy, ∀t, x > 0. (13)

By integration by parts, one deduces that

νt(dx) =

(
1−

∫ ∞

0
u(t, x)dx

)
δ0(dx) + u(t, x)dx, ∀t ∈ [0, T ] (14)

is also a weak solution to (11), and further by uniqueness ν = µ and u = p. Hence the equation (8)

holds for p by noting B ≡ Bµ,α.

We are now ready to prove Proposition 11.

Proof. [of Proposition 11] It is clear that for the given solutionX, p defined in the proof of Proposition

12 is a solution to (8). On the other hand, for any solution u to (8), define Z to be the solution of

dZt = B(t, Zt, νt, β(t))dt+
√
2dWt, ∀t ∈ [0, T ].

Then a straightforward verification yields (Ztι(Zt))t≥0 is a solution to (2).

It remains to prove the uniqueness of solutions to (8). Introduce the SDE

dYt = Bµ,α(t, Yt)dt+
√
2dWt, ∀t ≥ 0,

and denote by (Y t,x
s )s≥t the solution satisfying Y t,x

t = x. Let g(t, x, s, ·) be the density function of

Y t,x
s for s > t, i.e. P[Y t,x

s ∈ dy] = g(t, x, s, y)dy. It is known that, for any fixed s > 0 and y ∈ R, g

satisfies the backward Kolmogorov equation

∂tg(t, x, s, y) = −∂2
xxg(t, x, s, y) −Bµ,α(t, x)∂xg(t, x, s, y), ∀(t, x) ∈ [0, s)× R,

g(s, x, s, y) = δy(x), ∀x ∈ R.

Then α admits the following representation.
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Lemma 13. Under the conditions of Theorem 3, one has for all s > 0

α(s)

2
=

∫ ∞

0
ρ(x)dx

∫ ∞

0
g(0, x, s, y)dy −

∫ ∞

0
g(0, 0, s, y)dy −

∫ s

0
α(t)dt

∫ ∞

0
∂tg(t, 0, s, y)dy. (15)

Proof. Integrating the Fokker-Planck equation of (8) over x ∈ (0,∞), one obtains

∫ ∞

0
∂tp(t, x)dx =

∫ ∞

0
∂2
xxp(t, x)dx−

∫ ∞

0
∂x
(
Bµ,α(t, x)p(t, x)

)
dx,

which yields by Fubini’s theorem and integration by parts

α′(t) =
d

dt

∫ ∞

0
p(t, x)dx =

∫ ∞

0
∂tp(t, x)dx =

∫ ∞

0

[
∂2
xxp(t, x)− ∂x

(
Bµ,α(t, x)p(t, x)

)]
dx = −∂xp(t, 0), ∀t > 0.

Further, compute for all (t, x) ∈ (0, s) × (0,∞)

∂t(pg) + ∂x
(
Bµ,αpg

)
− ∂x (∂xpg − p∂xg) =

(
∂tp− ∂2

xxp+ ∂x(B
µ,αp)

)
g + p

(
∂tg + ∂2

xxg +Bµ,α∂xg
)
= 0,

which yields by integrating over (0, s)× (0,∞)

∫ s

0

∫ ∞

0
∂t(pg)dtdx+

∫ s

0

∫ ∞

0
∂x
(
Bµ,α(t, x)pg

)
dtdx−

∫ s

0

∫ ∞

0
∂x (∂xpg − p∂xg) dtdx = 0.

Again, applying Fubini’s theorem combined with the initial and boundary conditions, one has

0 =

∫ ∞

0

(
p(s, x)δy(x)− ρ(x)g(0, x, s, y)

)
dx+

∫ s

0
∂xp(t, 0)g(t, 0, s, y)dt

= p(s, y)−
∫ ∞

0
ρ(x)g(0, x, s, y)dx −

∫ s

0
α′(t)g(t, 0, s, y)dt, ∀(s, y) ∈ (0,∞) × (0,∞).

Integrating y over (0,∞) for both sides and using integration by parts, one has

α(s) =

∫ ∞

0
ρ(x)dx

∫ ∞

0
g(0, x, s, y)dy +

∫ s

0
α′(t)dt

∫ ∞

0
g(t, 0, s, y)dy

=

∫ ∞

0
ρ(x)dx

∫ ∞

0
g(0, x, s, y)dy +

α(t)

2
−
∫ ∞

0
g(0, 0, s, y)dy −

∫ s

0
α(t)dt

∫ ∞

0
∂tg(t, 0, s, y)dy

which fulfils the proof.

We are now ready to prove the uniqueness of solution to (2). We argue by contradiction and

assume that there are two distinct solutions X,X ′ to (2) on [0, T ]. Denote µt := L(Xt), νt := L(X ′
t)

and α(t) := P[Xt > 0], β(t) := P[X ′
t > 0] for all t ∈ [0, T ]. Define further by p(t, ·), q(t, ·) the

corresponding sub-probability densities of µt, νt. Write

A(t, x) :=

∫ ∞

0
b(t, x, y)p(t, y)dy and B(t, x) :=

∫ ∞

0
b(t, x, y)q(t, y)dy

and the SDEs

Y t,x
s = x+

∫ s

t
A(u, Y t,x

u )du+
√
2(Ws −Wt) and Zt,x

t = x+

∫ s

t
B(u,Zt,x

u )du+
√
2(Ws −Wt), ∀s ≥ t.
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Let f(t, x, s, ·), g(t, x, s, ·) be the densities of Y t,x
s , Zt,x

s . Hence, one has by Lemma 13

α(s) = 2

∫ ∞

0
ρ(x)dx

∫ ∞

0
f(0, x, s, y)dy − 2

∫ ∞

0
f(0, 0, s, y)dy − 2

∫ s

0
α(t)dt

∫ ∞

0
∂tf(t, 0, s, y)dy

=: Θ[α,A](s)

β(s) = 2

∫ ∞

0
ρ(x)dx

∫ ∞

0
g(0, x, s, y)dy − 2

∫ ∞

0
g(0, 0, s, y)dy − 2

∫ s

0
β(t)dt

∫ ∞

0
∂tg(t, 0, s, y)dy

=: Θ[β,B](s)

and similarly

A(s, z) =

∫ ∞

0
ρ(x)dx

∫ ∞

0
b(s, z, y)f(0, x, s, y)dy +

b(s, z, 0)α(s)

2
−
∫ ∞

0
b(s, z, y)f(0, 0, s, y)dy

−
∫ s

0
α(t)dt

∫ ∞

0
b(s, z, y)∂tf(t, 0, s, y)dy =: Λ[α,A](s, z)

B(s, z) =

∫ ∞

0
ρ(x)dx

∫ ∞

0
b(s, z, y)g(0, x, s, y)dy +

b(s, z, 0)β(s)

2
−
∫ ∞

0
b(s, z, y)g(0, 0, s, y)dy

−
∫ s

0
β(t)dt

∫ ∞

0
b(s, z, y)∂tg(t, 0, s, y)dy =: Λ[β,B](s, z).

Proposition 14. (8) has a unique solution and thus the uniqueness of solutions to (2) holds.

Proof. The proof relies essentially on the estimation of |Θ[α,A](s) −Θ[β,B](s)| and |Λ[α,A](s) −
Λ[β,B](s)| := supz∈R+

|Λ[α,A](s, z) − Λ[α,A](s, z)|. Write further Λ := Λ0 + Λ1, where

Λ0[α,A](s) :=

∫ ∞

0
ρ(x)dx

∫ ∞

0
b(s, z, y)f(0, x, s, y)dy −

∫ ∞

0
b(s, z, y)f(0, 0, s, y)dy

−
∫ s

0
α(t)dt

∫ ∞

0
b(s, z, y)∂tf(t, 0, s, y)dy

Λ1[α,A](s, z) :=
b(s, z, 0)α(s)

2

and Λ0[β,B],Λ1[β,B] are defined similarly.

Step 1. Recall ‖f‖t := sup0≤u≤t |f(u)| for f ∈ ΩT ,. We claim that there exists C > 0 such that

‖Θ[α,A] −Θ[β,B]‖s + ‖Λ0[α,A] − Λ0[β,B]‖s ≤ C
√
s
(
‖α− β‖s + ‖A−B‖s

)
, ∀s ∈ [0, T ]. (16)

Let us show that the desired uniqueness follows from the inequality (16). Namely, combining with

α = Θ[α,A], β = Θ[β,B], A = Λ[α,A], B = Λ[β,B], (16) yields

‖α− β‖s + ‖A−B‖s = ‖Θ[α,A] −Θ[β,B]‖s + ‖Λ[α,A] − Λ[β,B]‖s
≤ ‖Θ[α,A] −Θ[β,B]‖s + ‖Λ0[α,A] − Λ0[β,B]‖s + ‖Λ1[α,A] − Λ1[β,B]‖s
≤ C

√
s
(
‖α− β‖s + ‖A−B‖s

)
+ ‖Λ1[α,A] − Λ1[β,B]‖s

≤ C
√
s
(
‖α− β‖s + ‖A−B‖s

)
+ ‖b‖‖α − β‖s

= C
√
s
(
‖α− β‖s + ‖A−B‖s

)
+ ‖b‖‖Θ[α,A] −Θ[β,B]‖s

≤ C(1 + ‖b‖)
√
s
(
‖α− β‖s + ‖A−B‖s

)

≤ C
√
s
(
‖α− β‖s + ‖A−B‖s

)
, ∀s ∈ [0, T ].
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This implies that ‖α − β‖s + ‖A − B‖s = 0 whenever s ≤ min(1/C
2
, T ) =: ∆T > 0. Repeating the

above reasoning on the interval [∆T, T ] with an alternative initial condition, one may deduce, after

dividing a finite number of the interval [0, T ], ‖α − β‖T = ‖A − B‖T = 0. Hence the uniqueness is

derived.

‖Λ[c] − Λ[c′]‖t = ‖Λ0[c]− Λ0[c
′]‖t + ‖Λ1[c]− Λ1[c

′]‖t
≤ ‖Λ0[c]− Λ0[c

′]‖t + ‖Λ+
1 [c]− Λ+

1 [c
′]‖t + ‖Λ−

1 [c]− Λ−
1 [c

′]‖t
= ‖Λ+[c] − Λ+[c′]‖t + ‖Λ−

1 [c]− Λ−
1 [c

′]‖t

≤ C
√
(t− t∗)+‖c− c′‖t +

b

2
‖c0 − c′0‖t

= C
√
(t− t∗)+‖c− c′‖t +

b

2
‖Λ0[c]− Λ0[c

′]‖t

≤ C

(
1 +

b

2

)√
(t− t∗)+‖c− c′‖t,

which yields a contraction when t is close enough to t∗.

Step 2. It remains to prove (16). Set ∆s := ‖α−β‖s+‖A−B‖s. In what follows, R, r > 0 always

denote the constants that may vary from line to line. By assumption, it holds

‖A‖T + ‖B‖T + ‖∂xA‖T + ‖∂xB‖T ≤ R. (17)

Let us recall the parametrix expressions of f and g by Aronson as follows:

f(t, x, s, y) = q(t, x, s, y) +
∞∑

k=1

q ⊗ F (k)(t, x, s, y) and g(t, x, s, y) = q(t, x, s, y) +
∞∑

k=1

q ⊗G(k)(t, x, s, y),

where q(t, x, s, y) := φ(2(s − t), y − x), φ(r, z) := e−z2/2r/
√
2πr, F (t, x, s, y) := A(t, x)∂xq(t, x, s, y),

G(t, x, s, y) := B(t, x)∂xq(t, x, s, y) and ⊗ denotes the time-space convolution, i.e.

q ⊗ F (t, x, s, y) :=

∫ s

t
du

∫ ∞

−∞
q(t, x, u, z)F (u, z, s, y)dz

q ⊗ F (k)(t, x, s, y) := (q ⊗ F (k−1))⊗ F (t, x, s, y)(t, x, s, y), for all k ≥ 2.

Hence, one obtains by a straightforward computation

1

2

∣∣Θ[α,A](s) −Θ[β,B](s)
∣∣ ≤

∣∣∣∣
∫ ∞

0
ρ(x)I1(x)dx

∣∣∣∣+ |I1(0)| +∆s

∫ s

0
I2(t)dt+

∫ s

0
I3(t)dt,

∣∣Λ0[α,A](s, z) − Λ0[β,B](s, z)
∣∣ ≤

∣∣∣∣
∫ ∞

0
ρ(x)J1(x)dx

∣∣∣∣+ |J1(0)| +∆s

∫ s

0
J2(t)dt+

∫ s

0
J3(t)dt,

where

I1(x) :=

∫ ∞

0

(
f(0, x, s, y)− g(0, x, s, y)

)
dy and J1(x) :=

∫ ∞

0
b(s, z, y) (f(0, x, s, y)− g(0, x, s, y)) dy

I2(t) :=

∣∣∣∣
∫ ∞

0
∂tf(t, 0, s, y)dy

∣∣∣∣ and J2(t) :=

∣∣∣∣
∫ ∞

0
b(s, z, y)∂tf(t, 0, s, y)dy

∣∣∣∣

I3(t) :=

∣∣∣∣
∫ ∞

0

(
∂tf(t, 0, s, y)− ∂tg(t, 0, s, y)

)
dy

∣∣∣∣ and J3(t) :=

∣∣∣∣
∫ ∞

0
b(s, z, y) (∂tf(t, 0, s, y)− ∂tg(t, 0, s, y)) dy

∣∣∣∣ .
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In view of Lemmas 16 and 17 below, there exists R > 0 such that

∣∣Θ[α,A](s) −Θ[β,B](s)
∣∣+
∣∣Λ0[α,A](s, z) − Λ0[β,B](s, z)

∣∣ ≤ Rs1/2∆s

which completes the proof.

To establish Lemmas 16 and 17, we need the following preliminary result whose proof adopts

almost the same reasoning of Lemma 3 in [25].

Lemma 15. With the above notation, there exists R, r > 0 such that

∣∣F (k)(t, x, s, y)
∣∣+
∣∣G(k)(t, x, s, y)

∣∣ ≤ k
RkΓ(1/2)k−1

Γ((k + 1)/2)
φ(r(s− t), y − x)(t− s)k/2−1 (18)

∣∣F (k)(t, x, s, y) −G(k)(t, x, s, y)
∣∣ ≤ k∆s

CkΓ(1/2)k−1

Γ((k + 1)/2)
φ(r(s − t), y − x)(t− s)k/2−1 (19)

hold for all 0 ≤ t < s ≤ T , x, y ∈ R and k ≥ 1, where Γ : R∗
+ → R is the Gamma function defined by

Γ(z) :=

∫ ∞

0
az−1e−ada.

4.3 Estimation of I1/J1

Lemma 16. There exists R > 0 such that
∣∣∣∣
∫ ∞

0
p0(x)I1(x)dx

∣∣∣∣+
∣∣∣∣
∫ ∞

0
p0(x)J1(x)dx

∣∣∣∣+ |I1(0)|+ |J1(0)| ≤ R(s− t)1/2∆s

Proof. First, we make use of the following estimation for k ≥ 1

∣∣∣p̃⊗G(k)(0, x, s, y) − q̃ ⊗H(k)(0, x, s, y)
∣∣∣ ≤ (k + 1)sk/2

Rk+1Γ(1/2)

Γ(1 + k/2)
φ(rs, y − x)∆s,

which yields

∣∣∣∣
∫ ∞

0
p0(x)I1(x)dx

∣∣∣∣ ≤
∞∑

k=1

∫ ∞

0
p0(x)dx

∣∣∣∣
∫ ∞

0
p̃⊗G(k)(0, x, s, y)dy −

∫ ∞

0
q̃ ⊗H(k)(0, x, s, y)dy

∣∣∣∣ ≤ R
√
s∆s.

As for J1, carrying out the similar reasoning for the terms with k ≥ 1, one has

∣∣∣∣
∫ ∞

0
p0(x)J1(x)dx

∣∣∣∣+ |J1(0)| ≤ R
√
s∆s.

4.4 Estimation of I2/J2 and I3/J3

Lemma 17. There exists R > 0 such that

|I2(t)|+ |J2(t)| ≤ R(s− t)1/2 and |I3(t)|+ |J3(t)| ≤ R(s− t)1/2∆s.
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Proof. As the estimation of I2/J2 can be seen as a particular case of that of I3/J3, we only deal

with I3/J3. We start by estimating I3.

I3(t) ≤
∞∑

k=1

∣∣∣∣
∫ ∞

0

(
∂t
(
p̃⊗G(k)

)
(t, 0, s, y) − ∂t

(
q̃ ⊗H(k)

)
(t, 0, s, y)

)
dy

∣∣∣∣ .

Next,
∫ ∞

0
∂t
(
p̃⊗G(k)

)
(t, 0, s, y)dy =

∫ ∞

0
∂t

(∫ s

t

∫ ∞

−∞
p̃(t, 0, u, z)G(k)(u, z, s, y)dzdu

)
dy

= −
∫ ∞

0
G(k)(t, 0, s, y)dy +

∫ ∞

0

∫ s

t

∫ ∞

−∞
∂tp̃(t, 0, u, z)G

(k)(u, z, s, y)dzdudy

and similarly
∫ ∞

0
∂t
(
q̃ ⊗H(k)

)
(t, 0, s, y)dy = −

∫ ∞

0
H(k)(t, 0, s, y)dy +

∫ ∞

0

∫ s

t

∫ ∞

−∞
∂tq̃(t, 0, u, z)H

(k)(u, z, s, y)dzdudy.

Hence, ∣∣∣∣
∫ ∞

0
∂t
(
p̃⊗G(k)

)
(t, 0, s, y)dy −

∫ ∞

0
∂t
(
q̃ ⊗H(k)

)
(t, 0, s, y)dy

∣∣∣∣

≤
∣∣∣∣
∫ ∞

0

(
G(k)(t, 0, s, y) −H(k)(t, 0, s, y)

)
dy

∣∣∣∣

+

∣∣∣∣
∫ ∞

0

∫ s

t

∫ ∞

−∞

(
∂tp̃(t, 0, u, z) − ∂tq̃(t, 0, u, z)

)
H(k)(u, 0, s, y)dzdudy

∣∣∣∣

+

∣∣∣∣
∫ ∞

0

∫ s

t

∫ ∞

−∞

(
∂tp̃(t, 0, u, z) − ∂tq̃(t, 0, u, z)

)(
H(k)(u, z, s, y)−H(k)(u, 0, s, y)

)
dzdudy

∣∣∣∣

+

∣∣∣∣
∫ ∞

0

∫ s

t

∫ ∞

−∞
∂tq̃(t, 0, u, z)

(
H(k)(u, z, s, y) −G(k)(u, z, s, y)

)
dzdudy

∣∣∣∣
=: I31 + I32 + I33 + I34.

For I31, one has by Lemma 15

I31 ≤ k∆s
RkΓ(1/2)k−1

Γ((1 + k)/2)
(s− t)k/2−1

∫ ∞

0
φ(r(s− t), y)dy ≤ k∆s

RkΓ(1/2)k−1

Γ((1 + k)/2)
(s− t)k/2−1. (20)

For I32, one has

I32 =

∣∣∣∣
∫ ∞

0

∫ s

t

∫ ∞

−∞

(
∂tp̃(t, 0, u, z) − ∂tq̃(t, 0, u, z)

)
H(k)(u, 0, s, y)dzdudy

∣∣∣∣

=

∣∣∣∣
∫ ∞

0

∫ s

t
H(k)(u, 0, s, y)dydu

∫ ∞

−∞

(
∂tp̃(t, 0, u, z) − ∂tq̃(t, 0, u, z)

)
dz

∣∣∣∣

≤
∣∣∣∣
∫ ∞

0

∫ s

t

∣∣H(k)(u, 0, s, y)
∣∣dydu

∣∣∣∣
∫ ∞

−∞

(
∂tp̃(t, 0, u, z) − ∂tq̃(t, 0, u, z)

)
dz

∣∣∣∣
∣∣∣∣

≤ R∆s

∫ s

t
(u− t)−1/2du

∫ ∞

0

∣∣H(k)(u, 0, s, y)
∣∣dy

≤ R∆s

∫ s

t
(u− t)−1/2R

k+1Γ(1/2)k

Γ(1 + k/2)
(s− u)k/2−1du

≤ ∆s
Rk+2Γ(1/2)k−1

Γ((1 + k)/2)
(s− t)(k−1)/2. (21)
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For I33, we start with k = 1. Then it follows that

|H(t, x, s, y)−H(t, 0, s, y)| =
∣∣∣∣
∫ x

0
∂xH(t, z, s, y)dz

∣∣∣∣

=

∣∣∣∣∣

∫ x

0

[(
σ(t, z)∂xσ(t, z)(

1 + β(t)
)2 +B(t, x)

)
∂2
xxq̃(t, z, s, y) +

σ(t, z)2 − σ(t, y)2

2
(
1 + β(t)

)2 ∂3
xxxq̃(t, z, s, y)

]
dz

∣∣∣∣∣

≤ R

∫ x

0
φ(r(s − t), y − z))

(
1

s− t
+

|y − z|
(s− t)3/2

)
dz.

Hence,

∫ ∞

0
|H(t, x, s, y)−H(t, 0, s, y)|dy ≤ R

∫ ∞

0

∫ x

0
φ(r(s− t), y − z))

(
1

s− t
+

|y − z|
(s− t)3/2

)
dzdy ≤ R|x|

s− t
.

Fix any γ ∈ (0, 1), e.g. γ = 1/2. We distinguish two cases. If |x| ≤
√
s− t, then

∫ ∞

0
|H(t, x, s, y) −H(t, 0, s, y)|dy ≤ R|x|

s− t
≤ R|x|γ(s − t)(1−γ)/2

s− t
=

R|x|γ
(s− t)(1+γ)/2

.

If |x| >
√
s− t, then

|H(t, x, s, y) −H(t, 0, s, y)| ≤
[
|H(t, x, s, y)| + |H(t, 0, s, y)|

] |x|γ
(s− t)γ/2

≤ R
φ(r(s− t), y − x) + φ(r(s− t), y)√

s− t

|x|γ
(s− t)γ/2

and thus
∫ ∞

0
|H(t, x, s, y)−H(t, 0, s, y)|dy ≤ R|x|γ

(s− t)(1+γ)/2
.

We compute for all k ≥ 1

∫ ∞

0
|H(k)(t, x, s, y) −H(k)(t, 0, s, y)|dy

=

∫ ∞

0

∣∣∣∣
∫ s

t

∫ ∞

−∞

(
H(t, x, u, z) −H(t, 0, u, z)

)
H(k−1)(u, z, s, y)dzdu

∣∣∣∣ dy

≤
∫ s

t
du

∫ ∞

−∞

∣∣H(t, x, u, z) −H(t, 0, u, z)
∣∣dz

∫ ∞

0

∣∣H(k−1)(u, z, s, y)
∣∣dy

≤
∫ s

t
du

∫ ∞

−∞

∣∣H(t, x, u, z) −H(t, 0, u, z)
∣∣dz

∫ ∞

0

Rk−1Γ(1/2)k−2

Γ((k − 1)/2)
φ(r(s− u), y − z)(s− u)(k−1)/2−1dy

≤
∫ s

t

|x|γ
(u− t)(1+γ)/2

RkΓ(1/2)k−2

Γ((k − 1)/2)
(s− u)(k−1)/2−1du

≤ Rk+1Γ(1/2)k−2|x|γ
Γ((k − 1)/2)

(s− t)(k−γ)/2−1.
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Hence,

I33 =

∣∣∣∣
∫ ∞

0

∫ s

t

∫ ∞

−∞

(
∂tp̃(t, 0, u, z) − ∂tq̃(t, 0, u, z)

)(
H(k)(u, z, s, y) −H(k)(u, 0, s, y)

)
dzdudy

∣∣∣∣

≤
∫ s

t

∫ ∞

−∞

∣∣∂tp̃(t, 0, u, z) − ∂tq̃(t, 0, u, z)
∣∣dzdu

∫ ∞

0

∣∣H(k)(u, z, s, y) −H(k)(u, 0, s, y)
∣∣dy

≤ Rk+1Γ(1/2)k−2

Γ((k − 1)/2)
(s− t)(k−γ)/2−1∆s

∫ s

t
(s− u)(k−γ)/2−1du

∫ ∞

−∞

∣∣z|γ |∂tp̃(t, 0, u, z) − ∂tq̃(t, 0, u, z)
∣∣dz

≤ Rk+1Γ(1/2)k−2

Γ((k − 1)/2)
(s− t)(k−γ)/2−1∆s

∫ s

t
du

∫ ∞

−∞

R|z|γ
(u− t)

φ(r(u− t), z)dz

≤ Rk+2Γ(1/2)k−2

Γ((k − 1)/2)
(s− t)k/2−1∆s. (22)

Finally, let us turn to I34 whose estimation is almost the same of that of I34. Write

I34 =

∣∣∣∣
∫ ∞

0

∫ s

t

∫ ∞

−∞
∂tq̃(t, 0, u, z)

(
H(k)(u, z, s, y) −G(k)(u, z, s, y)

)
dzdudy

∣∣∣∣

≤
∣∣∣∣
∫ ∞

0

∫ s

t

∫ ∞

−∞
∂tq̃(t, 0, u, z)

(
(H(k) −G(k))(u, z, s, y) − (H(k) −G(k))(u, 0, s, y)

)
dzdudy

∣∣∣∣

+

∣∣∣∣
∫ ∞

0

∫ s

t

∫ ∞

−∞
∂tq̃(t, 0, u, z)(H

(k) −G(k))(u, 0, s, y)dzdudy

∣∣∣∣ .

Repeating the above reasoning by replacing H(k) by H(k) −G(k), one obtains
∫ ∞

0
|(H(k) −G(k))(t, x, s, y) − (H(k) −G(k))(t, 0, s, y)|dy ≤ Rk+1Γ(1/2)k−2|x|γ

Γ((k − 1)/2)
(s− t)(k−γ)/2−1∆s.

Therefore,

I34 ≤ Rk+2Γ(1/2)k−2

Γ((k − 1)/2)
(s− t)k/2−1∆s +

∣∣∣∣
∫ ∞

0

∫ s

t

∫ ∞

−∞
∂tq̃(t, 0, u, z)(H

(k) −G(k))(u, 0, s, y)dzdudy

∣∣∣∣

=
Rk+2Γ(1/2)k−2

Γ((k − 1)/2)
(s− t)k/2−1∆s +

∣∣∣∣
∫ ∞

0
dy

∫ s

t
(H(k) −G(k))(u, 0, s, y)du

∫ ∞

−∞
∂tq̃(t, 0, u, z)dz

∣∣∣∣

≤ Rk+2Γ(1/2)k−2

Γ((k − 1)/2)
(s− t)k/2−1∆s +

∫ ∞

0
dy

∫ s

t
|H(k) −G(k)|(u, 0, s, y)du

∣∣∣∣
∫ ∞

−∞
∂tq̃(t, 0, u, z)dz

∣∣∣∣

≤ Rk+2Γ(1/2)k−2

Γ((k − 1)/2)
(s− t)k/2−1∆s +

∫ ∞

0
dy

∫ s

t
k∆s

RkΓ(1/2)k−1

Γ((k + 1)/2)
φ(r(s− u), y)(s − u)k/2−1 R√

u− t
du

≤ Rk+2Γ(1/2)k−2

Γ((k − 1)/2)
(s− t)k/2−1∆s + k

Rk+1Γ(1/2)k−1

Γ((k + 1)/2)
(s − t)(k−1)/2∆s. (23)

Summing up (20), (21), (22) and (23), one obtains I3(t) ≤ R∆s(s − t)1/2. Adopting the above

reasoning we obtain similarly J3(t) ≤ R∆s(s− t)1/2.
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and-fire model of mckean-vlasov type. Annals of Applied Probability, 25(4):2096–2133, 2015.

[11] S. R. Francois Delarue, James Inglis and E. Tanré. Particle systems with a singular mean-field

self-excitation. application to neuronal networks. Stochastic Processes and their Applications,

125(6):2451–2492, 2015.

[12] M. Garroni and J. Menaldi. Green Functions for Second Order Parabolic Integro-Differential

Problems. Chapman & Hall/CRC Research Notes in Mathematics Series, 1992.

[13] N. Ikeda and S. Watanabe. Stochastic Differential Equations and Diffusion Processes. North-

Holland Mathematical Library, 1989.

[14] E. Keller and L. Segel. Model for chemotaxis. Journal of Theoretical Biology, 30(2):225–234,

1971.

[15] V. C. M. Burger and D. Morale. On an aggregation model with long and short range interactions.

Nonlinear Anal. Real World Appl., 8(3):939–958, 2007.

23



[16] G. G. M. Djete and N. Touzi. Mean field game of mutual holding with defaultable agents, and

systemic risk. Preprint, arXiv:2303.07996, 2023.

[17] R. M. M. Huang and P. Caines. Large population stochastic dynamic games: closed-loop mckean-

vlasov systems and the nash certainty equivalence principle. Commun. Inf. Syst., 6(3):221–251,

2006.

[18] S. Nadtochiy and M. Shkolnikov. Particle systems with singular interaction through hitting

times: application in systemic risk modeling. Annals of Applied Probability, 29(1):89–129, 2019.

[19] F. D. R. Carmona and A. Lachapelle. Control of mckean-vlasov dynamics versus mean field

games. Math. Financ. Econ., 7(2):131–166, 2013.

[20] G. Rotskoff and E. Vanden-Eijnden. Trainability and accuracy of neural networks: an interacting

particle system approach. Preprint, arXiv: 1805.00915, 2018.

[21] A. M. S. Mei and P.-M. Nguyen. A mean field view of the landscape of two-layer neural networks.

Proc. Natl. Acad. Sci. USA, 115(33):E7665–E7671, 2018.
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