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forthcoming in SIAM Journal on Financial Mathematics

Abstract. We consider robust pricing and hedging for options written on multiple assets given
market option prices for the individual assets. The resulting problem is called the multi-marginal
martingale optimal transport problem. We propose two numerical methods to solve such problems:
using discretisation and linear programming applied to the primal side and using penalisation and
deep neural networks optimisation applied to the dual side. We prove convergence for our methods
and compare their numerical performance. We show how adding further information about call
option prices at additional maturities can be incorporated and narrows down the no-arbitrage
pricing bounds. Finally, we obtain structural results for the case of the payoff given by a weighted
sum of covariances between the assets.

Key words. robust pricing and hedging, optimal transport, martingale optimal transport, ro-
bust copula, multi-marginal transport, numerical methods, linear programming, machine learning,
deep neural networks
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1. Introduction. Mathematical modelling is a ubiquitous aspect of modern
the financial industry and it drives important decision processes. Stochastic mod-
els are a key component used to describe evolution of risky assets and quantify
financial risks. The ability to postulate and analyse such models was at the heart
of the growth in ever more complex derivatives trading and other aspects of the
financial markets. However, understanding well the implications of a given model
is not sufficient. Equally important is to appreciate the consequences of the model
being wrong in the sense of being an inadequate or misguided description of the re-
ality. The latter issue is often referred to as the Knightian uncertainty after Knight
(1921). This dichotomy between risk and uncertainty, and the quest to capture
both and understand their interplay, are at the heart of the field of Robust Mathe-
matical Finance. The field is concerned with the modelling space, from model-free
to model-specific approaches, and with understanding and quantifying the impact
of making assumptions, and of using or ignoring market information. It has been
an important area of research, in particular in the last decade following the finan-
cial crisis, and we refer to Burzoni et al. (2019) and the references therein for an
extensive discussion. One of the most active research topics within the field has
been that of model-independent pricing and hedging of derivatives. It goes back
to Hobson (1998) and probabilistic methods related to Skorokhod embeddings, see
for example Brown et al. (2001); Cox and Ob lój (2011). More recently, it has been
recast as an optimal transport problem with a martingale constraint, see Beiglböck
et al. (2013); Galichon et al. (2014) and gained a novel momentum. A significant

∗Submitted to the editors 09 September 2019. Accepted 06 October 2020.
Funding: Support from the European Research Council under the European Union’s Sev-

enth Framework Programme (FP7/2007-2013) / ERC grant agreement no. 335421 is gratefully
acknowledged. JO is also thankful to St. John’s College in Oxford for its financial support. TL is
grateful for the support of ShanghaiTech University, and in addition, to the University of Toronto
and its Fields Institute for the Mathematical Sciences, where parts of this work were performed.
GG gratefully acknowledges the support of University of Michigan and an AMS Simons Travel
Grant from the American Mathematical Society and Simons Foundation.
†Department of Mathematics, University of Konstanz (stephan.eckstein@uni-konstanz.de)
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body of research grew studying this Martingale Optimal Transport (MOT) problem
both in discrete and continuous time, see for example Beiglböck et al. (2017a,b);
Dolinsky and Soner (2014); Hou and Ob lój (2018) and the references therein. More
recently, first numerical methods for MOT problems were developed in Guo and
Ob lój (2019); Eckstein and Kupper (2019). However, all these works assume that
markets provide sufficient information to derive the joint, multi-dimensional, risk
neutral distribution of assets at given maturities. In dimensions greater than one,
this assumption is unrealistic in most markets.

In contrast, in this paper, we propose to study problems, in dimensions greater
than one, which are directly motivated by typical market settings and the available
market data. Our focus is on numerical methods and we aim to deliver a proof-
of-concept results which, we hope, could spark interest in these methods among
industry practitioners. More precisely, we assume market prices of call and put
options are given for individual assets - these could be for one or many maturities.
For simplicity, we focus on the case when such prices are given for enough strikes
to derive the implied risk-neutral distribution, a standard argument going back to
Breeden and Litzenberger (1978). Our numerical methods can easily be adjusted to
the case of only finitely many traded call options and we establish a continuity result
to justify our focus on the synthetic limiting case. Given the market information,
we study the implied no-arbitrage bounds for an option with a payoff which depends
on multiple assets. A simple example, with two assets, is given by a spread option.
In higher dimensions, natural examples are given by options written on an index.
We stress that while market information translates into risk neutral distributional
constraints on individual assets, the global no-arbitrage constraint translates into
a global martingale constraint which binds the assets together and is sharper than
just requiring that each of the assets were a martingale in its own filtration.

We call the resulting optimisation problem a Multi-Marginal Martingale Opti-
mal Transport (MMOT) problem. It was first studied in Lim (2016) who focused
on its duality theory. The duality is of intrinsic financial interest: while the pri-
mal problem corresponds to the risk-neutral pricing, the dual side corresponds to
optimising over hedging strategies. The equality between the primal and the dual
problem corresponds to the superhedging duality in mathematical finance. We
exploit it here to propose two different numerical methods for MMOT problems.
First, we adopt the approach of Guo and Ob lój (2019) and propose a computational
method for the primal problem. This relies on discretisation of the marginal mea-
sures combined with a relaxation of the martingale condition. Theorem 3.1 estab-
lishes convergence of the approximating problems to the original MMOT problem.
Each approximating problem in turn, is a discrete LP problem and can be solved
efficiently. The main disadvantage of this approach is the curse of dimensional-
ity: LP problems with too many constraints quickly exceed memory capacity. Our
second approach builds on the work of Eckstein and Kupper (2019) to develop a
computational method for solving the dual problem. The dual problem involves an
optimisation over hedging strategies and we approximate these with elements of a
deep neural network (NN). To employ the stochastic gradient descent we change
the problem from a singular one, with the superhedging inequality constraint, to a
smooth one with an integral penalty term. Theorem 3.4 shows that under suitable
assumptions the results converge, with the penalty term γ →∞ and the size of the
NN m→∞, to the value of the MMOT problem.

The numerical methods we propose, including Theorems 3.1 and 3.4, are natural
extensions of the previous MOT studies cited above and do not require fundamental
new insights. In this way, our results illustrate that these studies are generic in
nature and can be extended or generalised to other similar contexts. Apart from
the MMOT problem studied here, we mention the optimization problem considered
by Kramkov and Xu (2019). A large focus of our paper then lies on making the
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method practically applicable and testing their numerical performance. We discuss
the details of the implementation and provide GitHub links with the codes. We show
that the NN approach agrees with the LP approach but is also able to handle higher
dimensional settings. Both approaches are shown to recover theoretical values, when
these can be computed independently. By focusing on a MMOT problem which
corresponds to real world industry scenarios we hope to showcase the capacity of
the robust approach to capture and quantify, in a fully non-parametric and model-
agnostic way, the impact of various sources of information, or ways to trade, for a
given pricing and hedging problem. We illustrate this on both synthetic and real
world data. In particular, we consider the case of payoffs only depending on the
assets’ terminal values at time T , e.g., spread options and options paying covariance
between the assets. Such examples allow us to capture the value of additional market
information from intermediate maturities. Indeed, we can start by considering only
the call prices at time T , i.e., MMOT becomes just an optimal transport problem, or
the so-called robust copula, see for example Wang et al. (2013). Adding call prices
at earlier maturities Ti < T then reduces the range of no-arbitrage prices and thus
captures the value of this information for robust pricing and hedging. This, along
with the structure of optimisers, can be understood and characterised theoretically
as Theorem 5.3 shows.

The remainder of this paper is structured as follows. In Section 2 we introduce
the MMOT problem and its duality. Then we develop our computational methods:
first the LP approach in Section 3.1 and then the NN approach in Section 3.2.
All the numerical examples are presented in the subsequent Section 4. Finally, in
Section 5, we discuss some structural results for the particular case of the covariance
payoff.

2. The MMOT problem. We denote by P(Rd) the set of probability mea-
sures on Rd with a finite first moment. Measurable (resp. continuous) functions
from Rd to Rk are denoted L0(Rd;Rk) (resp. C(Rd;Rk)) and we write Cb for con-
tinuous bounded functions. For a µ ∈ P(Rd), L1(µ) denotes the space of functions
f : Rd → R with

∫
|f |dµ <∞.

Let T, d ∈ N and X1 = X2 = ... = XT = Rd, X = X1 × ...×XT . We denote the
natural projection from X onto its tth component by Xt, and by Xt,i the further
projection onto the i-th component of Xt. For x ∈ X we write xt = Xt(x) and
xt,i = Xt,i(x). Given µt,i ∈ P(R), let µ̌t = (µt,i)1≤i≤d and µ̌ = (µ̌t)1≤t≤T . We
define Π(µ̌) = Π(µ̌1, ..., µ̌T ) ⊂ P(X ) as the set of measures π satisfying π ◦X−1

t,i =
µt,i for 1 ≤ t ≤ T and 1 ≤ i ≤ d. We stress that throughout we only consider
measures with a finite first moment.

We assume from now onwards that µt,i are increasing in convex order in t,
denoted µt,i �cx µt+1,i, by which we mean that

∫
fdµt,i ≤

∫
fdµt+1,i for all convex functions f, 1 ≤ t ≤ T − 1, 1 ≤ i ≤ d.

We define M(µ̌) =M(µ̌1, ..., µ̌T ) ⊆ Π(µ̌) to be the subset consisting of martingale
measures, i.e., measures π such that

Eπ[Xt+1|X1, ..., Xt] = Xt, 1 ≤ t ≤ T − 1.

It follows from Strassen (1965) that our increasing convex order assumptions on µ̌
are precisely the necessary and sufficient conditions for M(µ̌) 6= ∅.

Our object of interest in this paper is the multi-marginal martingale optimal
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transport (MMOT) defined as

MMOT(µ̌) := P(µ̌) := sup
π∈M(µ̌)

∫
c dπ,

MMOT(µ̌) := P(µ̌) := inf
π∈M(µ̌)

∫
c dπ,

(2.1)

for a given measurable function c : X → R to optimize. We recall that the martin-
gale condition encodes the financial requirement of absence of arbitrage. We mostly
use the notation P,P. However when we want to stress the martingale condition,
we write MMOT,MMOT. Without this condition, the problem above corresponds
to the multi-marginal optimal transport, given by

OT(µ̌) := sup
π∈Π(µ̌)

∫
c dπ,

OT(µ̌) := inf
π∈Π(µ̌)

∫
c dπ.

(2.2)

In the particular case when d = 2 and c(x) = c(xT,1, xT,2) the above corresponds to
the classical optimal transport problem on R as only the marginals µT,i, i = 1, 2,
impact the problem. The case c(x) = |xT,1 − xT,2| gives OT(µ̌) = W1(µT,1, µT,2),
which is the Wasserstein distance of order 1, a metric on P(R) which we will use
extensively in Section 3.1. Note that in general

OT 6 MMOT 6 MMOT 6 OT.

Both problems (2.1) and (2.2) admit a dual formulation. The latter can be found in
Bartl et al. (2017), while the former was developed in Lim (2016), following earlier
works on the martingale optimal transport in Beiglböck et al. (2013). We recall it
here as it will be used for our numerical methods. Define D, respectively D, to be
the set of functions (ϕt,i)1≤t≤T,1≤i≤d and (ht,i)1≤t≤T−1,1≤i≤d, where ϕt,i ∈ L1(µt,i)
and ht,i ∈ L0(Rt·d;R), satisfying for all x ∈ X :

T∑
t=1

d∑
i=1

ϕt,i(xt,i) +

T−1∑
t=1

d∑
i=1

ht,i(x1, ..., xt)(xt+1,i − xt,i) ≥ c(x), respectively

T∑
t=1

d∑
i=1

ϕt,i(xt,i) +

T−1∑
t=1

d∑
i=1

ht,i(x1, ..., xt)(xt+1,i − xt,i) ≤ c(x).

Then the corresponding dual problems are defined by

D(µ̌) := inf
(ϕt,i,ht,i)∈D

T∑
t=1

d∑
i=1

∫
ϕt,i dµt,i,

D(µ̌) := sup
(ϕt,i,ht,i)∈D

T∑
t=1

d∑
i=1

∫
ϕt,i dµt,i.

(2.3)

Let us now discuss briefly the financial interpretation of the objects introduced so
far. We refer the reader to Beiglböck et al. (2013); Burzoni et al. (2019) and the
references therein for more details and for background on robust financial math-
ematics. We consider a market with d traded risky assets and T time steps, or
maturities. All prices are discounted, i.e., given in units of a fixed numeraire (e.g.,
the bank account). The price of ith asset at tth maturity is denoted xt,i above.
We suppose market provides call/put option prices for each of these assets for all
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T maturities and all strikes. This, through a classical argument of Breeden and
Litzenberger (1978), is equivalent to fixing the risk neutral marginal distributions
of the assets. We denote µt,i the risk-netural marginal distribution of ith asset at
tth maturity. In particular, the first maturity will often correspond to today and
then µ1,i = δsi where si is today’s price of the ith asset. M(µ̌) is the set of all
risk neutral (i.e., martingale) measures for the whole market which are calibrated
to the given option prices. Thus, the primal problem (2.1) takes the risk-netural
pricing perspective and gives the upper and lower bounds for the price of a deriva-
tive with payoff c at the final maturity. The dual problem (2.3) considers the same
quantities but from the hedging perspective. Here, ϕt,i(xt,i) represents the static
position synthetised from tth maturity call/put options on the ith asset and ht,i is
the number of shares of the ith asset held between the tth and (t + 1)th maturity.
Importantly, ht,i is a function of the past prices of all assets across the previous
maturities. This, on the primal side, corresponds to the requirement that the assets
are jointly martingale and not just each on their own. Classically, the pricing and
the hedging approach should give the same no-arbitrage price range. This is also
the case here as stated in the following theorem.

Theorem 2.1. Let µ̌ ∈ P(R)dT with M(µ̌) 6= ∅, and let ψ : X → R be given by

ψ(x) = 1 +
∑T
t=1

∑d
i=1 |xt,i|. If c : X → R is lower semi-continuous and c ≥ −Kψ

on X for some K > 0 then P(µ̌) = D(µ̌). If c : X → R is upper semi-continuous
and c ≤ Kψ on X for some K > 0 then P(µ̌) = D(µ̌). In both cases, the primal
problems are attained and the dual values remain unchanged when one restricts to
ϕt,i ∈ L1(µt,i) ∩ C(R;R), ht,i ∈ Cb(Rt·d;Rd), 1 ≤ t ≤ T , 1 ≤ i ≤ d.

We note that this result was proved in Zaev (2015) with the assumption of contin-
uous cost c, but it is standard to extend the duality to the semi-continuous costs,
see, e.g., Villani (2003, 2009). We also note that this duality for martingale opti-
mal transport was first proved in Beiglböck et al. (2013) in one dimension d = 1,
and they also showed that the duality holds with a narrower class of functions ϕt,i
which are linear combinations of finitely many call options, i.e. ϕt,i of the form

ct,i +
∑lt,i
j=i ct,i,j(xt,i − kt,i,j)+, for some l·, c·, k·. The same applies here.

While existence of primal optimizers in (2.1) is easy to obtain, in general we
cannot hope for uniqueness. We illustrate this with two simple examples. In both
examples, d = 2 = T and c(x) = x2,1x2,2. We further study this particular cost
function and present some structural results in Section 5.

Example 2.2. Consider d = 2 = T and the maximization problem with c(x) =
x2,1x2,2. Take µ �cx ν such thatM(µ, ν) is not a singleton, e.g., µ, ν are Gaussians
with the same mean and increasing variance, and let µ1,1 = µ1,2 = µ, µ2,1 = µ2,2 =
ν. Then for any π̃ ∈ M(µ, ν), the distribution π of any quadruple of random
variables (ξ, ξ, η, η) satisfying (ξ, η) ∼ π̃ is an element ofM(µ̌). Further, π ◦X−1

2 is
the monotone increasing coupling of ν with itself and, in particular, is independent
of the choice of π̃. It also attains P(µ̌) and we conclude that the optimizer in P(µ̌)
is not unique. Note however that, in this example, the distributions π ◦ X−1

1 and
π ◦X−1

2 are the same for any optimizer π ∈M(µ̌).

Example 2.3. Consider the same problem as in Example 2.2 but with µ1,1 = δ0,
µ2,1 = 1

4 (δ−2+δ−1+δ1+δ2), µ1,2 = µ2,2 = 1
2 (δ−1+δ1). Note that, for any π ∈M(µ̌),

π1 = π ◦X−1
1 = 1

2 (δ(0,1) + δ(0,−1)). Further, the following measures dominate π1 in
the convex order and have µ2,1, µ2,2 as their marginals:

π2 =
1

4
(δ(−1,1) + δ(1,1) + δ(−2,−1) + δ(2,−1)),

π̃2 =
1

4
(δ(−1,−1) + δ(1,−1) + δ(−2,1) + δ(2,1)).
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Hence there exist π, π̃ ∈ M(µ̌) whose (2-dimensional) marginals are π1, π2 and
π1, π̃2 respectively. In particular, M(µ̌) is not a singleton. However, for any π ∈
M(µ̌), we have

Eπ[X2,1X2,2] = Eπ[X2,1X1,2] = Eπ[X1,1X1,2] = 0,

and hence π is an optimizer for both P(µ̌) and P(µ̌) with c(x) = x2,1x2,2. In this
example, neither the optimizer nor the implied distribution of X2 are unique.

3. Numerical Methods for MMOT problems. We present now two nu-
merical approaches for computing the MMOT value (2.1), as well as the primal
and the dual optimizers. Our first approach relies on the primal formulation (2.1)
and LP methods. Our second approach starts with the dual formulation (2.3), uses
penalization to convexify the superhedging constraint and employs optimization
techniques involving deep neural networks.

Before we discuss our methods in detail, we mention briefly two other numerical
approaches which have been applied to MOT problems and, while not pursued in
this paper, could potentially be extended to the MMOT context. The first one is
the cutting plane method as described in Henry-Labordère (2013). This method is
LP based but works via the dual side. A standard LP approach runs into memory
issues for higher values of d or T , see section 4.3, and the cutting plane method
circumvents this by considering a finite set of basis functions. While effective, this
introduces a new source of error and one which is difficult to control theoretically
and for this reason, see also section 4.1, we do not discuss it further in this paper.
The second method is a generalization of the Sinkhorn algorithm Benamou et al.
(2015); Cuturi (2013) to the MOT problem, see De March (2018). The Sinkhorn
algorithm adds a strictly convex/concave term to the objective function, similarly
as our neural network approach presented below. However, the Sinkhorn algorithm
is designed for discrete marginals and based on the so-called iterative Bregman
projections. In the OT context, the projections are onto the marginal constraints.
The added difficulty for MOT problems comes from the additional projection onto
the martingale constraint, which does not admit a closed form solution. Instead,
the projection has to be approximated numerically, e.g., using Newton’s method,
which again introduces a new source of error. To the best of our knowledge, even
for MOT problems, there are no theoretical results ensuring that the accumulative
error does not explode and the number of required projections does not increase
with respect to the discretisation precision.

3.1. The Primal Problem - an LP approach. Following the approach of
Guo and Ob lój (2019), we propose a computational scheme to solve (2.1). For each
ε ∈ R+, denote by Mε(µ̌) ⊂ Π(µ̌) the subset of measures π satisfying

Eπ
[∣∣∣Eπ[Xt+1

∣∣X1, . . . , Xt

]
− Xt

∣∣∣] ≤ ε, for t = 1, . . . , T − 1,

where | · | stands for the `1 norm. Introduce, accordingly, the optimization problems
as follows:

Pε(µ̌) := sup
π∈Mε(µ̌)

∫
c dπ, Pε(µ̌) := inf

π∈Mε(µ̌)

∫
c dπ.

Then clearly P0 = P (resp. P0 = P), and Theorem 3.1 provides the basis of our
numerical method.

Theorem 3.1. Let µ̌ ∈ P(R)dT satisfy M(µ̌) 6= ∅ and µ̌n =
(
µnt,i
)

1≤t≤T,1≤i≤d
satisfy limn→∞ rn = 0 with rn := 2 max1≤t≤T

∑
1≤i≤dW1(µnt,i, µt,i). Then, for all

n ≥ 1, Mrn(µ̌n) 6= ∅. Assume further c is Lipschitz, then:
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(i) For any (εn)n≥1 converging to zero such that εn ≥ rn for all n ≥ 1, one has

lim
n→∞

Pεn(µ̌n) = P(µ̌) and lim
n→∞

Pεn(µ̌n) = P(µ̌).

(ii) For each n ≥ 1, Pεn(µ̌n) (resp. Pεn(µ̌n)) admits an optimizer πn. The sequence

(πn)n≥1 is tight and every limit point is an optimizer for P(µ̌) (resp. P(µ̌)). In
particular, (πn)n≥1 converges weakly whenever P(µ̌) (resp. P(µ̌)) has a unique
optimizer.

Before proving this result we state and prove two preliminary propositions.

Proposition 3.2. Provided µ̌ ∈ P(R)dT withMε(µ̌) 6= ∅, it holdsMε+r(µ̌
′) 6=

∅ for all µ̌′ ∈ P(R)dT where r := 2 max1≤t≤T
∑

1≤i≤dW1(µ′t,i, µt,i). Further, if c is
L−Lipschitz, then

Pε(µ̌) ≤ Pε+r(µ̌
′) + LTr/2 and Pε(µ̌) ≥ Pε+r(µ̌

′)− LTr/2.

Proof. Without loss of generality, we only show the first inequality. Fix an arbi-
trary π ∈Mε(µ̌). It follows from Skorokhod’s theorem that, there exists an enlarged
probability space (E, E ,Q) which supports random variables Ut = (Ut,1, . . . , Ut,d),
Zt = (Zt,1, . . . , Zt,d) taking values in Rd, for t = 1, . . . , T , such that

• Q ◦ (U1, ..., UT )−1 = π and Q ◦ Z−1
t = Nd for t = 1, . . . , T ,

where Nd denotes the standard normal distribution on Rd.
• (U1, . . . , UT ) and (Z1, . . . , ZT ) are independent.

(3.1)

Let t ∈ {1, . . . , T − 1}. For i = 1, . . . , d, let γt,i be the optimal transport plan re-
alizing the Wasserstein distance W1(µt,i, µ

′
t,i). Using standard disintegration tech-

niques (see (Guo and Ob lój, 2019, Lemma A.1)), there exist measurable functions
ft,i : R2 → R such that Q ◦ (Ut,i, Vt,i)

−1 = γt,i with Vt,i := ft,i(Ut,i, Zt,i). Let
Vt := (Vt,1, . . . , Vt,d). Then, for all h = (hi)1≤i≤d ∈ Cb

(
X1 × · · · × Xt;Rd

)
, one has

EQ
[
h(V1, . . . , Vt) · (Vt+1 − Vt)

]
= EQ

[
d∑
i=1

hi(V1, . . . , Vt)(Vt+1,i − Vt,i)

]

= EQ

[
d∑
i=1

hi(V1, . . . , Vt)(Vt+1,i − Ut+1,i)

]
+ EQ

[
d∑
i=1

hi(V1, . . . , Vt)(Ut+1,i − Ut,i)

]

+ EQ

[
d∑
i=1

hi(V1, . . . , Vt)(Ut,i − Vt,i)

]

≤ r‖h‖∞ + EQ

[
d∑
i=1

hi
(
fs,i(Us,i, Zs,i); 1 ≤ s ≤ t, 1 ≤ i ≤ d

)
(Ut+1,i − Ut,i)

]
≤ (ε+ r)‖h‖∞,

where the last inequality follows from the conditions in (3.1). Therefore,∫
h(x1, . . . , xt) · (xt+1 − xt)π′(dx) ≤ (ε+ r)‖h‖∞(3.2)

holds for all h ∈ Cb
(
X1 × · · · × Xt;Rd

)
, where π′ := Q ◦ (V1, . . . , VT )−1. In view of

the monotone class theorem, this is equivalent to

Eπ′

[∣∣∣Eπ′
[
Xt+1

∣∣X1, . . . , Xt

]
− Xt

∣∣∣] ≤ ε+ r.
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Hence, π′ ∈ Mε+r(µ̌
′) 6= ∅ as π′ ◦X−1

t,i = µ′t,i for t = 1, . . . , T and i = 1, . . . , d. To
conclude the proof, notice that∫

cdπ − Pε+r(µ̌
′) ≤

∫
cdπ −

∫
cdπ′ = EQ

[
c(U1, . . . , UT )− c(V1, . . . , VT )

]
≤ L

T∑
t=1

d∑
i=1

EQ
[
|Ut,i − Vt,i|

]
≤ LTr/2,

which yields Pε(µ̌) ≤ Pε+r(µ̌
′) + LTr/2 as π ∈Mε(µ̌) is arbitrary.

Proposition 3.3. Assume that c has a linear growth and M(µ̌) 6= ∅.
(i) If c is u.s.c., then the map R+ 3 ε 7→ Pε(µ̌) ∈ R is non-decreasing, continuous
and concave.

(ii) If c is l.s.c., then the map R+ 3 ε 7→ Pε(µ̌) ∈ R is non-increasing, continuous
and convex.

Proof. We only show (i) here. First notice that ε 7→ Pε(µ̌) is non-decreasing
by definition. Next, let us prove the concavity. Given ε, ε′ ∈ R+ and α ∈ [0, 1],
it remains to show (1 − α)Pε(µ̌) + αPε′(µ̌) ≤ Pεα(µ̌), where εα := (1 − α)ε +
αε′. This indeed follows from the fact that (1 − α)π + απ′ ∈ Mεα(µ̌) for all
π ∈ Mε(µ̌) and π′ ∈ Mε′(µ̌). Hence the map restricted to (0,+∞) is continuous.
Finally, let us show the right continuity at zero. For any sequence (εn)n≥1 ⊂ R+

decreasing to zero, let (πn)n≥1 be a sequence such that πn ∈Mεn(µ̌) for n ≥ 1 and
limn→∞ Pεn(µ̌) = limn→∞

∫
cdπn. We have

lim
R→∞

sup
n≥1

πn

((
R \ [−R,R]

)Td) ≤ lim
R→∞

Td

(
sup

t≤T,i≤d
µt,i
(
R \ [−R,R]

))
= 0,

which shows that (πn)n≥1 is tight and hence, by Prokhorov’s theorem, admits a
weakly convergent subsequence (πnk)k≥1. As the marginals are fixed and have
finite first moments, we see that the convergence holds in W1 and that the limit
π ∈M(µ̌). This implies, thanks to our assumptions on c, that

lim
n→∞

Pεn(µ̌) = lim
k→∞

Pεnk (µ̌) ≤ P(µ̌).

Combined with the obvious reverse inequality this yields the right continuity at
zero.

Proof of Theorem 3.1. (i) It suffices to deal with the maximization problem.
First, by Proposition 3.2, we have ∅ 6=Mrn(µ̌n) ⊂Mεn(µ̌n) and further

P(µ̌) ≤ Prn(µ̌n) + LTrn/2 ≤ Pεn(µ̌n) + LTεn/2,

where L denotes the Lipschitz constant of c. Repeating the above reasoning but
interchanging µ̌ and µ̌n, we obtain Pεn(µ̌n) ≤ P2εn(µ̌)+LTεn/2, which yields finally

−LTεn/2 ≤ Pεn(µ̌n)− P(µ̌) ≤
(
P2εn(µ̌)− P(µ̌)

)
+ LTεn/2.

This result then follows by Proposition 3.3.

(ii) Arguments in the proof of Proposition 3.3 above show thatMεn(µ̌n) is compact.
Combined with the Lipschitz continuity of c, this yields the existence of πn. To show
tightness of (πn)n≥1, let ε > 0 and observe that rn → 0 implies that µnt,i → µt,i in
W1 for all t ≤ T , i ≤ d and hence there exists N such that for every n ≥ N ,

πn

((
R \ [−R,R]

)Td) ≤ ∑
t≤T,i≤d

µnt,i
(
R \ [−R,R]

)
≤

∑
t≤T,i≤d

µt,i
(
R \ [−R+ 1, R− 1]

)
+ ε/2.
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Hence, we can take Rε large enough so that

sup
n≥1

πn

((
R \ [−Rε, Rε]

)Td) ≤ ε.
Thus (πn)n≥1 is tight and hence, by Prokhorov’s theorem, admits a weakly conver-
gent subsequence (πnk)k≥1 with a limit denoted by π. Further, again since rn → 0,
the first moments converge so that πn → π in W1. Using the alternative definition
(3.2) and the dominated convergence theorem, we see that π ∈M(µ̌).

The above discussion and Theorem 3.1 rely on having a sequence of discrete
measures µ̌n =

(
µ̌nt,i
)

converging to µ̌. As each µt,i is a probability measure on
R, its discretisation is a well studied subject. For the sake of simplicity, we write
µ ≡ µt,i in the rest of this section. Suppose first that µ is given via its density or its
CDF, or an equivalent functional representation. We could then follow the abstract
approach in (Guo and Ob lój, 2019, Section 3.1), noting that for d = 1 the first
step (Truncation) can be simplified to take µR(dx) := 1BR(x)µ(dx)/µ[BR], where
BR = [−R,R].

However, more explicit methods are possible. One such discretisation was pro-
posed in Dolinsky and Soner (2014) and corresponds to taking µn supported on
{k/n}k∈Z:

(3.3) µn
({

k

n

})
:=

∫
[(k−1)/n,(k+1)/n)

(1− |nx− k|)µ(dx), k ∈ Z.

The construction has a natural interpretation in the potential-theoretic language,
see Chacon (1977), namely µn is the probability measure whose potential agrees
with that of µ on {k/n}k∈Z and is linear otherwise. This implies, in particular, that
the discretisation preserves the convex order: if µ �cx ν then µn �cx νn. Note also
that for any measurable function f : R→ R, it holds∫

R
f(x)µn(dx) =

∫
R
fn(x)µ(dx),

where fn(x) := (1 + bnxc − nx)f (bnxc/n) + (nx− bnxc)f ((1 + bnxc)/n). One has
thus by the dual formulation that W1(µn, µ) ≤ 1/n. Further, a straightforward
computation yields∫

[(k−1)/n,(k+1)/n)

(1− |nx− k|)µ(dx)

= n

∫
R

((
x− k − 1

n

)+

+

(
x− k + 1

n

)+

− 2

(
x− k

n

)+
)
µ(dx)

= n

(
Cµ

(
k − 1

n

)
+ Cµ

(
k + 1

n

)
− 2Cµ

(
k

n

))
,

where Cµ(K) =
∫
R(x −K)+µ(dx) are the call prices encoded by µ. We note that

other discretisations, similar in spirit to (3.3) but distinct, are possible, see for
example the U -quantisation in Baker (2012).

The above discussion assumed we knew µ through its density or distribution
function, or similar. If instead we are able to simulate i.i.d. random variables (ξi)
from µ then it is natural to approximate µ using the empirical measures µ̂n =
1
n

∑n
k=1 δξi constructed from the samples. The distance W1(µ̂n, µ) can be bounded

relying on the results of Fournier and Guillin (2015), we refer to Guo and Ob lój
(2019) for the details. We note that such approximations may not preserve the
convex order. In light of Theorem 3.1, this is not an issue for our methods but one
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may further consider W1-projections onto couples which are in convex order, see
Alfonsi et al. (2019) for details.

Finally, let us comment on the issue of convergence rates in Theorem 3.1. For
d = 1 and T = 2 such rates were obtained in Guo and Ob lój (2019) but, at present,
remain open in greater generality. To obtain an estimation of the convergence rate,
we need not only to know the continuity of µ̌ 7→ P (µ̌) – this has been settled for d = 1
recently but remains open otherwise, see Backhoff-Veraguas and Pammer (2019);
Wiesel (2019) – but also the differentiability (Lipschitz continuity) of µ̌ 7→ P (µ̌), see
Guo and Ob lój (2019). Nevertheless, we hope this may be achievable in the future
and it is one of the reasons to consider the LP approach.

3.2. The Dual Problem - a Neural Network approach. We develop now
a computational approach to the MMOT problem (2.1) based on a neural network
implementation of the dual formulation (2.3). The basic idea, following the work
of Eckstein and Kupper (2019) for the MOT problem, is to restrict ϕt,i, ht,i to
neural network functions instead of arbitrary L1 or L0 functions. Without loss of
generality, we restrict the discussion to the problem P = D.

Formally, we define

H :=
{
h ∈ L0(X ) : ∃(ϕt,i, ht,i) ∈ D s.t. for all x ∈ X

h(x) =

T∑
t=1

d∑
i=1

ϕt,i(xt,i) +

T−1∑
t=1

d∑
i=1

ht,i(x1, ..., xt)(xt+1,i − xt,i).
}

Note that, for brevity, h now denotes the combined payoff from dual elements
(ϕt,i, ht,i). For an arbitrary µ0 ∈M(µ̌) one can rewrite

D(µ̌) = inf
h∈H:h≥c

∫
h dµ0,

where the value D(µ̌) clearly does not depend on the choice of µ0. We denote by
Nl,k,m the set of feed-forward neural network functions mapping Rk into R, with
l layers and hidden dimension m. More precisely, we fix an activation function
ψ : R→ R and define

Nl,k,m = {f : Rk → R : There exist affine transformations A0, ..., Al such that

f(x) = Al ◦ ψ ◦Al−1 ◦ ... ◦ ψ ◦A0(x)}

whereby the index m specifies that A0 maps from Rk to Rm, A1, ..., Al−1 map from
Rm to Rm and Al maps from Rm to R. The evaluation of ψ(x) for x ∈ Rd (for some
d ∈ N) is understood point-wise, i.e. ψ(x) = (ψ(x1), ..., ψ(xd)).

Fix l ∈ N and define Dm ⊂ D as the set of functions (ϕt,i, ht,i) with ϕt,i ∈ Nl,1,m

and ht,i ∈ Nl,d·t,m. Similarly, Hm ⊆ H is defined by

Hm :=
{
h ∈ L0(X ) : ∃(ϕt,i, ht,i) ∈ D

m
s.t. for all x ∈ X

h(x) =

T∑
t=1

d∑
i=1

ϕt,i(xi,t) +

T−1∑
t=1

d∑
i=1

ht,i(x1, ..., xt)(xt+1,i − xt,i)
}

which leads to the problem

D
m

(µ̌) := inf
h∈Hm:h≥c

∫
h dµ0.

Aside from the point-wise inequality constraint h ≥ c, the problem D
m

(µ̌) fits into
the standard framework of optimization problems for neural networks. This leads us
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to consider penalizing the inequality constraint. To do so, choose a penalty function
β : R → R+ which is strictly increasing, convex and differentiable on (0,∞) with
β(x)
x → ∞ for x → ∞. Define βγ : R → R+ by βγ(x) := 1

γβ(γx). Further, choose

a measure θ ∈ P(X ). The penalized problem which can be solved numerically is
given by

D
m

θ,γ(µ̌) := inf
h∈Hm

∫
h dµ0 +

∫
βγ(c− h) dθ.

The penalization used for the Sinkhorn algorithm Cuturi (2013) corresponds to the
choice β(x) = exp(x − 1), while similar penalization methods for neural network
based approaches usually utilize a power-type penalization, see also Gulrajani et al.
(2017); Seguy et al. (2018). In our case, for instance, β(x) = max{0, x}2 will be
used. It follows from Theorem 2.1 and (Eckstein and Kupper, 2019, Lemma 3.3. and
Proposition 3.7) that this problem approximates D(µ̌) in the following sense:

Theorem 3.4. Assume that c is continuous and all marginals µt,i are compactly
supported: µt,i([−M,M ]) = 1 for some M > 0 and all 1 ≤ t ≤ T , 1 ≤ i ≤ d. For
the neural networks, the activation function is continuous, nondecreasing, bounded
and nonconstant, and there is at least one hidden layer. Consider D

m
(µ̌) as defined

above but with the inequality constraint restricted to [−M,M ]T×d. Then

D
m

(µ̌)→ D(µ̌) for m→∞(3.4)

and if the support of θ is equal to [−M,M ]T×d then also

D
m

θ,γ(µ̌)→ D
m

(µ̌) for γ →∞.(3.5)

Remark 3.5. The penalization of the inequality constraint has the added benefit
that it introduces a functional relation between dual and primal optimizers. Thus
in practice, one can easily obtain approximate primal optimizers from the obtained
neural network solutions. Formally, the problem

Dθ,γ(µ̌) := inf
h∈H

∫
h dµ0 +

∫
βγ(c− h) dθ

has a primal problem of the form

Pθ,γ(µ̌) = sup
π∈M(µ̌)

∫
c dπ −

∫
β∗γ

(dπ
dθ

)
dθ.

Here, β∗γ is the convex conjugate of βγ and the Radon-Nikodym derivative dπ
dθ is

understood to be infinite if π is not absolutely continuous with respect to θ. Then
under the assumptions of Theorem 3.4, any optimizer ĥγ of Dθ,γ(µ̌) yields an opti-
mizer π̂γ of Pθ,γ(µ̌) via

dπ̂γ
dθ

= β′γ(c− ĥγ),(3.6)

see also (Eckstein and Kupper, 2019, Theorem 2.2). It further holds

Pθ,γ(µ̌) ≤
∫
c dπ̂γ − β∗γ(1) ≤ P(µ̌)− β∗γ(1)(3.7)

and hence
∫
c dπ̂γ converges to P(µ̌) for γ → ∞ whenever limγ→∞ Pθ,γ(µ̌) = P(µ̌)

holds. The latter convergence, and particularly the correct conditions on θ, is an
open problem even for MOT, see also (De March, 2018, Theorem 5.5). Nevertheless,
given that the convergence of values limγ→∞ Pθ,γ(µ̌) = P(µ̌) holds, (3.7) above also
implies that any limiting point of (πγ)γ>0 is an optimizer of P(µ̌). Further, by
tightness, one also knows that a convergent subsequence exists. Uniqueness of such
a limit is however an open problem, not least since the optimizer of the P(µ̌) does
not need to be unique, as seen in Example 2.3.
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3.3. The case of finitely many quoted call options. So far we have as-
sumed that market specified the risk-neutral distributions of each asset at the given
maturities. Equivalently, we assumed that the set of traded strikes at these maturi-
ties was dense in R. This allows us to use the language of measures and of optimal
transportation but is a simplifying assumption: in practice only finitely many call
options are liquidly traded. Observe that our numerical methods can easily address
this point: in the NN method we simply restrict ϕt,i in Dm to linear combinations
of the traded call options, see Section 4.4 below. Likewise, in the LP implementa-
tion, we consider discrete measures supported on the traded strikes, in analogy to
(3.3). Moreover, we can establish convergence of the problems with finitely many
constraints to the MMOT problem as the number of strikes increases.

To this end fix µ ∈ P(R) with support bounds −∞ ≤ aµ < bµ ≤ ∞. Let
Kn :=

{
aµ < Kn

1 < . . . < Kn
mn < bµ

}
be the set of strikes and Cn :=

{
Cni :=

Cµ(Kn
i ) : 1 ≤ i ≤ mn

}
be the collection of the corresponding prices of call options.

Naturally, we assume that this discrete set of strikes gets asymptotically dense in
the following sense:

Assumption 3.6. As n→∞, one has

∆Kn := max
2≤i≤mn

(
Kn
i −Kn

i−1

)
−→ 0, Kn

1 → aµ and Kn
mn → bµ.

The following result, together with Proposition 3.2, establishes sufficient conditions
for the MMOT problems for measures µ̌n matching only finitely many call prices
from µ̌ to converge to the MMOT problem for µ̌.

Proposition 3.7. Let Assumption 3.6 hold. Then, for any sequence (µn)n≥1

satisfying∫
xµn(dx) =

∫
xµ(dx) ≡ λ and Cµn(Kn

i ) = Cµ(Kn
i ), for i = 1, . . . ,mn,(3.8)

we have

1

2
W1(µn, µ) ≤ ∆Kn +Kn

1 − λ+ Cµ(Kn
1 ) + Cµ(Kn

mn)

and, in particular, W1(µ, µn)→ 0 as n→∞.

Proof. Note that K → Cµ(K) is 1-Lipschitz continuous and decreasing with
Cµ(K)→ 0 as K → bµ and Cµ(K) ≥ λ−K with Cµ(K) +K → λ as K → aµ. Fix
n ≥ 1. We claim that

|Cµn(K)− Cµ(K)| ≤ ∆Kn, for all K ∈ [Kn
1 ,K

n
mn ].(3.9)

Indeed, for each K ∈ [Kn
i ,K

n
i+1] with some i, one has by definition

Cµn(K)− Cµ(K) ≤ Cµn(Kn
i )− Cµ(Kn

i+1) = Cµ(Kn
i )− Cµ(Kn

i+1) ≤ ∆Kn.

Similarly one has Cµ(K)− Cµn(K) ≤ ∆Kn and thus (3.9) holds.
Consider first the particular case when supp(µ) ∪ supp(µn) ⊂ [Kn

1 ,K
n
mn ]. Let

νn be the measure supported inside [Kn
1 ,K

n
mn ] with call prices defined via

Cνn(K) = Cµ(K) ∨ Cµn(K), K ∈ R.

Note that µ �cx νn, µn �cx νn and Cνn(K) = Cµ(K) = Cµn(K) for K ∈ Kn.
Consider a probability space (Ω,F,P) supporting a standard Brownian motion (Bt).
We can use any standard Skorokhod embedding, e.g., the Chacon-Walsh embedding,
see Ob lój (2004), to find stopping times τ ≤ ρ such that Bτ ∼ µ, Bρ ∼ νn and
(Bt∧ρ : t ≥ 0) is uniformly integrable. The latter property implies in particular
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that if K ∈ [Kn
i ,K

n
i+1] then, conditionally on {Bτ = K}, we have Bρ ∈ [Kn

i ,K
n
i+1].

Put differently, we have |Bτ − Bρ| ≤ ∆Kn and, in particular, W1(µ, νn) ≤ ∆Kn.
Likewise, we obtain W1(µn, νn) ≤ ∆Kn and, in conclusion, W1(µ, µn) ≤ 2∆Kn.

For the case of general supports we introduce auxiliary measures. Let Z and
Zn be random variables distributed according to µ and µn respectively. Denote by
µ̃ and µ̃n the laws of Z̃ := Kn

mn ∧ (Kn
1 ∨ Z) and Z̃n := Kn

mn ∧ (Kn
1 ∨ Zn). Note

that, for K ∈ [Kn
1 ,K

n
mn ],

Cµ̃(K) =

∫ ∞
K

(x ∧Kn
mn −K)µ(dx) = Cµ(K)− Cµ(Kn

mn),

with an analogue expression for Cµ̃n . Further, Cµ̃(K) = Cµ̃n(K) for all K /∈
[Kn

1 ,K
n
m1

]. In particular,

Cµ̃(Kn
1 ) = E[Z̃] = Cµ(Kn

1 )− Cµ(Kn
mn) = Cµn(Kn

1 )− Cµn(Kn
mn) = E[Z̃n].

It follows that (3.8) hold for µ̃ and µ̃n and, by the above, W1(µ̃, µ̃n) ≤ 2∆Kn.
Finally,

W1(µ̃, µ) ≤ E[(Kn
1 − Z)+] + E[(Z −Kn

mn)+] = Kn
1 − E[Z] + Cµ(Kn

1 ) + Cµ(Kn
mn),

with the same bound valid for W1(µ̃n, µn) by (3.8). The result follows by the
triangular inequality.

4. Numerical Examples. We turn now to numerical results. We implement
both methodologies presented above: the LP approach of Section 3.1 and the NN
approach of Section 3.2. Our first aim is to showcase that both methods are reliable.
This is achieved via a comprehensive testing of their performance on a range of
examples. In the process, we also discuss the respective advantages and drawbacks
of the two methods. Our second aim is to illustrate the capacity of the MMOT
approach to capture and quantify, in a fully non-parametric way, the influence of
market inputs on a given pricing and hedging problem. This is achieved by showing
how adding additional information sharpens the bounds by reducing P − P, the
relative range of no arbitrage prices.1

Throughout the examples we mostly work with d = 2 but also consider d = 3.
We are interested in comparing results when we vary the number of maturities, or
time points, T . To enable such a comparison, we mostly consider cost functions
that only depend on the final time point. More precisely, we focus mostly on:

c(x) := |xT,1 − xT,2|p (spread option)

c(x) := (xT,1 + xT,2 −K)+. (basket option)

We first assume knowledge of only the marginal distributions at the final time point
and compute the highest and lowest possible prices for a cost function c under these
marginal constraints. These correspond to the optimal transport bounds OT,OT in
(2.2). Then we additionally assume that marginals at earlier time steps are known.
The knowledge of marginal distributions at earlier time steps, combined with the
martingale condition, further constrains the possible joint distributions at the final
time point. We can then study the degree to which this narrows the price bounds.

4.1. Uniform marginals. We first consider a simple example where all occur-
ring marginal distributions are uniform, see Table 4.1. For both spread and basket
option, Table 4.2 compares the two numerical approaches introduced in Sections

1Python code to reproduce the examples, based on TensorFlow for the neural network
implementation and Gurobi for the linear programs, can be found at https://github.com/
stephaneckstein/superhedging/tree/master/Examples/MMOT .
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Spread Option

t 1 2 3 4

xt,1 1 1.6 2.5 3

xt,2 1 1.5 1.6 2

Basket Option

t 1 2 3 4

xt,1 1 1.75 2 3

xt,2 2 2.1 2.3 3

Table 4.1: Details for the marginal distributions in Section 4.1. Each marginal
distribution µt,i is uniform on the interval [−xt,i, xt,i]. In the examples, in case
T = 1, only the information at t = 4 is used. If T = 2, the time steps t = 1, 4 are
used. And for T = 4, all time steps are included.

3.1 and 3.2. For the linear programming method, we discretize as shown in Ap-
pendix A. For the neural network implementation, we use the network architecture
described in (Eckstein and Kupper, 2019, Section 4).

First, in Table 4.2, we consider marginal distribution constraints at two ma-
turities and then, in Table 4.3, extend it to four maturities. For the latter, only
the numerical values obtained by the neural network implementation are reported,
as the discretized LP problem is too large to solve in the case of four time steps2.
Finally, Figures 4.2 and 4.3 show how the numerically optimal couplings between
the two assets at the final time point change with the inclusion of more information
from previous time steps.

In Table 4.2 we observe that in the simple examples considered, the two nu-
merical approaches agree in most of the cases. In some cases, like for the spread
option (p = 2) and the problem P, there are slight differences between the optimal
value obtained by the neural network implementation (8.254) and the linear pro-
gramming approach (8.273). For the neural network implementation, we believe
the biggest source of numerical error arises from the penalization of the inequal-
ity constraint in the dual formulation. Since the penalization decreases the upper
bound (i.e., Dmθ,γ ≤ D

m
, see (Eckstein and Kupper, 2019, Theorem 2.2) and note

that for the quadratic penalization used here, it holds β(0) = 0) and increases the
lower bound, the reported bounds by the neural network method are likely slightly
more narrow than the true analytical bounds. By choosing γ large enough this
effect can be minimized.3 For the linear programming method, one cannot make
a similar estimation for whether the obtained numerical bounds are narrower or
wider than the true bounds. The main (and in this example only) approximation
error for the linear programming implementation arises from discretization, which
in priniciple can both increase or decrease optimal values. We comment further on
the monotonicity of the approximations below.

By observing values by both the LP and NN method, one can obtain greater
trust in the obtained values, whenever they coincide. The reason is that both com-
putational methods have entirely different sources of error, and hence whenever the
obtained numerical values (almost) agree, it suggests that both errors are in fact
small, since it is unlikely that the different error sources should produce the same

2We note that there are heuristics which allow LP methods to tackle such problems, a prime
example being the cutting plane method used by Henry-Labordère (2013). However, these corre-
spond to a significantly different approach than pursued in Section 3.1 and introduce qualitatively
new types of errors. We do not employ these methods as it would make a comprehensive study of
numerics even harder.

3By doing so, one must consider the numerical stability of the resulting problem. If γ is too
large, gradients explode and the numerical optimization procedure will not find the true optimizer,
which leads to a different kind of numerical error. For the problems considered, γ was gradually
increased (while simultaneously increasing the batch size in the numerical implementation for
stability) so that no further change in optimal values could be observed.
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Table 4.2: Comparison of the optimal values obtained using different numerical
approaches

MMOT OT MMOT OT

LP NN LP NN LP NN LP NN

p

Spread Option

1/2 1.578 1.577 1.578 1.577 0.383 0.396 0.383 0.391

1 2.500 2.500 2.500 2.500 0.500 0.501 0.500 0.500

2 8.273 8.254 8.338 8.337 0.401 0.416 0.335 0.335

3 31.16 31.24 31.29 31.25 0.301 0.321 0.253 0.253

K

Basket Option

−1 2.042 2.041 2.042 2.041 1.000 1.000 1.000 1.000

0 1.500 1.500 1.500 1.500 0.250 0.260 0.000 0.025

1 1.042 1.041 1.042 1.041 0.000 0.006 0.000 0.000

2 0.667 0.667 0.667 0.667 0.000 0.000 0.000 0.000

Optimal values for the example in Section 4.1 example and the case T = 2. For
the linear programming (LP) method, marginals are discretized in convex order
using the method in Appendix A. The penalty function for the neural network
implementation is βγ(x) = γ · x2

+ where γ is set to 2500 times the number of time
steps in the optimization problem.

incorrect value instead. Nevertheless, in cases where the two methods do not agree,
the question arises how to obtain more certainty about the true value. For the
LP method, simply observing the evolution of values in the parameter n can give a
clearer picture. The same is true for the NN method with the parameter γ. Further,
since the NN method is based on a stochastic algorithm, running the optimization
several times can give better indicators of the true value. We performed such an
analysis in Figure 4.1 for the aforementioned case of the spread option (p = 2).
We observe two patterns in Figure 4.1. First, n 7→ MMOT(µ̌n) is decreasing, and
γ 7→ MMOTθ,γ(µ̌) is increasing. The latter is easily derived from the definition, as
mentioned above. For the mapping n 7→ MMOT(µ̌n), two effects are at work. First,
the marginal distributions simply change and so the optimal value also changes.
Intuitively, this first effect can be seen as the one which determines the nature of
the mapping n 7→ OT(µ̌n), and it has no monotonicity. The second effect is the
effect of the martingale constraint. The (relaxed) martingale constraint is a con-
straint involving each element of the support and it becomes more restrictive as
more support points are added. Further, the more points we add the closer we
approximate the target marginals and hence the less slack we allow from the mar-
tingale property. Together, these effects, in our experience, dominate and explain
the decreasing nature of the mapping n 7→ MMOT(µ̌n).

Having built confidence in the numerical precision of our methods, we now turn
to examining how they capture and price the effect of using additional information.
Recall that Table 4.1 summarises the marginal distribution information available in
the context of the simple example studied in this section. Table 4.3 shows the dif-
ference in numerical bounds from working with marginal distributions at 1, 2, or 4
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Figure 4.1: Numerical convergence analysis for the case of a spread option and p = 2
from Table 4.2

The blue line shows how the numerical values obtained by the LP method depend on
the discretisation parameter n, see Appendix A. The green line shows the analogue
for the NN method, and the penalization parameter γ. Since the numerical method
in the NN case is based on stochastic gradient descent, the final values can vary.
The green error bands indicate the standard deviation of the obtained numerical
values across 10 different sample runs. The higher the penalization parameter γ is
chosen, the more the final values vary.

Table 4.3: Improvement of bounds with information from additional maturities

OT MMOT OT MMOT

T 1 2 4 1 2 4

Spread Option

(p = 2)
8.337 8.254 7.920 0.335 0.416 0.776

Basket Option

(K = 0)
1.500 1.500 1.501 0.025 0.260 0.345

Numerically optimal values for the example in Section 4.1 obtained by the NN
implementation. The penalization uses βγ(x) = γ · x2

+ where γ is set to 2500 times
the number of time steps in the optimization problem.

maturities. We see that for both the spread and the basket option, significantly nar-
rower bounds are obtained with each additional piece of information. The absolute
bounds are still quite wide even with four time steps of information used: (0.78, 7.92)
for the spread and (0.35, 1.50) for the basket option. This suggests that applicabil-
ity of the obtained bounds as a pricing tool will be case-dependent. However, in
all cases, it is the relative comparison of how the bounds behave across assets and
when additional information is added which is informative. It gives quantitative
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Figure 4.2: Spread Option (p = 2). Numerically optimal couplings at the final time
point obtained using the NN approach.

Maximizer, T = 1 Maximizer, T = 2 Maximizer, T = 4

Minimizer, T = 1 Minimizer, T = 2 Minimizer, T = 4

Figure 4.3: Basket Option (K = 0). Numerically optimal couplings at final time
point obtained using the NN approach.

Maximizer, T = 1 Maximizer, T = 2 Maximizer, T = 4

Minimizer, T = 1 Minimizer, T = 2 Minimizer, T = 4

insight into dependence and structural implications of pricing information across
assets and maturities. To narrow bounds further we would need to include model-
ling assumption or significantly constraining new information, cf. Henry-Labordère
(2013); Lütkebohmert and Sester (2018). We note that in the case of the upper
bound for the basket option the additional information did not change the bound
indicating the additional information is not relevant for this upper no-arbitrage
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Figure 4.4: Numerically optimal couplings at the final time point using the LP
approach for T = 2.

Maximizer Spread (p = 2) Minimizer Spread (p = 2)

Maximizer Basket (K = 0) Minimizer Basket (K = 0)

price. We believe it is a strength of the methodology we present here to be able to
pick up also such cases. In this particular case, the reasons can be understood ana-
lytically. Indeed, let us focus on the case K = 0 in Table 4.3 but similar comments
apply to other strikes in Table 4.2, as well as to results presented in Table 4.4 in
the next section. Using (x+ y)+ ≤ x+ + y+ we have

MMOT(µ̌) = sup
π∈M(µ̌)

∫
(xT,1 + xT,2)+ dπ ≤

∫
xT,1dµT,1 +

∫
xT,2dµT,2

and this upper bound is independent of π and is attained by any π ∈ M(µ̌) for
which xT,1 and xT,2 have the same sign π-a.s. This is a weak requirement and is
typically attained by many couplings4, as seen in Figure 4.3 below.

Figures 4.2 and 4.3 showcase the joint distribution between the first asset (x-
axis) and the second asset (y-axis) at the final time point. These are obtained
using the NN approach via (3.6). As expected, for the cases T = 2 the depicted
optimizers look very similar to the ones obtained by linear programming displayed
in Figure 4.4. The most notable characteristic of the observed optimizers is that
in most cases (again, except for the supremum problem of the basket option), the
optimal couplings become smoother when more time steps are involved. This is
an interesting feature: where the OT problem returns a deterministic (Monge)
coupling, when we add the martingale constraint the Monge coupling is not feasible

4Nevertheless we may come up with marginals for which this is not true. It we consider T = 2
and marginals as in Table 4.1 but we change µ1,2 to be uniform on [−3, 3] this forces the second
asset to be constant through time and decreases the upper bound from 1.5 to 1.3799.
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Table 4.4: Improvement of bounds for the lognormal marginals

MMOT
T = 2

MMOT
T = 3

MMOT
T = 2

MMOT
T = 3

LP NN LP NN LP NN LP NN

Spread Option (p = 2)

0.1587 0.1625 0.1320 0.1359 0.0000 0.0010 0.0244 0.0269

Basket Option (at the money, K = 2)

0.1593 0.1593 0.1585 0.1593 0.0192 0.0191 0.0397 0.0423

Numerically optimal values for Section 4.2 lognormal example obtained using the
linear programming (LP) and neural network (NN) implementations. The case
T = 2 uses only the marginal information at the first and the last time point, while
for the case T = 3 the marginal distributions at an intermediate maturity are also
given along with the ability to rebalance the hedging positions.

but the optimizers are still concentrated on lower dimensional sets, see Ghoussoub
et al. (2019). When we add further time points it adds more constraints and the
models become less and less singular, i.e., having a more diffused support.

4.2. Lognormal marginals. We turn now to distributions more representa-
tive of real market conditions. Specifically, instead of uniform marginals we con-
sider lognormal ones. As before, we consider two assets and, in this case, three
distinct maturities. The way the marginal distributions are set up is that both as-
sets have the same distributions at time points 1 and 3, but at time 2, the marginals
vary. In particular, the marginal distributions imply that the first asset accumu-
lates most of its volatility between time points 2 and 3, while the second asset
accumulates most if its volatility between time points 1 and 2. More precisely, we
set µt,i ∼ exp(σt,iX − σ2

t,i/2), where X follows a standard normal distribution and
σ1,1 = σ1,2 = 0.1, σ3,1 = σ3,2 = 0.2, σ2,1 = 0.11, σ2,2 = 0.19.

We first calculate price bounds using only marginal information and trading
between the first and third time points. Then, we include the intermediate maturity
(the second time point) as well. This brings the additional marginal information
which implies the asymmetry in the way the two assets accumulate their volatility
as well as the ability to re-balance the hedging position at the intermediate time
point. For the implementation, the neural network method remains unchanged
compared to Section 4.1, just larger batch size is used to cope with the added
difficulty of unbounded support of the marginals. For the LP method, we now use
discretisation as described in (Alfonsi et al., 2019, Equation (6.5)).5

Table 4.4 reports the resulting values. We see that the bounds tighten signif-
icantly with the addition of the intermediate maturity information and hedging,
highlighting the capacity of our methods to capture and quantify the benefit of
such additional information for pricing problems. The only example is given by
the upper bound for the basket option, which was expected as explained in Sec-
tion 4.1. Despite the added difficulty of the non-compactly supported marginals,
as compared to Section 4.1, the LP and NN methods still produce very similar val-
ues in all cases. Most importantly, the effect of the improved bounds by including

5To be precise, for the cases T = 2, 3, the neural network implementation uses batch size
213, 215, while the LP method uses n = 39, 11 support points for each marginal.
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Table 4.5: Relative error of the numerical methods

Dimension d 2 3 4

LP 0.04% 0.78% 3.12%

NN 0.08% 0.61% 2.05%

Average relative error over 100 sample runs with varying cost functions is showcased
for Example 4.3.

the additional time point is clearly more significant than the differences between
the numerical values, and hence the qualitative message one can derive from this
example is robust with respect to the numerical method used.

4.3. A test of accuracy: comparison to theoretical values. In this sec-
tion we consider a sanity check example where we can compare the numerical values
to theoretical ones. Since generally, it is very difficult to obtain theoretical values for
MMOT problems, we must refer to a structurally simple problem. To this end, con-
sider uniform marginals: µ1,i = U([−1, 1]) and µ2,i = U([−2, 2]) for i = 1, ..., d, and

a cost function c(x) :=
∑d
i=1

∑d
j=1 ci,jx2,ix2,j for some ci,j ≥ 0 chosen randomly

in the interval [0, 1]. Such costs are studied further in Section 5. An optimizer for
this problem is characterized by the comonotone coupling among the dimensions
at the final time step. The associated value can thus be computed to an arbitrary
precision by sampling. Nevertheless, this analytical simplicity does not imply that
the example is particularly easy to solve numerically. The singular nature of the
optimizers is a feature which presents a challenge for numerical convergence.

Table 4.5 showcases the accuracy of the numerical methods in this example.6

Overall, especially for d = 2, 3, the relative errors are quite small, below 1% relative
error (in absolute terms, depending on the random cost functions, the true optimal
values were typically around 3 to 10). For the LP method, higher error values are
expected for increasing d, since fewer support points for the discretisation in each
dimension can be used. The reason is that the total number of variables in the LP
is limited due to working memory, and given by

∏2
t=1

∏d
i=1 nt,i where nt,i is the

number of support points of the discretised approximation of µt,i. A priori, the NN
method does not have this drawback. The error for the NN method is governed by
the term

∫
β∗γ(dπdθ ) dθ, where π is an optimal coupling and θ the measure chosen for

penalization. In particular when any optimizer π is highly singular with respect to
θ, as in this example, this error term can increase sharply with increasing dimension
as well. While theoretically, this can be overcome by increasing γ, the error of the
numerical method has to be taken into account as well, see also Figure 4.1.

4.4. Real-world application: foreign exchange data. We close the ex-
amples section with an example using FX data. We work with option data on three
currency pairs, X1 = GBPUSD, X2 = EURUSD, X3 = EURGBP. The data was
collected from a Bloomberg terminal on the 28 January 2019 for three tenors: 1y,

6For the LP method, the discretisation method from Appendix A is used with n = 18, 4, 2 for
d = 2, 3, 4 respectively. For the NN method, the penalization θ is taken as the product measure
of the marginals and γ = 5000 · d. For the implementation, feed-forward neural networks with 5
layers and hidden dimension 32 are used, and for training we employed the Adam optimizer with
β1 = 0.99, β2 = 0.995 and batch size 211, 213, 215 for d = 2, 3, 4.
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Figure 4.5: Foreign exchange option data on three different currency pairs. Date of
retrieval for the prices is January 28, 2019.

The table showcases data for call option prices for three different currency pairs.
Further, initial values at time point 0 are given by GBPUSD = 1.32, EURUSD =
1.14, EURGBP = 1.15.

1.5y and 2 years out. We converted7 prices from FX specific convention to the strike
convention used here and also converted put prices into call prices using the put-call
parity, see Figure 4.5. Given the prevailing low interest rates and the illustrative
nature of the example, we assumed all domestic and foreign interest rates are equal
so no discounting was needed. We denote the prices of the three assets by Xt,i,
where t = 0 is the current exchange rate on 28/01/19 and t = 1, 2, 3 corresponds
to the three tenors above. To test our methodology, we study a synthetic spread
process between two USD denominated exchange rates: (Xt,1− X0,1

X0,2
Xt,2)t=1,2,3. In

particular we calculate the range of arbitrage free prices for an Asian call option on
this spread process over the time points t = 1, 2, 3, i.e., we consider the payoff

(4.1) c(X) =

(
1

3

3∑
t=1

Xt,1 −
X0,1

X0,2
Xt,2

)+

.

We employ the NN methodology to compute the optimal values. In practice,
we modify slightly the formulation of Dm in Section 3.2. Instead of estimating
the risk-neutral marginal distributions from the call/put prices and considering all
static position ϕt,i ∈ Nl,1,m, we directly consider ϕt,i which are linear combinations
of traded call options. Figure 4.6 displays the range of no-arbitrage prices under

7We are grateful to the Oxford-Man Institute for access to Bloomberg terminals and to Shen
Wang for his help with the data conversion.
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Figure 4.6: Price intervals for an Asian call option written on the spread process
between GBPUSD and EURUSD.

Numerically computed ranges of arbitrage free prices for the Asian option with
payoff in (4.1). For the red lines, all models (without martingale assumption),
or equivalently without dynamic trading are considered. For the blue lines, only
martingale models are considered. For the bottom lines, additional trading in call
options written on Xt,3 = Xt,2/Xt,1 is allowed.

two different information structures: without and with the option prices for the
third currency pair. We expect that the EURGBP prices, X3 = Xt,2/Xt,1, capture
important information about the correlation structure between X1 and X2 which
should be material for pricing of our Asian option even if X3 is not explicitly present
in its payoff. This is indeed true as seen from the price tightening in Figure 4.6
between the upper and the lower bars. In particular, we see that the upper bound
shrinks by nearly 50% when the additional information is included. Furthermore,
for both scenarios, we consider also the impact of the ability to hedge dynamically
in the assets as compared to only taking static positions in the options. Again,
this leads to a tightening of the bounds, albeit less pronounced. We believe that
this example showcases the capacity of our methodology to capture, in a fully non-
parametric but quantitative manner, the importance of market information for a
given pricing problem. Naturally, its full potential should be explored on a much
larger and more comprehensive range of market data/problems. This is left for
future research.

5. A structural result on the covariance functional. In this section we
study a two-period model, i.e., T = 2, and develop structural results for the op-
timizers. Our study was partly inspired by Figure 4.2 where the two time step
optimizer has the structure of a probability distribution on a line superimposed
with the OT optimizer. We shall see in Theorem 5.3 below that this structure is in
fact universal, under certain assumptions on the marginal distributions. To make
notation simpler, we write X = (Xi)1≤i≤d, Y = (Yi)1≤i≤d instead of X1 = (X1,i),
X2 = (X2,i), and µ = (µi), ν = (νi) instead of µ̌1 = (µ1,i), µ̌2 = (µ2,i). Hence we
consider the one-step martingales (Xi, Yi)1≤i≤d with marginals Xi ∼ µi, Yi ∼ νi.
For each π = L(X,Y ) ∈ M(µ, ν), define π1 = π ◦ X−1, π2 = π ◦ Y −1 to be the
d-dimensional marginals of π. We assume that all µi, νi have finite second moments.
Define [d] = {1, 2, ..., d}.

We will consider the maximization problem (2.1) with the cost functional which
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concerns the mutual covariance of the value of assets at the terminal time

c(Y ) =
∑

1≤i<j≤d

cijYiYj , where cij ≥ 0.(5.1)

We can assume without loss of generality that every Yj is involved in c(Y ), that
is, for each j ∈ [d] there exists nonzero cij or cjk; otherwise we may simply ignore
the j-th asset in our optimization problem. We can regard [d] as the set of nodes
of a graph where i, j is connected by an (undirected) edge if cij > 0. Then [d] is
decomposed into connected subgraphs, and it is clear that the MMOT problem can
be decomposed accordingly. Therefore, without loss of generality we can assume
that [d] is connected.

For our structural result, we also introduce the following notion.

Definition 5.1 (Linear Increment of Marginals (LIM)). We say that marginals
(µi, νi)1≤i≤d satisfy LIM if there exists a centered non-Dirac probability measure κ,
and positive constants a1, ..., ad such that

νi = µi ∗ ai#κ

where ai#κ is the push-forward of κ by the scaling map x 7→ aix. In other words,
L(Yi) = L(Xi+aiZ) where Z ∼ κ is independent of X and E[Z] = 0, P[Z 6= 0] > 0.

Example 5.2. LIM holds when each pair of marginals µi, νi are Gaussians with
the same mean and increasing variance.

Theorem 5.3. Let c(Y ) =
∑

1≤i<j≤d cijYiYj and assume cij’s induce a con-
nected graph on [d]. Suppose (µi, νi)1≤i≤d satisfy LIM with constant a = (a1, ..., ad).
Let L be the one-dimensional subspace of Rd spanned by a. Then every MMOT π
for the maximization problem (2.1), if disintegrated as π(dx, dy) = πx(dy)π1(dx),
satisfies:

1. suppπx ⊂ L+ x π1 - almost every x,
2. π1 is an optimal transport plan in Π(µ1, ..., µd) for the maximization prob-

lem with the corresponding cost c(X) =
∑

1≤i<j≤d cijXiXj.
Moreover if d = 2 or 3 and the first marginals (µi)i are continuous (i.e., µi({x}) = 0
for all x ∈ R and i ∈ [d]), then π1 is unique for every MMOT π.

To prove the theorem, we shall need the following lemma.

Lemma 5.4. Let c(x) =
∑

1≤i<j≤d cijxixj and assume cij’s induce a connected

graph on [d]. Let λij =
√
cij

aj
ai

, σij =
√
cij

ai
aj

, and gij(x) = 1
2

(
λijxi − σijxj

)2
for

each i < j. Define G(x) =
∑
i<j gij(x), and let Hx0(x) = G(x0) +∇G(x0) · (x−x0)

be the affine tangent function of G at x0 ∈ Rd. Then

{x ∈ Rd |G(x) = Hx0
(x)} = x0 + L,

where L is the one-dimensional subspace of Rd spanned by a = (a1, ..., ad).

Proof. Note that x 7→ gij(x) is constant if ajxi − aixj is constant. Hence G is
constant on x0 +L. Since G is smooth and convex, this implies that ∇G is constant
on x0 + L, yielding x0 + L ⊂ K := {x ∈ Rd |G(x) = Hx0

(x)}.
Conversely, clearly G is an affine function on K, and since gij are convex, all

gij are also affine on K. But any nonzero gij can be affine only when ajxi− aixj is
constant. Since x0 ∈ K and [d] is connected, this implies that K ⊂ x0 + L.

Proof of Theorem 5.3. Let x = (x1, ..., xd), y = (y1, ..., yd) ∈ Rd. We will
construct functions φi ∈ L1(µi), ψj ∈ L1(νj), h : Rd → Rd such that

d∑
i=1

φi(xi) +

d∑
i=1

ψi(yi) + h(x) · (y − x) ≥ c(y) on Rd × Rd,(5.2)
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but for any solution π∗ ∈M(µ, ν) to the problem (2.1), we have

d∑
i=1

φi(xi) +

d∑
i=1

ψi(yi) + h(x) · (y − x) = c(y) π∗ − a.e. (x, y).(5.3)

We shall call the triplet (φi, ψi, h) a dual optimizer, and π∗ a multi-marginal mar-
tingale optimal transport (MMOT); see Lim (2016). Along the proof, we will see
that the equality (5.3) implies that y − x ∈ L.

To begin, let fi ∈ L1(µi), i = 1, ..., d, be a dual optimizer for the optimal
transport with the cost c(x), that is, for any optimal transport γ ∈ Π(µ1, ..., µd)

d∑
i=1

fi(xi) ≥ c(x) ∀x ∈ Rd,(5.4)

d∑
i=1

fi(xi) = c(x) γ − a.e. x.(5.5)

For the existence of such a dual optimizer, see Villani (2003, 2009). Recall the

functions gij and G in Lemma 5.4, and note that G(x) = −c(x) +
∑d
i=1 bix

2
i for

some bi ≥ 0. Define φi(xi) = fi(xi)− bix2
i and ψi(yi) = biy

2
i . Then the above may

be rewritten as

−
d∑
i=1

φi(xi) ≤ G(x) ∀x ∈ Rd,(5.6)

−
d∑
i=1

φi(xi) = G(x) γ − a.e. x.(5.7)

Next, define h(x) = −∇G(x), so that we have

G(x)− h(x) · (y − x) ≤ G(y), and the equality holds iff y − x ∈ L(5.8)

by Lemma 5.4. With (5.6) this implies (5.2). Moreover, notice that if (x, y) satisfies
the equality (5.3), then it holds y − x ∈ L and the equality (5.5).

Now we will construct a multi-marginal martingale transport π∗ ∈ M(µ, ν)
such that π∗ is concentrated on the equality set in (5.3), that is π∗(P ) = 1 where

P := {(x, y) ∈ Rd × Rd |
d∑
i=1

φi(xi) +

d∑
i=1

ψi(yi) + h(x) · (y − x) = c(y)}.

We also define P1 := {x ∈ Rd |
∑d
i=1 fi(xi) = c(x)}. In order to construct

π∗(dx, dy) = π∗x(dy)π∗1(dx), firstly set π∗1 to be an optimal transport, i.e. π∗1 ∈
Π(µ1, ..., µd) and π∗1(P1) = 1. Next, let σ be the distribution of the vector
(a1Z, . . . , adZ) with Z ∼ κ, and note that σ(L) = 1 and σ ∈ Π(a1#κ, ..., ad#κ).

For each x ∈ Rd, define the kernel π∗x to be the σ translated by x. As σ has its
barycenter at 0, π∗x is clearly a martingale kernel. Now to ensure that π∗ ∈M(µ, ν),
it remains to show that π∗2 ∈ Π(ν1, ..., νd). But notice that this follows from the
facts π∗1 ∈ Π(µ1, ..., µd), σ ∈ Π(a1#κ, ..., ad#κ), the definition of π∗x, and finally
the assumption LIM, i.e. νi = µi ∗ ai#κ.

Now observe that π∗x(L + x) = 1 and π∗1(P1) = 1 imply, by (5.6), (5.7), and
(5.8), that π∗(P ) = 1. This immediately implies the optimality of π∗ to the MMOT
problem (2.1) by the following standard argument: let π ∈ M(µ, ν) be any multi-
marginal martingale transport. By integrating both sides of (5.2) by π, we get

d∑
i=1

∫
φi dµi +

d∑
i=1

∫
ψi dνi ≥

∫
c dπ
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since
∫
h(x) · (y − x)π(dx, dy) = 0. On the other hand, as π∗(P ) = 1 we get

d∑
i=1

∫
φi dµi +

d∑
i=1

∫
ψi dνi =

∫
c dπ∗.

Hence
∫
c dπ∗ ≥

∫
c dπ, and the optimality of π∗ follows. The argument also shows

conversely that any solution π∗ must be concentrated on P , and this implies π∗x(L+
x) = 1 and π∗1(P1) = 1 by (5.6), (5.7), (5.8). But π∗1(P1) = 1 precisely means that
π∗1 is an optimal transport as claimed in the second part of the theorem.

Lastly, we prove the uniqueness statement. Let π be an MMOT and let γ =
π ◦ X−1. As we have just shown, γ satisfies (5.4), (5.5) for some fi ∈ L1(µi),
i = 1, ..., d. If d = 2, it is well known in optimal transport theory (see Villani

(2003)) that the contact set P1 = {x ∈ R2 |
∑2
i=1 fi(xi) = c(x)} is a subset of a

nondecreasing graph, that is

(x, y), (x′, y′) ∈ P1 and x < x′ =⇒ y ≤ y′,

and this property immediately implies that there exists a unique probability measure
concentrated on P1 which respects the marginal constraints µ1, µ2. This proves the
uniqueness assertion for d = 2.

Now let d = 3 and P1 = {x ∈ R3 |
∑3
i=1 fi(xi) = c(x)}. By permuting the

indices 1, 2, 3 if necessary, by connectedness there are two cases of cost function

c(x) = c12x1x2 + c13x1x3 + c23x2x3, or c(x) = c12x1x2 + c23x2x3,

where cij > 0. Again consider (5.4), (5.5). By the standard technique, called
Legendre-Fenchel transform, we can assume that fi’s are convex functions, and
hence in particular fi is differentiable µi-a.s.. Let Ai be the set of differentiable
points of fi, i = 1, 2, 3. Now assume (x1, x2, x3) ∈ P1 and x1 ∈ A1. Then by the
first-order condition, (5.4), (5.5) implies

f ′1(x1) = c12x2 + c13x3,

where in the latter cost function case c13 = 0. Let Q1(x1) := {(x2, x3) ∈ A2 ×
A3 | f ′1(x1) = c12x2 + c13x3}, which is a linearly decreasing, or vertical, graph in
x2x3-plane. On the other hand, the following ‘conditional contact set’

P1(x1) := {(x2, x3) ∈ A2 ×A3 |
3∑
i=1

fi(xi) = c(x)}

is a nondecreasing graph as before. But notice that in fact P1(x1) is a graph of a
nondecreasing function defined on A2, since again (5.4), (5.5) implies

f ′2(x2) = c12x1 + c23x3.

We conclude that the intersection

P1(x1) ∩Q1(x1)

consists of at most one element for µ1-almost every x1, and this implies that there
exist two functions x2 = φ(x1), x3 = ψ(x1), well-defined µ1-a.s., such that any
probability measure concentrated on P1 is in fact concentrated on the set

G := {(x1, x2, x3) | x2 = φ(x1), x3 = ψ(x1)}.

By standard averaging argument, this implies the uniqueness of γ. This completes
the proof of Theorem 5.3.
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Appendix A. Discretization. This section shows a sample discretiza-
tion and formulation of an MMOT problem as an LP. We take the case T = 2
for the spread option from Table 4.1. Recall that µ1,1 = µ1,2 = U

(
[−1, 1]

)
,

µ2,1 = U
(
[−3, 3]

)
and µ2,2 = U

(
[−2, 2]

)
. Define discrete approximating probability

measures via (3.3), i.e.,

αik = µn1,i
({
k/n

})
:=

∫
[(k−1)/n,(k+1)/n)

(
1− |nk − x|

)
µ1,i(dx),

βik = µn2,i
({
k/n

})
:=

∫
[(k−1)/n,(k+1)/n)

(
1− |nk − y|

)
µ2,i(dy),

(A.1)

so that µn1,i �cx µn2,i and W1(µnt,i, µt,i) ≤ 1/n for t, i = 1, 2. Furthermore

α1
−n = α1

n = 1/4n and α1
i = 1/2n for − n+ 1 ≤ i ≤ n− 1,

α2
−n = α2

n = 1/4n and α2
j = 1/2n for − n+ 1 ≤ j ≤ n− 1,

β1
−3n = β1

3n = 1/12n and β1
k = 1/6n for − 3n+ 1 ≤ k ≤ 3n− 1,

β2
−2n = β2

2n = 1/8n and β2
l = 1/4n for − 2n+ 1 ≤ l ≤ 2n− 1.

Then P2/n(µ̌n1 , µ̌
n
2 ) in the mentioned case of the spread option as objective is given

by the following linear program (LP):

max
(pi,j,k,l)∈RM+

n∑
i=−n

n∑
j=−n

3n∑
k=−3n

2n∑
l=−2n

pi,j,k,l|y1
k − y2

l |p

s.t.

n∑
j=−n

3n∑
k=−3n

2n∑
l=−2n

pi,j,k,l = α1
i , for i = −n, . . . , n,

n∑
i=−n

3n∑
k=−3n

2n∑
l=−2n

pi,j,k,l = α2
j , for j = −n, . . . , n,

n∑
i=−n

n∑
j=−n

2n∑
l=−2n

pi,j,k,l = β1
k, for k = −3n, . . . , 3n,

n∑
i=−n

n∑
j=−n

3n∑
k=−3n

pi,j,k,l = β2
l , for l = −2n, . . . , 2n,

∣∣∣∣∣
3n∑

k=−3n

2n∑
l=−2n

(
y1
k − x1

i

)
pi,j,k,l

∣∣∣∣∣ ≤ 2/n

3n∑
k=−3n

2n∑
l=−2n

pi,j,k,l,

for i, j = −n, . . . , n,∣∣∣∣∣
3n∑

k=−3n

2n∑
l=−2n

(
y2
l − x2

j

)
pi,j,k,l

∣∣∣∣∣ ≤ 2/n

3n∑
k=−3n

2n∑
l=−2n

pi,j,k,l,

for i, j = −n, . . . , n,

where

x1
i = i/n, for i = −n, . . . , n,
x2
j = j/n, for j = −n, . . . , n,
y1
k = k/n, for k = −3n, . . . , 3n,

y2
l = l/n, for l = −2n, . . . , 2n,

and M := (2n+ 1)2(6n+ 1)(4n+ 1), N := (6n+ 1)(4n+ 1).
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