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Sketched over-parametrized projected gradient
descent for sparse spike estimation

Pierre-Jean Bénard1,*, Yann Traonmilin1, Jean-François Aujol1

Abstract—We consider the problem of recovering off-the-
grid spikes from linear measurements in the context of Single
Molecule Localization Microscopy (SMLM). State of the art
model-based methods such as Over-Parametrized Continuous
Orthogonal Matching Pursuit (OP-COMP) with Projected Gra-
dient Descent (PGD) have been shown to successfully recover
those signals. The computational cost of these methods scales
linearly with the number of measurements. When this number
of measurements is large with respect to the dimensionality of
the signal, we propose to reduce it with a so-called sketching
operator. Based on recent results on compressive sensing in the
space of measures, we approximate the ideal sketching operator
(benefiting from theoretical recovery guarantees), in the context
of SMLM. This sketching method coupled to OP-COMP with
PGD shows significant improvements in calculation time in
realistic synthetic microscopy experiments.

Index Terms—spike super-resolution, sketching, non-convex
optimization

I. INTRODUCTION

The off-the-grid super-resolution problem consists in recov-
ering spikes from linear measurements in a continuous setting.
Among its many applications, we focus in this article on Single
Molecule Localization Microscopy (SMLM). Let x0 be an off-
the-grid sparse signal (modeling the position and intensity of
illuminated molecules) over Rd. Such signals can be modeled
as a sum of K Dirac measures:

x0 =

K∑
i=1

aiδti (1)

where a = (a1, . . . , aK) ∈ RK are the amplitudes and
t = (t1, . . . , tK) ∈ RK×d are the positions of the spikes.
We observe the signal through a linear operator A from the
space M of finite signed measures over Rd to Cm with m
the number of measurements. The result of this observation is
y = Ax0 ∈ Cm. Note that we consider the noiseless case in
this article for the sake of clarity.

A way to recover the true signal x0 from its observation y
is to find a minimizer of a non-convex least-square problem:

x∗ ∈ argmin
x∈ΣK,ϵ

∥Ax− y∥22 (2)

where ΣK,ϵ, defined by (4), is a set modeling a separation
constraint between spikes. In practice, it is possible to consider
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the minimization problem parametrized by amplitude and
positions θ:

θ∗ ∈ argmin
θ∈ΘK,ϵ

g(θ) with g(θ) := ∥Aϕ(θ)− y∥22. (3)

where ϕ(θ) =
∑K

i=1 biδsi . The separation between spikes is
modeled as the following constraint set

ΘK,ϵ =
{
θ = (b1, . . . , bK , s1, . . . , sK) ∈ RK(d+1),

∀i, j ∈ {1, . . . ,K}, i ̸= j, ∥si − sj∥2 > ϵ} . (4)

The corresponding low dimensional model in the space of
measures is simply ΣK,ϵ = ϕ(ΘK,ϵ).

Theoretical guarantees for the recovery of x0 with (2)
have been given in [1], [2]. As an example, when the
linear operator A models random Fourier measurements at
frequencies drawn with a Gaussian distribution and dim(y) ⪆
O(K2d polylog(K, d)), we have x∗ = x0. In practice, state-
of-the-art Sliding Continuous Orthogonal Matching Pursuit
(SCOMP) [3] and Over-Parametrized COMP with Projected
Gradient Descent (OP-COMP + PGD) [4] have been suc-
cessful at minimizing (2). Recovery guarantees are given in
[5], [6], [7]. We can also cite the Sliding Frank-Wolfe (SFW)
algorithm [8] (similar in practice to SCOMP), that solves a
regularized version of (2).

With these methods, the computational cost depends on
the number of measurements m. In particular, this poses a
problem in the context of SMLM where, in some modalities,
the measurements are a collection of sampled microscope
images at different angles. The number of measurements is
then much larger than the number of parameters that we need
to estimate. An idea is to compress the measurements into a
“sketch” in order to accelerate the computation time while still
recovering the ground truth signal with a good accuracy.

Originated from compressed sensing, sketching methods
permit fast operations on large amounts of data. Recently,
Gribonval et al. proposed a sketching framework as a linear
inverse problem in the space of measures [1], [2], [9]. It
has been successfully applied to estimate sums of Dirac
measures [10], Gaussian mixture parameters [3], [11], [12],
[13], parameters of neural networks defining the underlying
density of a database [14], [12] or source location [15], [16].

We propose to adapt the sketching framework to a SMLM
context where the measurement operator in the space of
measure is already designed.
Contributions: In this paper, our main contribution is an
accelerated method for the recovery of sparse signals with
Over-Parametrized Continuous Orthogonal Matching Pursuit
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with Projected Gradient Descent and applicable to similar
algorithms like Sliding Continuous Orthogonal Matching Pur-
suit and Sliding Frank-Wolfe. We propose to compress the
measurements y by approximating an ideal sketching operator
in the space of measures, leading to an effective reduction of
m. This method greatly improves the global computation times
OP-COMP with PGD. Indeed, we provide synthetic experi-
ments in the context of microscopy that show an improvement
up to 80% in calculation time compared to non-sketched linear
operator with no loss in accuracy.

II. SKETCHED SUPER-RESOLUTION FOR SMLM

Measurements are defined by a collection of functions
(αl)

m
l=1 representing the response of the l-th sensor. We have

that

Ax0 = A

K∑
i=1

aiδti =

K∑
i=1

ai

∫
Rd

αldδti . (5)

The integral in (5) is the duality product ⟨δti , αl⟩ between
a finite signed measure over Rd and a function αl : Rd 7→ C.
One can cite random or uniform Fourier sampling (αl(t) =
e−j⟨ωl,t⟩) as an example of a linear operator.

In the field of microscopy, the measurements y are images
captured by a microscope. Their associated linear operators
model the Point Spread Function (PSF) of the microscope.
For the recovery of the amplitudes and positions of cells in
3D, we model the operator A with the functions:

αi,k(t) =
fk(z)

2πσxσy
× e

−
(

(xi−x)2

2σ2
x

+
(yi−y)2

2σ2
y

)
(6)

with t = (x, y, z) ∈ R3, σx, σy ∈ R+. The (xi, yi) ∈ Γ ⊂ R2

are the position of the i-th pixel on a finite grid Γ at a given
incidence angle k, i.e., we consider a Gaussian approximation
of the impulse response of the microscope. The functions fk :
R 7→ R take the depth (the z component) as input and model
the impact of the incidence angle. One can cite the multi-angle
total internal reflection fluorescence (MA-TIRF) operator [8]
which can be approximated by (6).
Sketching Gaussian measurements in the space of mea-
sures: The goal of the sketching operator is to compress
measurements while keeping the relevant information from the
original observation y. Thanks to the framework of Gribon-
val et al. [1], it can be defined on the infinite dimensional space
of measures M. Consider an ideal 2D Gaussian measurement
process Aid defined by

αid
i (x, y) =

1

2πσxσy
e
−
(

(xi−x)2

2σ2
x

+
(yi−y)2

2σ2
y

)
(7)

for any (xi, yi) ∈ R2, i.e., we have access to the full convolu-
tion of Dirac measures with a Gaussian impulse response. We
can consider a sketching operator S : L2(R2) → CmS from
the space of square integrable functions to the space CmS

of reduced dimension mS . We call SAid the corresponding
sketched ideal operator. One way to sketch the linear operator
Aid is to take random Fourier measurements with a finite
number mS of well-chosen random frequencies ωl ∈ Rd. This

operation, for a given frequency ωl and any x =
∑K

r=1 brδsr
is written as

(S(Aidx))l = [F(Aidx)](wl) =

K∑
r=1

br[F(Aidδsr )](wl) (8)

where F is the continuous Fourier transform, i.e.

[F(Aidδsr )](wl) =

∫
(xi,yi)∈R2

αi(sr)e
−j⟨ωl,(xi,yi)⟩dxidyi.

(9)

It was shown in [2] that it is possible to recover
positions and amplitudes of sufficiently separated Gaus-
sians with a choice of random Gaussian frequencies with
mS ⪆ O(K2dpolylog(K, d)) frequencies by minimizing, the
sketched data-fit

gS(θ) := ∥SAidϕ(θ)− SAidx0∥22 (10)

under a separation constraint. Unfortunately, we do not have
access to ideal Gaussian measurements Aid in practice: they
are sampled on a grid. However, in SMLM, this grid is
generally chosen to satisfy the Shannon-Nyquist limits of the
instruments, i.e., there is little loss of information by the
discretization process.

While we can calculate for any estimate x = ϕ(θ) the
sketched ideal measurements SAidϕ(θ), we cannot calculate
exactly SAidx0 as only Ax0 is available. Instead, we approx-
imate SAidx0 with a discretized version called Sdy = SdAx0

directly obtained from the measurements y. We propose to
minimize the approximated functional

gSd
(θ) := ∥SAidϕ(θ)− Sdy∥22. (11)

The approximated operator Sd performs the truncated discrete
time Fourier Transform of y on the grid Γ:

(Sdy)l =
1

|Γ|

|Γ|∑
i=1

yie
−j⟨ωl,(xi,yi)⟩ (12)

with (xi, yi) the position of the i-th cell on the grid Γ, yi
its associated measurement and |Γ| the number of cells in Γ.
Note that to compute Sdy, we iterate over the grid Γ which
we wanted to avoid originally. However, this calculation of
Sdy needs to be done only once. Thus, this has a low impact
on the whole computation time when compared to using the
classical linear operator A within the optimization process.

The introduction of an approximation Sd of the sketch-
ing operator S brings the issue that argminθ∈Θ gSd

̸=
argminθ∈Θ gS . Thanks to the following Lemma, we guar-
antee that the ideal sketched datafit (where Aidx0 would be
available) is approximately minimized by the solution of the
approximated sketched datafit functional.

Lemma 1. Let TΓ the linear sampling operator on a grid Γ.
Let Aid an ideal measurement operator and A = TΓA

id its
discretization on a grid Γ. Let y = Aϕ(θ0) an observation of
a signal ϕ(θ0) on Γ. Let S and Sd be a sketching operator
and its discretized approximation on the grid Γ.

Suppose that

∥S − SdTΓ∥A
id,Σ

op := sup
x∈Σ

∥SAidx− SdTΓA
idx∥2

∥Aidx∥2
≤ η (13)
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and let θ∗ ∈ argminθ∈Θ gSd
(θ). Then we have that, for all

θ ∈ Θ, √
gS(θ∗) ≤

√
min
θ∈Θ

gS(θ) + 2η∥y∥2. (14)

Proof. The proof of this Lemma can be found in the supple-
mentary material.

The main hypothesis in Lemma 1 uses the operator norm to
quantify the difference between the sketching operator S and
its approximation Sd. The bound η exists if the discretization
respects the Shannon-Nyquist condition which can be approx-
imately true with small η for Gaussian observations (up to the
truncation error), and when SAid and Aid guarantee recovery
of x0 (e.g., under a restricted isometry property, see [1]).
Application to SMLM: As given by the expression of mea-
surement functionals in (6), several 2D images representing
different incidence angles are captured. We propose to sketch
independently each angle. We give an explicit expression
of the sketching operation in 2D, angle by angle with the
following Lemma. Let us call Aid

k the ideal Gaussian mea-
surements corresponding to incidence angle k. We just need
the continuous Fourier transform of Aid

k x0 to implement the
sketching in practice.

Lemma 2. Let αi,k defined in (6), with t = (x, y, z) ∈ R3,
σ = (σx, σy) ∈ R2 . Then the Fourier transform of ideal
Gaussian measurements is

[F(Aid
k δt)](wl) = fk(z)e

− ⟨ω2
l ,σ2⟩
2 −j⟨ωl,(x,y)⟩ (15)

with ω = (ωx, ωy) ∈ R2.

Proof. This Lemma is a direct consequence of the fact that
the Fourier transform of a Gaussian is a Gaussian (proof in
supplementary material).

With Lemma 2 and with (12), we have all the tools to
perform recoveries of a signal from sketched observations
(in particular gradients of the sketched functional are easily
calculated, see supplementary material).

III. EXPERIMENTS

In this section, we apply our sketching method to the
state-of-the art OP-COMP + PGD method [7]. In a first
phase of this algorithm, spikes are greedily added based on
their correlation with the measurements to reach an over-
parametrized initialization (OP-COMP without sliding). From
the over-parametrized initialization, a projected descent on
all parameters is performed where the projection projects
on the separation constraint (i.e. close spikes are merged).
We compare the original algorithm to the sketched version
where the measurement operator (resp. the measurements)
is replaced with the sketched measurement operator (resp.
the sketched measurements), i.e., we study the impact of the
reduction from m measurements to mS < m measurements.
We recover 50-spikes in 3D. The linear operators A used
for these experiments follow the Gaussian approximation of
the MA-TIRF model. The input positions are in a cuboid
([0, 6.4]× [0, 6.4]× [0, 0.8] µm) and amplitudes uniformly are
distributed between 1 and 2. The output (the measurement

(a) y (b) Sy

(c) Sdy (d) Sy − Sdy

Figure 1: Ground truth spikes of x0 (in red) on one inci-
dence angle on a 2D grid obtained from (a) the observation
y = Ax0, (b) the back-projection of ideal sketched observation
Sy = SAidx0, (c) the back-projection of the approximation
of the sketched observation Sdy = SdAx0, (d) the difference
Sy − Sdy. The small difference indicates that Sdy is a good
approximation of Sy.

vector y) consists of 4 different 2D grids composed of 64×64
pixels for a total of m = 4×64×64 = 16 384 measurements.
Since we perform the sketching of A separately on each 2D
grid and for better readability, we note mS = 4×K ×mspike

with K = 50 in our experiments and mspike the number of
measurements per spike. We first study an example of signal
recovery with A and SAid with mspike = 12. Then, we
test SAid with various values of mspike ∈ {3, 6, . . . , 45, 48}.
Moreover, since the frequencies from the sketched operator
are drawn randomly, we repeat the process for each value of
mspike 16 times with different frequencies and signals x0. The
code for these experiments is available for download at [17].

(a) (b)

Figure 2: (a) Norm of the residue r through the iterations of
OP-COMP with both A (blue) and SAid (red) with respect to
time elapsed, (b) Norm of the residue r through the iterations
of PGD with both A (blue) and SAid (red) with respect to time
elapsed. The total computation time with sketching ≈ 80%
shorter than without.

Details with mspike = 12: First, we compare, in Figure 1, the
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original measurements with the back-projection of the ideal
and real sketched measurements on the grid Γ. We note that
the difference between ideal and real sketched measurements
is very small. In this example, we have ∥y∥2 ≈ 200 and ∥Sy−
Sdy∥2 ≈ 6 × 10−3. This would correspond to η ≈ 3 × 10−5

in Lemma 1. Hence, this example (and similarly the following
experiments) verifies Lemma 1 qualitatively.

We compare in Figure 2 and Figure 3 the result of sketched
and non-sketched OP-COMP + PGD. With mspike = 12
measurements per spikes representing approximately 15% of
the total number of measurements (m = 16 384) obtained
with A, the sketched OP-COMP + PGD converges with
approximately 38 000 iterations in 26 minutes compared to
75 000 iteration in 124 minutes for the non-sketched method.
This is a gain of almost 80% in computation time, with no
loss in performance of the estimation (see next experiment).

(a) x0 and x∗ (b) x0 and x∗ (sketched)

Figure 3: Ground truth (red) and estimation (blue) of the signal
with OP-COMP + PGD. (a) Original OP-COMP + PGD, (b)
Sketched OP-COMP + PGD. Sketched OP-COMP + PGD
recovers spikes with the same precision as OP-COMP + PGD.

Performance of estimation with mspike ∈ {3, 6, . . . , 45, 48}:
In Figure 4, we compare recovery performance with the
following metric: We denote the RMSE in each spatial dimen-
sion to be RMSEi =

√
1

|TP |
∑

j∈TP ([tj ]i − [t0,j ]i)
2 with

i the dimension along which the RMSE is computed, t our
estimated positions, t0 our ground truth positions and TP the
set of |TP | paired ground truth spikes and estimated spikes.
We construct this set TP by pairing spikes if they are close
enough from each other. The chosen radius is 0.02µm (which
is smaller than ϵ/2, with ϵ the separation between spikes of
the ground truth).

We observe in Figure 4 that the median RMSE along each
axis decreases as the number of sketched measurements mS
increases. Starting from approximately 15%, we notice that
the median RMSE obtained with our sketched operator SAid

are below the RMSE obtained with the classic operator A
(note that the performance should be slightly degraded, but
sketching might introduce a smoothing operation that benefits
the optimization process).

When comparing the computation time for each value of mS
in Figure 5, we note that the time elapsed for the recovery of
x0 with sketching is linear with respect to mS . With mS/m ≈
15%, we have an acceleration over the non-sketched method
up to 80%. Above mS/m ≈ 60%, its is not worth to use the

Figure 4: Median of the RMSE along each dimension {x, y, z}
obtained with OP-COMP with PGD on 50 spikes signals with
respect to the compression rate of the sketching. The RMSE
along each axis of estimated signals with the sketched method
is decreasing when mspike increasing and reaches original
performances with 15% compression rate.

Figure 5: Computation time of OP-COMP + PGD on 50 spikes
signals in function of the compression rate. In blue, the span
of the results over experiments with its median (yellow), 5-th
and 95-th percentile. In red, the median of the results without
sketching. The computation time is proportional to mS . With
mS/m ≲ 60%, the sketched method is faster the original.

sketched linear operator compared to the original method (due
to additional calculations for sketching).

IV. DISCUSSION/CONCLUSION

We showed that using a sketched linear operator instead of a
classical linear operator when the number of measurements is
large can bring significant performance improvement without
losing precision on the recovered positions and amplitudes of
the spikes. Our results are supported by strong theoretical
background and experiments. We also highlighted that the
trade-off between computation time and accuracy can be
explicitly chosen. We proposed to sketch independently 2D
measurements. A possible future work would be to investigate
if a full 3D sketching method would improve our results.
Also, it would be interesting to investigate the surprising
slight improvement in performance that we observed with the
sketched method.



5

REFERENCES

[1] R. Gribonval, G. Blanchard, N. Keriven, and Y. Traonmilin, “Compres-
sive Statistical Learning with Random Feature Moments,” Mathematical
Statistics and Learning, vol. 3, no. 2, pp. 113–164, 2021.

[2] ——, “Statistical learning guarantees for compressive clustering and
compressive mixture modeling,” Mathematical Statistics and Learning,
vol. 3, no. 2, pp. 165–257, 2021.

[3] N. Keriven, N. Tremblay, Y. Traonmilin, and R. Gribonval, “Compres-
sive k-means,” in ICASSP. IEEE, 2017, pp. 6369–6373.

[4] P.-J. Bénard, Y. Traonmilin, and J.-F. Aujol, “Fast off-the-grid sparse
recovery with over-parametrized projected gradient descent,” in 2022
30th EUSIPCO. IEEE, 2022, pp. 2206–2210.

[5] C. Elvira, R. Gribonval, C. Soussen, and C. Herzet, “OMP and continu-
ous dictionaries: Is k-step recovery possible?” in ICASSP. IEEE, 2019,
pp. 5546–5550.

[6] ——, “When does OMP achieve exact recovery with continuous dictio-
naries?” Applied and Computational Harmonic Analysis, vol. 51, p. 39,
2021.

[7] P.-J. Bénard, Y. Traonmilin, J.-F. Aujol, and E. Soubies, “Estimation
of off-the grid sparse spikes with over-parametrized projected gradient
descent: theory and application,” Inverse Problems, vol. 40, no. 5, p.
055010, 2024.

[8] Q. Denoyelle, V. Duval, G. Peyré, and E. Soubies, “The Sliding Frank-
Wolfe Algorithm and its Application to Super-Resolution Microscopy,”
Inverse Problems, 2019.

[9] R. Gribonval, A. Chatalic, N. Keriven, V. Schellekens, L. Jacques, and
P. Schniter, “Sketching Data Sets for Large-Scale Learning: Keeping
only what you need,” IEEE Signal Processing Magazine, vol. 38,
no. 5, pp. 12–36, Sep. 2021, for an extended version of this article
that contains additional references and more in-depth discussions
on a variety of topics, see the long version published on HAL
(https://hal.inria.fr/hal-02909766) and arXiv (2008.01839). [Online].
Available: https://inria.hal.science/hal-03350599

[10] N. Keriven, R. Gribonval, G. Blanchard et al., “Spikes super-resolution
with random fourier sampling,” in SPARS workshop, 2017.

[11] H. Shi, Y. Traonmilin, and J.-F. Aujol, “Compressive learning for patch-
based image denoising,” SIAM Journal on Imaging Sciences, vol. 15,
no. 3, pp. 1184–1212, 2022.

[12] ——, “Compressive learning of deep regularization for denoising,” in
International Conference on Scale Space and Variational Methods in
Computer Vision. Springer, 2023, pp. 162–174.

[13] V. Schellekens and L. Jacques, “Compressive classification (machine
learning without learning),” in ITWIST’18 workshop, 2018.

[14] ——, “Compressive learning of generative networks,” in European
Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning (ESANN), vol. 28, 2020.

[15] M. Fontaine, C. Vanwynsberghe, A. Liutkus, and R. Badeau, “Scalable
source localization with multichannel α-stable distributions,” in 2017
25th European Signal Processing Conference (EUSIPCO), 2017, pp.
11–15.

[16] ——, “Sketching for nearfield acoustic imaging of heavy-tailed sources,”
in International Conference on Latent Variable Analysis and Signal
Separation. Springer, 2017, pp. 80–88.

[17] P.-J. Bénard, Y. Traonmilin, and J.-F. Aujol, “Code of the experiments,”
https://github.com/pjbenard/opCOMP_PGD_sketching, 2024, [Online].

https://inria.hal.science/hal-03350599
https://github.com/pjbenard/opCOMP_PGD_sketching

	Introduction
	Sketched super-resolution for SMLM
	Experiments
	Discussion/Conclusion
	References

