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3 LGC, Université Paul Sabatier, Toulouse, France

Abstract. We show how to integrate the normal field of a surface in
the presence of discontinuities by three different ways. We obtain very
satisfactory 3D-reconstructions, from the point of view of the accuracy of
the reconstructions. As an important consequence, no prior segmentation
of the scene into parts without discontinuity is required anymore. Finally,
we test the three proposed methods of integration in the framework of
photometric stereo, a technique which aims at computing the normal
field of a scene surface from several images of this scene lighted under
different directions.

1 Introduction

Computing the 3D-shape of a surface from a collection of normals is not so
straightforward as it could appear, even in the case of a dense normal field i.e.,
when the normal to the surface is known at each pixel of an image. This classical
problem of 3D-reconstruction, which is usually called normal field integration,
has been solved using either the calculus of variations [1], direct integration [2] or
frequency-domain methods [3, 4]. In a previous work [5], we improved the original
algorithm by Horn and Brooks [1] in two ways: we showed that the knowledge
of the height on the boundary, a knowledge which is usually not available, is not
required; we also showed how to take perspective into account. In the present
paper, we propose a novel improvement of this algorithm which is compatible
with the previous ones: we show how to deal with discontinuous surfaces, a situ-
ation which occurs in practice as soon as there are occlusions. This improvement
allows us to integrate the normal field on a whole dense normal field, without
need for prior segmentation into several parts without discontinuity.

In Section 2, we recall the basic equations of normal integration. In Section
3, Horn and Brooks’ algorithm and our previous improvements are presented.
In Section 4, three new methods of integration of a normal field are exhibited,
compared and tested on a normal field computed by photometric stereo from
real images. Section 5 summarizes the main contributions of the paper.

2 Basic Equations of Normal Integration

Suppose that, in each point Q = (x, y) in the image of a surface S, we know the
unit outgoing normal n(x, y) = [nX(x, y), nY (x, y), nZ(x, y)]t. Then, the function
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n is a dense normal field. Integrating a normal field n consists in searching for
the shape S i.e., for three functions X , Y and Z such that the normal to S at
the point P = [X(x, y), Y (x, y), Z(x, y)]t conjugated with Q is n(x, y). Due to
the lack of space, no rigorous state-of-the-art on the integration of a normal field
is done (see e.g. [6–8]). Let us also cite [9], in which the problem of integrating
a sparse normal field is addressed.

Let us first recall the fundamental equations of normal integration. For the
sake of simplicity, we will omit the dependences in (x, y). Either for orthographic
or for perspective projection, it is easy to show that X and Y can be deduced
from Z. Under the assumption of orthographic projection, the depth Z can be
computed thanks to the following elementary PDE:

∇Z =
1

g
[p, q]t, (1)

where p = −nX/nZ and q = −nY /nZ , and g denotes the image magnification.
Thus, the problem of integrating a normal field is that of integrating the gradient
of Z. It has been shown in [5] that a strict analogy exists between the perspective
case and the orthographic case, provided that a change in the unknown is done:

Z = ln |Z|. (2)

The new unknown Z satisfies the following PDE, which is similar to (1):

∇Z = [r, s]t, (3)

with the following definitions of r and s:

r = − nX

xnX + y nY + f nZ

,

s = − nY

xnX + y nY + f nZ

,
(4)

where f denotes the focal length of the camera. Here again, the problem of
integrating a normal field is that of integrating the gradient of Z.

In order to ensure that the normal field is integrable i.e., that Eqs. (1) or (3)
can be integrated whatever the integration path, it is necessary and sufficient
that p and q (in the orthographic case) or r and s (in the perspective case) satisfy
the Schwartz equations ∂p/∂y = ∂q/∂x or ∂r/∂y = ∂s/∂x. In practice, a normal
field is never rigorously integrable. There are two classical ways of dealing with
this problem. The first one consists in using several integration paths, and then
to mean the different integrals [2]. The second solution consists in considering
Eqs. (1) or (3) as optimization problems [1]. Apart from their slowness, these
last methods of integration have two main advantages: on the one hand, they are
more robust to noise; on the other hand, in the case where the Schwartz equation
is not satisfied, they provide however an acceptable shape. In the following of the
paper, we will focus on this second solution. It is noteworthy that considering
the orthographic case is enough, since Eqs. (1) and (3) are similar. The only
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difference is that Eq. (3) requires the knowledge of the focal distance f , as well
as the location of the principal point, because these parameters occur in the
definitions (4) of r and s: explicitly for f ; implicitly for the location of the
principal point, since the coordinates x and y of a pixel depend on it.

3 Integration Using Quadratic Regularization

3.1 Continuous Formulation

For the sake of simplicity, let us suppose that g = 1. The resolution of Eq. (1)
using quadratic regularization amounts to minimizing the following functional:

Q(Z) =

∫∫

(x,y)∈Ω

‖∇Z(x, y) − v(x, y)‖2 dx dy, (5)

where Ω is the “domain of reconstruction”, ∇Z = [Zx, Zy]
t stands for the gradi-

ent of Z, and v = [p, q]t is the “reduced normal field” i.e., the datum. Quadratic
regularization is known to work well in the case of smooth surfaces. A straight-
forward computation gives:

∇Q(Z) = −2 div (∇Z − v). (6)

It follows that the Euler-Lagrange equation associated to Q(Z) is:

div∇Z = divv. (7)

This is a Poisson equation, which is easy to solve, even analytically [10]. Nev-
ertheless, solving Eq. (7) is equivalent to searching for an extremum of Q(Z)
only if Z is constrained on the boundary ∂Ω of Ω. Otherwise, this equation has
to be complemented with the “natural boundary equation” at each point of the
boundary ∂Ω, which is here the Neumann boundary condition (∇Z−v) ·N = 0,
where the vector N is normal to ∂Ω in the image plane.

3.2 Improved Horn and Brooks’ Scheme

Horn and Brooks propose in [1] a resolution of Eq. (7) that comes from the
following approximation of the expression (5) of Q(Z):

E(Z) =
∑∑

(i,j)∈Ω′

[

Zi+1,j − Zi,j

δ
− pi+1,j + pi,j

2

]2

+

[

Zi,j+1 − Zi,j

δ
− qi,j+1 + qi,j

2

]2

.

(8)
In this expression, δ denotes the distance between neighbouring pixels, Ω′ the
set of pixels (i, j) ∈ Ω such that (i+1, j) ∈ Ω and (i, j+1) ∈ Ω, and Z the vector
[Zi,j ](i,j)∈Ω̊

, where Ω̊ = Ω\∂Ω is the set of pixels (i, j) ∈ Ω whose four nearest
neighbours are in Ω. The values Zi,j of the pixels lying on ∂Ω are not considered
as unknowns, since Horn and Brooks use a Dirichlet boundary condition. For
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the sake of simplicity, let us suppose that δ = 1. For a pixel (i, j) ∈ Ω̊, one gets
from the characterization ∇E = 0 of an extremum and from (8):

4 Zi,j − (Zi+1,j +Zi,j+1 +Zi−1,j +Zi,j−1)+
pi+1,j − pi−1,j + qi,j+1 − qi,j−1

2
= 0.

(9)
This equation is a discrete approximation of Eq. (7). Horn and Brooks solve Eq.
(9) using the following iteration [1]:

Zk+1
i,j =

Zk
i+1,j + Zk

i,j+1 + Zk
i−1,j + Zk

i,j−1

4
− pi+1,j − pi−1,j + qi,j+1 − qi,j−1

8
.

(10)
The initialization is not a cause for concern, since the functional Q(Z) is convex.
In our experiments, we use Z0 = 0.

In order to avoid the need for Z on the boundary, it suffices to consider that
all the values Zi,j , for (i, j) ∈ Ω, are unknowns. This implies that the equations
∂E/∂Zi,j = 0, for (i, j) ∈ ∂Ω, are not written under the form (9). For example,
if (i, j) ∈ Ω′ ∩ ∂Ω, then (10) has to be replaced with:

Zk+1
i,j =

Zk
i+1,j + Zk

i,j+1

2
− pi+1,j + pi,j + qi,j+1 + qi,j

4
. (11)

In fact, equations such as (11) are nothing else than a discrete version of the
natural boundary condition. This improvement of Horn and Brooks’ scheme [5]
is denoted ISL2

.

3.3 Limits of the Improved Horn and Brooks’ Scheme

Some of the computer vision techniques for 3D-reconstruction, as shape-from-
shading, photometric stereo or shape-from-texture, first compute a normal field,
and then need to integrate this normal field. Among them, photometric stereo
is particularly interesting, since the computation of the normals is well-posed as
soon as at least three images, taken using the same camera pose but different
lightings, are available. Therefore, photometric stereo, a technique which has
known a renewal in the last years [8, 11, 12], is well indicated to evaluate the
methods of integration.

In [5], ISL2
was tested on three photographs of a Beethoven’s bustle (see Fig.

1-left) which are available on the web1. Moreover, estimates of the three lightings
are provided as well. The computed shape is qualitatively very good (see Fig.
1-right). Nevertheless, the goal of this paper is to propose some improvements
for scheme ISL2

. In fact, it is well-known that quadratic regularization is not
well adapted to discontinuities. Let us now test ISL2

on the reduced normal
field vb of the benchmark surface Sb shown in Fig.2-left. The 3D-reconstruction
which is obtained after 100 × 128 iterations of ISL2

is qualitatively very bad
(see Fig. 2-right). Nevertheless, we will see further the usefulness of this final

1 http://www.ece.ncsu.edu/imaging/Archives/ImageDataBase/Industrial/
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configuration ZL2
. More precisely, let us introduce, as a quantitative evaluation

of the reconstructions, the minimal root mean square error ‖∆Z‖2 between a
3D-reconstruction and the ground truth i.e., the root mean square error which
corresponds to their best matching. Between ZL2

and the ground truth Zb of Sb,
we find ‖∆Z‖2 = 2.48. In the following of the paper, the use of other regularizers
will allow us to reach much lower values for ‖∆Z‖2.

Fig. 1. Left: one of the three photographs of a Beethoven’s bustle lighted under differ-
ent directions. Right: 3D-reconstruction obtained from these three photographs using
photometric stereo at each pixel on the bustle, then integrating the computed normal
field using ISL2

(the depth Z of the background is arbitrarily put to 0).

4 Integration Using Non-quadratic Regularization

4.1 Introduction

By analogy with regularization methods in image processing, it is tempting to
consider other regularization choices. In image restoration, quadratic regulariza-
tion is indeed famous for its ease of use, but notorious for its lack of ability to
recover sharp edges. It has been proposed to use regularization functions φ which
both smooth the data in homogeneous regions but keep sharp edges by avoiding
smoothing in non-homogeneous regions (see e.g. [13] and references therein for
a detailed review of such methods in image restoration).

Let us now consider the following functional:

Fφ(Z) =

∫∫

(x,y)∈Ω

φ(‖∇Z(x, y) − v(x, y)‖) dx dy. (12)

Of course, this general form includes the quadratic regularization case (5) when
φ(s) = s2.
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Fig. 2. Left: benchmark surface Sb with discontinuous depth Zb and discontinuous
reduced normal field vb.Right: 3D-reconstruction obtained using ISL2

: ‖∆Z‖2 = 2.48.
The integration is performed on the whole domain [1, 128]×[1, 128]. This depth function
is denoted ZL2

.

A straightforward computation gives, from (12):

∇Fφ(Z) = −div

(

φ′(‖∇Z − v‖)
‖∇Z − v‖ (∇Z − v)

)

. (13)

The optimality condition (Euler-Lagrange equation) ∇Fφ(Z) = 0 can then be
used to compute a numerical solution, as explained in the following subsections.

4.2 Linear Growth Regularization

For the sake of clarity, we detail here a first example of non-quadratic regular-
ization. Let us consider the case of a linear growth functional [14], that is let us
choose φ(s) =

√
s2 + α2 in functional (12) which then reads:

L(Z) =

∫∫

(x,y)∈Ω

√

‖∇Z(x, y) − v(x, y)‖2 + α2 dx dy. (14)

Ideally, we would choose α = 0. For image restoration, α = 1 is a good choice
when the greylevel values are in [0, 255]. The gradient (13) of the functional in
this particular case becomes:

∇L(Z) = −div

(

∇Z − v
√

‖∇Z − v‖2 + α2

)

. (15)

Therefore, the Euler-Lagrange equation associated with the functional L(Z) is:

div

(

∇Z
√

‖∇Z − v‖2 + α2

)

= div

(

v
√

‖∇Z − v‖2 + α2

)

, (16)
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with Neumann boundary condition on ∂Ω. Eq. (16) is much less tractable than
Eq. (7). A way of computing its solution consists in using a semi-implicit scheme:
we implicit the linear part of the equation, but its non-linear parts remain ex-
plicit. This gives:

div

(

∇Zk+1

√

‖∇Zk − v‖2 + α2

)

= div

(

v
√

‖∇Zk − v‖2 + α2

)

. (17)

Our first new scheme of integration, denoted ISL1
, is as follows for (i, j) ∈ Ω̊:

Zk+1
i,j =

1

2dk
i,j + dk

i−1,j + dk
i,j−1

[dk
i,j(Z

k
i+1,j + Zk

i,j+1) + dk
i−1,jZ

k
i−1,j + dk

i,j−1Z
k
i,j−1

−dk
i,j

pi,j + pi+1,j + qi,j + qi,j+1

2
+ dk

i−1,j

pi,j + pi−1,j

2
+ dk

i,j−1

qi,j + qi,j−1

2
],

(18)
where the factors dk

i,j denote the following discrete approximations of the de-
nominators of Eq. (17):

dk
i,j =

1
√

(Zk
i+1,j − Zk

i,j −
pi,j + pi+1,j

2
)2 + (Zk

i,j+1 − Zk
i,j −

qi,j + pi,j+1

2
)2 + α2

.

(19)
For the same reasons as in the case of quadratic regularization, Z0 = 0 is used
as initial configuration, and Eq. (18) has to be modified for pixels (i, j) lying on
the boundary ∂Ω.

4.3 Non-convex Regularization

Let us now consider functional (12) in general. In image restoration [13], the
regularization functions φ are usually called “φ-functions”. Such functions are
required to have a linear growth around zero (to preserve edges), and a sublinear
growth at infinity (so that high values of the argument are not penalized too
much). We will consider both following classical φ-functions:

φ1(s) = ln(s2 + β2) ⇒ φ′

1(s) =
2s

s2 + β2
,

φ2(s) =
s2

s2 + γ2
⇒ φ′

2(s) =
2γ2s

(s2 + γ2)2
.

(20)

We a priori prefer this last choice, since φ2(s) remains less than 1 when s tends
towards +∞. Moreover, with this last choice:

φ2(s) =
(s/γ)2

1 + (s/γ)2
. (21)

This means that the parameter γ controls the large values of s. In the case of
noisy data, we will use a greater value for γ than in the case of non-noisy data.
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Notice that with the choices of either φ1 or φ2, functional (12) is no longer
convex (contrary to both functionals (5) and (14)). There may then be several
minimizers. In our numerical experiments, we will have to face this problem.

The Euler-Lagrange equations associated to the functionals Fφ1
(Z) and Fφ2

(Z)
are, respectively:

div

[ ∇Z

‖∇Z − v‖2 + β2

]

= div

[

v

‖∇Z − v‖2 + β2

]

,

div

[

∇Z

(‖∇Z − v‖2 + γ2)
2

]

= div

[

v

(‖∇Z − v‖2 + γ2)
2

]

,
(22)

with Neumann boundary conditions on ∂Ω. There are strong similarities be-
tween both these equations and Eq. (16). The numerical schemes that we use to
solve them are the same as (18), except that the factors dk

i,j must be replaced,

respectively, with ek
i,j and fk

i,j :

ek
i,j =

1

(Zk
i+1,j − Zk

i,j −
pi,j + pi+1,j

2
)2 + (Zk

i,j+1 − Zk
i,j −

qi,j + pi,j+1

2
)2 + β2

,

fk
i,j =

1
[

(Zk
i+1,j − Zk

i,j −
pi,j + pi+1,j

2
)2 + (Zk

i,j+1 − Zk
i,j −

qi,j + pi,j+1

2
)2 + γ2

]2 .

(23)
These schemes will be denoted, respectively, by ISφ1

and ISφ2
.

4.4 Numerical Evaluation of the New Algorithms

In this subsection, we are going to test the three new schemes ISL1
, ISφ1

and
ISφ2

on the reduced normal field vb of the benchmark surface Sb (see Fig. 2-
left). As each of these schemes depends on one parameter, respectively α, β and
γ, we must first study the influence of this parameter on the accuracy of the
reconstruction.

The accuracy ‖∆Z‖2 of the 3D-reconstruction obtained using the scheme
ISL1

, in function of α, is plotted on the left of Fig. 3. The best reconstruction,
which is represented in Fig. 4, corresponds to ‖∆Z‖2 = 1.66 and is reached when
α = 0.055. It looks indeed a little more similar to Sb than the surface represented
in Fig. 2-right, with a lower value of ‖∆Z‖2. However, this result is not fully
satisfactory. The evolution of ‖∆Z‖2 in function of the number of iterations,
which is represented on the right of Fig. 3, shows the convergent behaviour of
ISL1

(we proved that ISL1
is a convergent scheme, but due to lack of space, the

proof is not included in the paper; see [15] for further details). This curve also
tells us that a fixed number of 100 × 128 iterations gives a good approximation
of the limit. Since similar curves are obtained for both other schemes, we decide
to fix the number of iterations at 100 × 128 for all the tests. Of course, better
stopping criteria could have been used, but this was not our main concern.
Moreover, this first scheme is quite slow, due to the complexity of the formula
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(18) and (19): the CPU time of 100 × 128 iterations is equal to 17s on a P4
2.4 GHz, for a domain of reconstruction Ω which contains 128× 128 points (the
CPU times of both other new schemes is approximately the same). The resort
to classical acceleration techniques, as for instance multi-grid methods, would
probably be welcome.

0.04 0.05 0.06 0.07
1.6

1.7

1.8

1.9

α

‖∆Z‖2

1 100 200
0

1

2

3

4

5

k/128

‖∆Z‖2

Fig. 3. Left: ‖∆Z‖2 in function of α, after 100× 128 iterations of ISL1
. Right: ‖∆Z‖2

in function of the number of iterations of ISL1
, for the optimal value α∗ = 0.055. In

these tests, the initialization Z0 = 0 is used.

0

64

128 0

64

128

0

Fig. 4. 3D-reconstruction obtained using ISL1
, for the optimal value α∗ = 0.055 and

Z0 = 0: ‖∆Z‖2 = 1.66.

The accuracy ‖∆Z‖2 of the 3D-reconstruction which is obtained after 100×
128 iterations of the schemes ISφ1

, in function of β, is plotted on the left of
Fig. 5. The best reconstruction, which is represented in Fig. 6, corresponds to
‖∆Z‖2 = 0.23 and is reached when β = 0.55 and Z0 = ZL2

(see Fig. 2-right).
It is qualitatively and quantitatively much better than the previous ones. An
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important feature of the scheme ISφ1
is its high sensitivity to the initial config-

uration Z0. A second reconstruction, which is obtained with the same value of β
but Z0 = 0, is represented in Fig. 7. It illustrates the existence of local minima
for Fφ1

(Z), as claimed in Section 4.3.
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‖∆Z‖2
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γ

‖∆Z‖2

Fig. 5. Left: ‖∆Z‖2 in function of β, after 100× 128 iterations of ISφ1
. Right: ‖∆Z‖2

in function of γ, after 100 × 128 iterations of ISφ2
. In these tests, the initialization

Z0 = ZL2
is used.
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Fig. 6. 3D-reconstruction obtained using ISφ1
, for the optimal value β∗ = 0.55 and

Z0 = ZL2
: ‖∆Z‖2 = 0.23.

Finally, the accuracy ‖∆Z‖2 of the 3D-reconstruction which is obtained after
100× 128 iterations of the scheme ISφ2

, in function of γ, is plotted on the right
of Fig. 5. The best reconstruction, which is represented in Fig. 8, corresponds to
‖∆Z‖2 = 0.36 and is reached when γ = 0.21 and Z0 = ZL2

. It is approximately
as satisfactory as the previous one. Nevertheless, a qualitative comparison be-
tween both curves in Figs. 5-left and 5-right tells us that ISφ2

is more sensitive to
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Fig. 7. 3D-reconstruction obtained using ISφ1
, for the optimal value β∗ = 0.55 and

Z0 = 0: ‖∆Z‖2 = 4.02.

γ than ISφ1
to β. A second reconstruction, which is a local minimum of Fφ2

(Z),
is represented in Fig. 9.

0

64

128 0

64

128

0

Fig. 8. 3D-reconstruction obtained using ISφ2
, for the optimal value γ∗ = 0.21 and

Z0 = ZL2
: ‖∆Z‖2 = 0.36.

4.5 Application to Photometric Stereo

The part of the Beethoven’s bustle which is visible in the photograph of Fig.
1-left does not contain self-occlusion. On the other hand, there is a discontinuity
between the silhouette of the bustle and the background. Unfortunately, the
background looks black in all these images, so that photometric stereo cannot be
used at such pixels. In order to test the schemes ISL1

, ISφ1
and ISφ2

on real data,
we consider the background as a plane with uniform normal n = [0, 0, 1]t. The
reconstruction on the left of Fig. 10 is obtained using ISL2

on the whole domain
[1, 256]× [1, 256], without prior segmentation. Obviously, the discontinuity is not
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Fig. 9. 3D-reconstruction obtained using ISφ2
, for the optimal value γ∗ = 0.21 and

Z0 = 0: ‖∆Z‖2 = 3.39.

well handled. On the other hand, the three reconstructions on the right of Fig.
10 and in Fig. 11 are obtained using ISL1

, ISφ1
and ISφ2

. The big gaps along
the silhouette are rather well reconstructed, without any prior segmentation, as
this was the case for the reconstruction of Fig. 1-right.

Fig. 10. 3D-reconstructions from the three photographs of the Beethoven’s bustle,
integrating the normal field using ISL2

(left) and ISL1
with α = 0.1 (right) on [1, 256]×

[1, 256].
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Fig. 11. 3D-reconstructions from the three photographs of the Beethoven’s bustle,
integrating the normal field using ISφ1

with β = 2 (left) and ISφ2
with γ = 1 (right)

on [1, 256] × [1, 256].

5 Conclusion and Perspectives

In this paper, after a theoretical study, we improve an existing method of nor-
mal integration. We show how to avoid prior segmentation, and consequently
how to deal with possible discontinuities along silhouettes. More specifically, we
prove the efficiency of non-convex regularization using φ-functions. As an appli-
cation, we successfully use two new methods of integration in the framework of
photometric stereo. A first perspective of this work is to avoid the empirical esti-
mation of the optimal value of the parameters, since all of the proposed methods
of integration are parametric. Another perspective is to test other φ-functions.
As third perspective, we must question the way how the proposed methods face
noisy normal fields (as this is done in [16]).

A last, but not least, perspective is to deal with multiview photometric stereo
techniques, in order to produce complete 3D-reconstructions, and not only 2.5D-
reconstructions (as, for instance, the surfaces shown in Figs. 1-right, 10 or 11).
In [17], an interesting method of integration of a multiview normal field using
a level set method is proposed, but the use of quadratic regularization makes it
clearly impossible to retrieve the fine details of the 3D-shapes. In that work, as
in [18], the silhouettes of the objects have to be segmented. Our new methods
of integration could help avoiding this prior processing.
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