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Abstract Of course, the informative cue is the warp induced by the

projection onto the image plane. The image of a patch is
We present a new formulation to the well known problem called atexton
of shape-from-texture from a single image by casting the
task as a multi-plane based camera pose estimation prob-
lem. Ouir first contribution is methodological: we show that
by using a piecewise affine model, instead of a perspective
one, we can avoid the numerical instabilities in the estima-
tion of the surface pose compared with the full-perspective
model, yet retaining high accuracy. Our second contribu-
tion is to show that the information provided by a smooth
textured surface makes it possible to perform shape-from-Figure 1. The investigated problem: Is it possible to compute the
texture and camera focal length calibration jointly. Thita 3D shape of a textured surface from such a single view using an
vances state-of-the-art where a calibrated camera is ryearl uncalibrated camera?
always assumed in order to compute 3D shape from a single
image. We validate both these contributions on simulated ~ This problem is clearly equivalent to multi-plane based
and real image data. camera pose estimationf, 19). According to Poncelet's
theorem, given the image of a single texton in some Eu-
clidean representation (i.e., under the assumption ofrequa
1. Introduction pixels), estimating the camera pose i_s ill-posed, as the lo-
cus of possible camera centres is a circle orthogonal to the
In this paper we focus on the open problem of comput- image plan& The intersection of the circle’s supporting
ing the 3D shape of a surface using the Shape-From-Textureplane and the image plane is a straight line known as the
(SFT) cue. In the classical SFT setting the following as- center linesuch that for every point along it there exist a fo-
sumptions are made: cal length and a camera pose which are consistent with this
) ) ) ) ) texton. It is well known that transformation from a planar
° Asmgle view of the surface is provided on which mul- scene to the image plane is a homography of the projec-
tiple occurrences of one or more patterns are printed e plane. It has been shown ifi that the center line can
in dlstlnpt, but not necessarily regularly arranged posi- pe estimated from such a homography. As a result, using
tions (Fig.1). several textons will make the estimation of the camera pa-
rameters possible since different center lines may crosk, a
thus determine the location of the principal point (and con-
sequently the focal length and the camera pose.) Accord-

e The fronto-parallel appearance of the pattern (i.e. a
template) is knowm priori.

e The pattern '$ma“ enouglsuch that each occurrence 1A movie which illustrates Poncelet’s theorem is available at
can be approximated by a planar patch. www. i rit.fr/~Pierre. Gurdj os/ ECCV2002/



ing to this intuition, it seems that uncalibrated SFT is well itis often repeating in nature suggests geometric appesach
posed. However, this is not true when the textons are small,may be preferable’]. The statistical methods rely often on
which is precisely a SFT assumption, because the estimaa variety of densities estimator§|]| whereas the geometric
tion of a homography using a small textorilisconditioned ones aim at estimating 2D transformations, which are ho-
[11]. mographies for perspective planar texturdgstput affinities
As a remedy to this, we exploit the well known fact have also been considered in some cas4s As with other
that the perspective projection model can be locally ap- 3D reconstruction techniques such as Shape-From-Shading
proximated by the scaled orthographic projection model. or photometric stereo, SFT usually produces a normal field,
This provides good approximation to the imaging process and not 3D depth (which contrasts with our method). An
with increasing accuracy for distant scene samples pro-additional step is then needed to recover shape, known as
jected closer to the principal point. These assumptions arenormal integration 9].
often satisfied in practice and permits the estimation of the  Recently a number of new SFT approaches have ap-
associated affine transformation that is far more stable man peared. In 1], Lobay and Forsyth propose an automatic
ner than the local homography (as exploited in other com- technique for textons detection and fronto-parallel appea
puter vision problemsi[)]). ance estimation. This work is fairly close to ours, except
The first contribution of our work is to provide a stable that they use orthographic cameras. 16][ Loh and Hart-
estimation of the depth and of the normal at each texton us-ley’s work does not require the texton pattern to be imaged
ing an explicit piecewise planar affine model. A closed form in advance. This is very promising even if few results are
solution is presented where, for both the calibrated and un-shown. In [L7], the combination of texture and shading is
calibrated cases, orientation is given up to a two-fold am- shown to be enough to avoid, in most cases, the ambiguity
biguity. Depth by contrast is recovered uniquely (where in on the normal field estimation. We are interested in artificia
the uncalibrated case it is known up to a scale factor). textures, but unlike most of the previous works, we consider
Our second contribution extends the above process toSFT as a multi-plane based camera pose estimati®ii f].
joint 3D reconstruction and focal length estimation. The re
covery of both the depth, which depends on the focal length, 3. Piecewise Planar Scaled Orthography
and of the normal (up to a two-fold ambiguity) at each patch
is aredundancy W%i(r:)h we exploitin ordegr togstimate tEe fo- 3.1. Camera Model
cal length, and then by extension to recover the orientation The imaging process we consider involveprajective
and depth of the surface at each patch. Both these contribucamera whose focal lengtly is the sole unknown (other
tions are validated by experiments performed on syntheticintrinsics have canonical valuesg, the principal point is
and real images. at the origin). In the special case where the world frame co-

The structure of this paper is as follows. In Section 2 incides with the camera frame, its projection matrix writes
relevant works from the SFT literature are outlined. In Sec- )
tion 3 we discuss our method for computing the 3D shape P = diag(f, f,1) [Isx3 | 03]. (1)

of a textured surface from a single view given that the fo- with regard tosmall objects at a distancét is known that
cal length of the camera is known. A generalization of |oca| affine approximations dP may provide more stable
this contribution to the case of an uncalibrated camera isnumerical solutions to the problem of computing the object
done in Section 4, making an explicit estimation of the fo- pose.

Cal Iength in Conjunction Wlth Shape. In SeCtion 5 our WOI’k In the immediate neighbourhood of any texton’ the local
is summarised with reference to some possible future devel-gffine approximation of the projective caméPaacts like a

opments. scaled orthographic camenaith projection matrix:
2. State of the Art aj 0 0] el
_ _ . . P¥=1 0 a; 0 e |, 2)
In the following section we briefly discuss papers from 0 0 1 e,
the SFT literature. To our knowledge however no up-to-date ) . )
survey covering SFT is available at present. wherea; = f/d; is thescale factor j is the index of the

Texture is known to be a strong cue for the perception Particular textong; is the depth at the patch's centrqig
of depth, and has been studied for a considerable tine [ 2ndex. denotes thes™ column 0fL4x4. The model £) is
SFT is a classical 3D reconstruction process which essen€Ssentially a first-order approximation dj(see [.5, 7].
tially requires only a single image view. Two different ap- 5 , pa proplem of Recovering the Pose of a Patch
proaches have arisen. When the texture is considered ‘natu-
ral’, statistical methods and descriptors are often uséf [ The pose of patch is given byT;, the 3D rigid trans-
When the texture has been ‘artificially’ created, the fact tha formation mapping a local world frame attached to its sup-



porting plane to the camera frame:

R,
05

t;
1

e[

whereR ; andt; represent the rotation and translation com-
ponents.

As we treat patches asnall objects at a distancéhe
patch-to-texton 2D-transformation, denotdd, mapping
the patchj to its image can be well approximated by the
scaled orthographic camerd) ( Without loss of generality,
take the supporting plane of patg¢ho be defined at = 0
w.r.t. the local world frame and the patch’s centroid at the
origin. As aresult the patch-to-texton transfoAm is affine
and decomposed as

whereR; denotes the top lef2 x 2 submatrix ofR; =
[t (k.1ye(1,3)2, andE; denotes the top x 1 elements ot ;.
GivenA; = [ai](k,1)e1,3)2, it can be shown thattavo-fold
solutioncan be directly obtained for both the pad®;, t;)
and the scale factar;. We achieve this as follows. Intro-
ducing two unknown variablgs = o;r13 andy = a;ras,
we can solve fo3 and~ as the solution to the following
274 order polynomial system:

{

This leads to two real solution pairs ferand~ (3,v) =
=+ (b, ¢) for some realb, c), and from this the patch pose is
easily recovered:

o R;
05

a;t;

A, 1

J

afy +afy + % — (agl + a3y + '72) =0,

-
[a117 CL1275] [a21’ a22>'7] =0.

1 u
R, = — vl , ti=ay (a13, azs, f)"
4 1 aj(uxv)T
(3)
whereu = [au,au,ﬁ]T, vV = [a21,a22,'y]T, andO{j =

lul|~*. Notice that rotation componeR; and scale factor

o are recoverable without knowingy showing that planar
orientation can be recovered with the scaled orthographic
approximationin the uncalibrated setting The two solu-
tions for 8 and~ lead to a two-fold ambiguity iR ;, but

a single solution fory; andt;. Now if r; denotes the 4-
vector of dual coordinates of the supporting plane of patch
j, then it can be seen that

|

wheren; = [3/a;,v/a;,det R;]T denotes the normal in
the camera’s reference frame. Due to the ambiguity men-
tioned above, a two-fold solution clearly exists foy.

n!

¢t

5

(4)

3.3. Calibrated Orientation Disambiguation

Although we have a two-fold orientation ambiguity, the
additional per-patch depths clearly provides us with redun
dant information to resolve this. Recall that most of the
existing SFT techniques only compute the normals, which
then requires a normal integration step. In our frame-
work disambiguating the normals can be done far more
easily. We make the assumption that neighbouring patch
centroidsp, approximately sample the tangent plane at
patch j (which is valid if the patch spatial separation is
low). Thus, for a reconstructed patch the normgl is
selected with maximal depth/normal agreement given by
Sk (nY) = ‘(pk - pj)Tn}‘ . In the presence of noise, the
redundancy from multiple neighbours can be used to ro-
bustly disambiguate orientation (e.g. taking the norméhwi
maximal votes these. One could further incladé order
agreement over the normal field, although compared with
this local approach it has proven unnecessary. As explained
violations may occur, for example due to surface disconti-
nuities. These are not treated in this paper, but should be
handled by integrating additional discontinuity cues.

3.4. Reconstruction Experiments

In this section we show some simple reconstruction ex-
periments conducted to validate or SFT method in the cali-
brated setting.

3.4.1 Synthetic Setup

Empirical synthetic studies to assess reconstructioritgual

in the presence of noise and differing scene conditions are
now presented. A simple synthetic scene was constructed
involving a cylinder quantised into regular squared grifls o
varying size to simulate the effect of varying texton densi-
ties. Three surfaces are shown in Figa-c. We compute

the images of these surfaces using a constant focal length
(we usef = 500 with distances expressed in pixels), axis
aligned with the camera’s y axis, radius set to a constant
r = 500. The surfaces are positioned at varying values of
d, denoting thenean deptlof the scene; thus degree of per-
spective distortion is strong at short range, but disagpaar
long range.

The quality of the reconstructed patch orientations was
evaluated with the RMS angular error (in degrees) in surface
normals. Fig4 shows the trend of RMSE w.r.t. the number
N of textons, for different values af. For a fixed value of
d, the error decreases fo¥, with confirms the assumption
that the approximation improves with smaller patches. On
the other hand, for a given numh&rof textons, RMSE de-
creases witll, confirming the scaled orthographic approxi-
mation is better justified at longer distances.
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Figure 2. Test cylinders quantised into grids of (a)4a0, (b) 20x 20 and (c) 30x 30 squared patterns. (d) Surface and normals
recovered at short rangd/(f = 2.5) with no noise. (e,f) Reconstructions with measurement noises (agl@ussian with standard
deviationss = 0.1 ando = 0.2) respectively

To test the stability of reconstruction w.r.t. measure- 3.4.2 Real Setup
ment errors, varying amounts of zero-mean Gaussian noise . .
was added to each vertex’s image location (from which the A second exper_ment we present.was_performed onasimple
plane-to-view transforms are computed.) The three resultsref"II scene depicting a _surface with circular (npn—reg;a)arl
shown in Fig.2 correspond to zero noise,= 0.02 % (Fig. printed t.extons (.Se.e Fig5-a). 'These are ea;ﬂy detected
2-b) ando — 0.04 % (Fig. 2-c) of the image size, i.e., re- automachI_Iy (within a bounding region of mteres_t man-
spectivelys = 0.1 ando = 0.2 for a512 x 512 image. ually specified) and the local transforms were refined us-

In spite of noise, the surface’s shape is recovered well. Aing standard gradient-based image registrgtion. Therexto
detailed evaluation is presented in Fig. Fig. 3-a and b neighbourhood system was constructed with the edges of a

denotes the depth (relative to the scene’s depth range) analmplelDeIaunay trlart'lglf\l/latlon at t:'et'gexiog cten'f[reg (aina f
patch orientation error as a functiondfperformed at mul- examples we present). More sophisticated strategies may o

tiple noise levels. We can see here that there is trade-offcourse be needed to develop better neighbourhood systems

between further distances (supporting the scaled orthograt(.) handle, for. example surface discontinuities and occlu-
sions but this is left for now to future work.

h ti d shorter dist that reduce the influ- ) N
phy assumption) and shorter distances that reduce the influ The patch poses are estimated and shown in Big,

ence of noise. We contrast this with recovering orientation displaved ientated d patch The deoth d
based on texton homography decompositio® [n Fig. 3- ISplayed as onentated quad patches. The depths and nor-
mals appear very consistent, except for a clear outlier. A

c. In the noise-free case, that method is clearly superior, . _ X
however as noise is introduced and at further distances, Wedense r_econstructlon was then performed using a robus_t n-
see our method is more successful. terpolatlpn strategy. .For thl_s we use the thin plate spline
(TPS) with control points defined at the patch centres and a
re-rendering showing the surface from another viewpoint is
shown in Fig.5-d. Ground truth depths were obtained with
hand labeled stereo correspondences at the texton centres,
resulting in an RMS depth error of 3.5% w.r.t. the depth of

the enclosing volume.

4. SFT with Uncalibrated Cameras

In this section we now generalise the methodology pre-
sented in Section 3 to the case where the camera is uncal-
ibrated (with the focal length as the only unknown intrin-
sic). We propose two methods for calibratifig The first

Figure 4. RMS angular error with respect to ground truth normals 1S 0 estimatef using a criterion based on the normal in-

ternative method which is considerably more reliable under

near-affine viewing conditions. We also show how the nor-

_ RMSE
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Figure 3. Synthetic reconstruction results. (a) Depth and (b) orientation @& a function of mean scene depth. (c) Comparison to
orientation reconstruction by homography decomposition

(a) Input image. (b) Recovered surface. (c) Resynthesiewd v

Figure 5. (a) Image of a surface non-regularly printed with textonsRézovered texton depths and normals (the patches are represented
by oriented squares). (c) Re-rendered view of the reconstructétseu

mal field can be disambiguated in the uncalibrated setting. The definitions of- ands explicitly depend ory. Therefore,
it seems that the following criterion is sensitivefto

4.1. Focal Length by Integrability of Normal Field Ci(f) = Z 1V6(ay) — Ir;, Sj]er , ©6)
j

Suppose first the normals have already been disam-

biguated. Integrating a normal field is a classical com- whereq; designates the centroid of textgnand the sum is
puter vision problem. The equation of normal integra- carried out on all the textons. Anything is known B),(ex-
tion expresses that the variation in depth along any closedcept f and the value¥ §(q;), which can be estimated using
loop in the image is equal to zero (the depth gradient Taylor expansionsi(q;) = §(a,) + (ar — q;) " Vé(q;).
field must be a zero-curl field), a property which has e tested the criterio6; on images with very low per-
been used for many other purposes than for normal in-spective distortion, and surprisingly, it seems to f&i. is
tegration [[7]. Let us first use as a measure of consis- quasi-insensitive tg and, therefore, the estimation $fis

tency between the depth fietl{z, y) anthhe normal field jj|-conditioned. Using, once again, the scaled orthogi@ph
n(z,y) = [n.(z,y),ny(z,y),n:(z,y)]" the following  model, Equationd) reduces to the following] 7:
equality, which holds under perspective projectigh [
.
1 |n, n
vi=—- M= M| 7
Vvé=Ir S]T, (5) o [”z ”J )

An approximate version af; is then:

T Co(f) = Z

S angtyny+ fn. j
TNy +yny+ fn,

whered = In |d| and:
2

8)

1 [ney nyyl"
Vd(qa')+07 s

)
J LMz Nz

Anything is known in 8), exceptf and the value¥ d(q;),



which can be estimated from the following linear systems:

dy = d; + (ax — q;) ' Vd(a;),
dy = dj + (q; — q;) ' Vd(q;),

(9a)
(9b)

wherek and! are indices for two neighbouring textons of
textonj. Since the depth = f/« is proportional tof, Co
can be rewritten:

]

J
where the\; andy; are obtained fromJg)-(9b), which is a
Cramer system as soon @s = [z;,y;] ", ar = [zx, ye] "
andq; = [z;,;]" are non-colinear:

(Y1 — ) (/o — 1)) — (yx — y5)(1 /o — 1/ )
(zr — 25) (v — y5) — (yx — yj) (21 — x5)
(11a)
_ (on =) oa = 1/ag) = (@1 — 25) (1 ar — 1/ )
(xr —z5) (e — y;) — (yr — y5) (21 — x5) '
(11b)

2
1 nay ny,

)
Qj [ Nzj

Ca(f) (10)

'fP\mﬂj]T +

UEN

A\ =

J

From (L0), we can easily express the optimal valfieof f:

1
Zj)‘?_F:U

We see in {19 and (L1b) that the coefficients\; and y;
tend towards zero when the global perspective effect van-
ishes, since all the scale factars tend to the same value.
Obviously, this now makes the estimatioh?f of f* ill-
conditioned.

Aja,j + HiNy,;
D :

QjTz,j

= (12)

iy

4.2. Uncalibrated Orientation Disambiguation

We now show how the normals can be disambiguated.
For a given patcly, we know from SectiorB8.2 that there
are two normal solutions} = 1/a;[b,c,h]" andn? =
1/aj[—b,—c,h]" for some knownb, ¢ and k. Using the
scaled orthographic model, Equatiaf) then reads:

hil
Recall that from the linear syster@d)-(9b), we can deduce
Vd(qj) = f[\j,u;]" as soon as texton centroids, gy

andq; are non-colinear. Equatioi ) can thus be rewrit-
ten:

1

a;j

b ¢

Vd(q;) =£— |3 7 (13)

fv=+xw, (14)

where the two vectors andw are known and do not de-
pend onf, which nevertheless is involved in Equatidr).
Since the estimation of supposes that the disambiguation
of the normals is already carried out, as seen in Seétign

the problem of disambiguating;, which is that of finding
the right sign in {4), looks like a vicious circle. But, know-
ing thatf > 0, it is reasonable to compute= sign (v w)
and to conclude:

1
n; = —[—sb, —sc,h]".
@

4.3. Focal Length by Maximising Continuity

The second approach we propose for calibrating to
find the focal length which maximises the continuity of the
depth field. Consider two adjacent patcheandk in 3D
space. To recover the focal length, first assume we have at
our disposal the homogeneous pixel coordinatesR? of
a point lying on the image of the intersection of the two
corresponding supporting planes. The 3D lifig back-
projected fromg under the projective cameRin (1) may
be written as a dual Btker4 x 4-matrix

L* =P [q], P,

where[q],, denotes the usual skew-symmetric matrixjof
The 3D pointX; at whichL, meets the supporting plane
of patchj is

Xj = Lﬂ'j (15)

whereL is the primal Plicker4 x 4-matrix (i.e.dualto L*)
andm; the 4-vector 4) of dual coordinates of the support-
ing plane of patcty. A similar equation to 15) holds for
the supporting plane of patchy, which meetsZ in Xj.
The question now remains of how to recover As Lg
intersectsr; and 7, at the same 3D point, any Cartesian
(i.e., normalised) coordinate &X; andX; must be equal.
Hence, using this constraint, we can easily derive a degjree-
polynomial equation irf denoted by, f2 +¢i f + ¢y = 0,
whose coefficients have the form

c2 = (ag — ) go,
1 = o0 gijk + 915 + Ok Jik,

Co = Q0 go,

whereg. = g.(n;,ny, t;, t;) denote functions not depend-
ing ona; or ay. If we assume thad; ~ d, thena; ~ ay,
and, even this is not strictly true, we can understand, look-
ing ate; andcz, why in practiceles| < |¢1]. Hence, a first
root of the quadratic equation j§ ~ —cg/c¢;. Knowing
that f1 fo = ¢o/ca, we can conclude that the other solu-
tion is fo &= —c1/co. Sincef; + fo = —c1/ca, We notice
that |f1| < |f2]- Thus we can recover a single solution
to be the smallest of the two roots. We have arrived at a
minimal solution forf requiring two adjacent textons. By
exploiting all texture information we can now proceed to
find the single optimal focal length. Currently we adopt a
simple robust strategy: we first reject the focal lengthefro

~
~



any texton pairs whose normals are at an angle greater thaproximating global perspective by local scaled orthogyaph

20 degrees. These occurrences are either caused by surfackhis is suitable when the textons are small where there is

discontinuities or erroneous normals from either patchl, an insufficient local perspective to resolve the per-texton ho

should be discarded. Then we robustly compute the optimalmographies. Our second contribution is to generalize this

focal length as the median of all remaining focal lengths.  result to the uncalibrated setting using the redundancy be-
tween depths and normals. Our method makes this possible

4.4, Experiments because only the depths, rather than orientation depend on

We h | q d focal | h estimai the focal length.
© have evaluated our second focal length estimation o, strong possible application of our work is to undis-

method using some real world examples and these are NoW,; yhe camera images of curled documentd[Since the
presented. Figé-a illustrates one case. The image is 1200 tomatic detection of characters in an image may provide
* 1600 pixels with a focal length of 1274 pixels compris- 5 \aiher dense estimation of the 3D shape, it will be pos-

ing an 8x 7 lattice of square textons. The patch-to-texton sible to flatten the document (for restoration or improving

mappings were achieved by hand labeling. SLjperimpOSeO#eadability) without needing strong geometric assumstion
are the recovered normals (red) and ground truths (greenkurthermore, with the ubiquity of text in many images, the

obtained from planes fitted to triangulated stereo cornespo ability to calibrate a camera from groupings of characters

Fjezncej- The accuracy herﬁ IS ;;flear; fthe RMS angular erroy,iiin 4 single image is an appealing prospect. In future we
Is 2.3 degrees. To as.sessft e effecto measqrement NOISE Ofim to handle surfaces with discontinuities and include au-
bOth _focal length estlmat|on_ and reco_nstruc'Flon, the JOrNE tomatic texton registration. Another possibility is to kdémn
positions were perturbed_ with Gaussian noise and Big.  he two-fold ambiguity on the normal using programming
b plots the relative error in focal length against correspon heuristics such as those describeddp father than using

dence noise. In the noise-free case we have g relative €lihe redundancy between depths and normals. Finally, we
ror of 9.1% and as one can see, the focal estimate accu-

L i ~~aim to generalize the theory of our work to the more dif-
racy degrad_es gracefully With 'n(.:reaSEd noise, SuggeSt'ngﬁcult, but more realistic and applicable situation when the
the method is stable in real conditions. We also notice thatfrontoparallel pattern appearances are unknow]s
with increased noise the recovered focal length (and con-
sequently the mean depth of the surface) becomes underReferences
estimated. This makes sense; since with increased noise
the normal estimates tend towards random, and the continu- [1] R. Bajcsy and L. Lieberman. Texture gradient as a depth
ity criterion becomes best satisfied when samples lie atthe ~ cue.Computer Graphics and Image Processib{{l):52-67,

planez = 0. The corresponding errors in orientation and 1976.2

depth are presented in Fifkc. [2] J.-D. Durou and F. Courteille. Integration of a Normal
Field without Boundary Condition. IRroceedings of PACV
(workshop of ICCV 2007R007.5

[3] A. Ecker, A. D. Jepson, and K. N. Kutulakos. Semidefinite

A second example is presented in Fig-a where we
have an image of a textured deformed shirt. The textons
were marked by hand, the focal length is 1425 pixels and Programming Heuristics for Surface Reconstruction Ambi-

grqund truth data was acquiredlwith manual stereo tr!angu— guities. InProceedings of ECCV 2008 (volume, bages
lation. A smooth TPS surface interpolates these points to 127-140, 20087

serve as ground truth depth and orientation data. Fig. [4] J. Garding. Shape from texture for smooth curved surfaces
b shows the orientation and depth reconstruction accuracy. in perspective projectionJournal of Mathematical Imaging
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