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Abstract. In the last years, the 3D reconstruction of surfaces which
represent objects photographed by simple digital cameras has become
more and more necessary to the scientific community. Through the most
various mathematical and engineering methods, scientists continue to
study the Shape-from-shading problem, using the photometric stereo
technique which allows the use of several light sources, but keeps the
camera at the same point of view. Several studies, through different
advances on the problem, have checked that in the applications, the
smallest number of photos that have to be considered is three. In this
article we analyze the possibility to determine the objects’ surface using
two images only.
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1 Introduction

Many articles have been written about the impossibility to solve the Shape-
from-shading problem (SFS) considering only one picture [1], even if a recent
perspective SFS model exploiting the attenuation of the lighting with respect to
the distance to the light source has been shown to yield to a well-posed problem, if
complemented by reasonable assumptions [2]. This impossibility, from the PDEs
point of view, comes out from the difficulty we meet in differentiating the concave
surfaces from the convex ones. The most natural way to solve the problem is to
use more than one picture. First introduced by Woodham [3], photometric stereo
(PS) consists in using several images which portray the object photographed
always from the same point of view, but with different light source positions [4].

There are two main approaches to solve the SFS-PS problem. The first one
aims at computing in each point the normal to the surface to be reconstructed.
If the albedo is supposed to be known, this approach has the drawback to be
well-posed only if a minimum of three images of a differentiable surface are used
(we emphasize that the required regularity of the surface, in real applications,
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can be seen as a supplementary disadvantage). Its vantage is that, even if only
two images are used, the number of solutions of the problem (for a differentiable
surface) is a priori predictable through the study that we propose in this work.

The second approach, which is more recent, aims at solving the PDE model.
If we still suppose the albedo to be known, it has the advantage of admitting only
one solution even if only two images are used. It is also possible to approximate
the solution even if the surface is Lipschitzian (that is, almost everywhere
differentiable). The drawback is that it is well-posed only if we preliminary know
the height of the surface on the boundary of the image (i.e. only if we know the
boundary condition of the differential problem).

The main idea of this paper is to approximate the boundary condition by
integrating the normal field only on the boundary of the image, and then to
solve the PS problem anywhere else using the PDE approach. In Section 2, we
recall the differential and non-differential formulations of SFS-PS. In Section
3, we show that in some points, two images are enough to deduce the normal
univocally. Section 4 is dedicated to the tests and Section 5 to conclusion and
perspectives.

2 Main Features of the Photometric Stereo Technique

2.1 Shape-from-shading

We start by giving a brief outline of the SFS problem and introducing the basic
assumptions. We attach to the camera a 3D Cartesian coordinate system xyz,
such that xy coincides with the image plane and z with the optical axis. Under
the assumption of orthographic projection, the visible part of the surface is a
graph z = u(x, y). For a Lambertian surface of uniform albedo equal to 1, lighted
by a unique light source located at infinity in a direction indicated by the unitary
vector ω = (ω1, ω2, ω3) = (ω̃, ω3) ∈ R3, the SFS problem can be modeled by the
following “image irradiance equation” [5]:

n(x, y) · ω = I(x, y) ∀(x, y) ∈ Ω (1)

where I(x, y) is the greylevel at the image point (x, y) and n(x, y) is the unitary
outgoing normal to the surface at the scene point (x, y, u(x, y)). The greylevel I,
which is the datum in the model, is assumed to take real values in the interval
[0, 1]. The height u, which is the unknown, has to be reconstructed on a compact
domain Ω = Ω ∪ ∂Ω ⊂ R2 called the “reconstruction domain”. It does not
explicitely appear in Eq. (1), but implicitely through the normal n(x, y), since
this vector can be written:

n(x, y) =
1√

1 + |∇u(x, y)|2
[−∇u(x, y), 1]> (2)

Combining Eqs. (1) and (2), we arrive to the following differential formulation of
the SFS problem:

−∇u(x, y) · ω̃ + ω3√
1 + |∇u(x, y)|2

= I(x, y) ∀(x, y) ∈ Ω (3)
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which is a first order non-linear PDE of the Hamilton-Jacobi type. Eq. (3) with the
add of a Dirichlet boundary condition u(x, y) = g(x, y) ∀(x, y) ∈ ∂Ω, do not admit
a unique solution if the brightness function I reaches its maximum i.e., if there
are points (x, y) ∈ Ω such that I(x, y) = 1. In this case, we cannot distinguish
whether a surface is concave or convex (“concave/convexity ambiguity”, see [5]).

With the purpose to prove the existence of a unique solution, we increase the
information about the surface considering the photometric stereo technique.

2.2 Photometric Stereo: Differential Approach

The first approach to PS is based on the differential formulation (3) of the SFS
problem, that is, using two images we have:

−∇u(x, y) · ω̃ + ω3√
1 + |∇u(x, y)|2

= I(x, y) a.e. (x, y) ∈ Ω

−∇u(x, y) · ω̃′ + ω′3√
1 + |∇u(x, y)|2

= I ′(x, y) a.e. (x, y) ∈ Ω

u(x, y) = g(x, y) ∀(x, y) ∈ ∂Ω

(4)

It is a PDEs non-linear system with the add of a Dirichlet boundary condition
that admits a unique solution in the space of Lipschitzian functions. This means
that, even if a surface is differentiable for almost every (x, y) ∈ Ω it is possible
to approximate it using a convergent numerical scheme [6]. The only drawback
of this formulation concerns the boundary condition knowledge. In fact, beyond
the image data (I, I ′) and the light vectors (ω, ω′), g(x, y) (taken in the space of
the Lipschitz functions W 1,∞(∂Ω)) represents an additional information that we
must know to make this approach work.

Let us explain how the differential approach works. To arrive to the final PDE
formulation, we simplify the system (4) eliminating its non-linearity, supposing
that 1 ≥ I(x, y) > 0 everywhere. That is, we consider for example the following
equality from the first equation:

√
1 + |∇u(x, y)|2 =

−∇u(x, y) · ω̃ + ω3

I(x, y)
(5)

and replacing (5) into the other equation we obtain a linear equation, ∀(x, y) ∈ Ω:

[I ′(x, y)ω1 − I(x, y)ω′1]
∂u

∂x
+ [I ′(x, y)ω2 − I(x, y)ω′2]

∂u

∂y
= I ′(x, y)ω3 − I(x, y)ω′3

(6)
Considering also the same boundary condition as that of (4), it is possible to
arrive to the following linear problem:{

b(x, y) · ∇u(x, y) = f(x, y) a.e. (x, y) ∈ Ω
u(x, y) = g(x, y) ∀(x, y) ∈ ∂Ω

(7)
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where {
b(x, y) = [I ′(x, y)ω1 − I(x, y)ω′1, I

′(x, y)ω2 − I(x, y)ω′2]>

f(x, y) = I ′(x, y)ω3 − I(x, y)ω′3
(8)

With these elements it is possible to enunciate the following result [6]:

Theorem 1 Let b(x, y) and f(x, y) be both bounded functions defined by (8),
where I and I ′ are two greylevel functions such that 1 ≥ I, I ′ > 0, with a jump
discontinuity on the piecewise regular curve γ(s) and g(x, y) ∈ W 1,∞(∂Ω). If
γ(s) is not a characteristic curve of the problem (7) then it admits a unique
Lipschitzian solution u(x, y).

2.3 Photometric Stereo: Non-differential Approach

The other approach is based on the local estimation of the outgoing unitary
normal to the surface. With the same data as before, Eq. (1) gives the following
non-linear system in the coordinates of the normal, in each point (x, y) ∈ Ω:

n1(x, y)2 + n2(x, y)2 + n3(x, y)2 = 1
ω1n1(x, y) + ω2n2(x, y) + ω3n3(x, y) = I(x, y)
ω′1n1(x, y) + ω′2n2(x, y) + ω′3n3(x, y) = I ′(x, y)

(9)

This approach goes on with the integration of the normal field using Eq. (2), all
over the domain Ω [7]. Its drawback is that the non-linear system (9) has not a
unique solution in general.

The purpose of our work is to find and, in particular, characterize the zones
of the images where the solution to (9) is unique. This permits us to understand,
before the integration of the gradient field, the number of possible surfaces
approximated by this approach. With the aim to combine both approaches, we
study in detail the problem (9) giving information about all possible solutions.
We advance that there are two local solutions at the most, but the problem is
that they can globally generate much more than two surfaces.

3 Photometric Stereo with 2 Images: Normal Uniqueness

3.1 General Study of the Problem

We now focus on the problem of normal estimation, emphasizing one more time
that it is based on a local study of the images. For each pixel we want to estimate
the unitary vector which represents the outgoing normal to the surface. We can
determine the set of visible normals as the superior part of a sphere centered at
the origin and with radius one, that is the Northern hemisphere of the so-called
Gaussian sphere S (see Fig. 1). Referring to the 3D Cartesian coordinate system
xyz, these vectors n = [n1, n2, n3]> are those such that n3 > 0. We now consider
the two light vectors ω and ω′ and the sets of lighted normals, that is those such
that ω · n > 0 and ω′ · n > 0. On S, these sets are limited by the two planes
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π and π′ passing through the origin and orthogonal to ω and ω′. Now, we can
determine the set of possible normals for each twice-lighted point (x, y), which
can be summed up in the following non-linear system:

n1(x, y)2 + n2(x, y)2 + n3(x, y)2 = 1
ω1n1(x, y) + ω2n2(x, y) + ω3n3(x, y) ≥ 0
ω′1n1(x, y) + ω′2n2(x, y) + ω′3n3(x, y) ≥ 0

n3(x, y) ≥ 0

(10)

On the other hand, in each twice-lighted point (x, y), the linear system (9)
usually admits two solutions. An important study is carried out on the straight
line ∆ = π′ ∩ π′′, which is supported by the vector r = ω × ω′. This allows us to
establish a direct connection between the solutions of (9). For each twice-lighted
point (x, y) such that (9) admits two solutions n̂ and ˆ̂n, the locations of these
normals on S define a straight line which is parallel to ∆ since, according to the
Lambertian model, n̂ and ˆ̂n form the same angles with ω and ω′ (see Fig. 1).

3.2 Normal Uniqueness Obtained by Visibility or by Coincidence

The first case in which normal uniqueness using two images we can be proved is
explainable geometrically, considering the set obtained changing the sign of the
last inequality of the system (10) (which represents the condition of visibility)
and then projecting it, according to the direction r, on the other side of the
sphere. Therefore, in order to determine these points in the images, the first step
is to determine the set ΩG ⊂ Ω of points (x, y) such that there exists a solution
n̂ to the following system:

n1(x, y)2 + n2(x, y)2 + n3(x, y)2 = 1
ω1n1(x, y) + ω2n2(x, y) + ω3n3(x, y) ≥ 0
ω′1n1(x, y) + ω′2n2(x, y) + ω′3n3(x, y) ≥ 0

n3(x, y) < 0

(11)

Clearly, these normals n̂ cannot be considered as possible candidates for the
normal field of the surface taken into consideration, because they are located on
the non-visible part of S (see the yellow part SY of S in Fig. 1). The normals
which could be candidate for the normal field are those in the set in biunique
correspondence with SY with respect to the direction r (see the green part SG

of S in Fig. 1). Note that, if ω or ω′ is vertical i.e., equal to [0, 0, 1]>, then r is
horizontal and, therefore, the set ΩG is empty.

The second way of obtaining normal uniqueness corresponds to the limit case
where the two solutions n̂ and ˆ̂n of (9) coincide. The set ΩR ⊂ Ω thus contains
the points (x, y) where the normal is orthogonal to the direction r (see the red
line SR on S in Fig. 2), which is a geodesic line on S between two extreme points
P̂ and P̂ ′.

Looking at Figs. 1 and 2, it is obvious that SR ∩ SG = ∅ as soon as ω3 > 0
and ω′3 > 0, which implies that ΩG ∩ΩR = ∅ as well.
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SY

π

E

S
π′

ω′

n̂

∆

ˆ̂n
ω

z

SG

Fig. 1. The planes π and π′ are orthogonal, respectively, to the light vectors
ω and ω′. The intersection between π and π′ is denoted as ∆. Each normal ˆ̂n
pointing to the green area SG is known without ambiguity, since the second
possible normal n̂ points to the yellow area SY , which is a twice lighted but
non-visible part of S (because it lies under the equator E).

n̂ ≡ ˆ̂n

π

E

S
π′

ω′

∆

ω

z

P̂ ′

SR

P̂

Fig. 2. The geodesic SR in red is a part of the intersection between S and the
plane supported by ω and ω′, limited by P̂ and P̂ ′. Each normal pointing to SR

is known without ambiguity, since both normals n̂ and ˆ̂n coincide in this case.
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3.3 Finding the Sets ΩG and ΩR

Here we describe how to find the sets ΩG and ΩR in the reconstruction domain
Ω. For each normal ñ = [ñ1, ñ2, ñ3]> ∈ SG ∪ SR, we have to calculate the
correspondent couple of greylevels (Ĩ , Ĩ ′) using (1), i.e.:{

Ĩ = ω1ñ1 + ω2ñ2 + ω3ñ3

Ĩ ′ = ω′1ñ1 + ω′2ñ2 + ω′3ñ3

(12)

and check if, for each pixel (i, j) ∈ Ω, the greylevels (Ii,j , I ′i,j) are such that:{
|Ii,j − Ĩ| < ε

|I ′i,j − Ĩ ′| < ε
(13)

for a small fixed value of ε (ε = 0.001 is used in the tests).

Definition 2 Given a pair of images, we call Ωp
G and Ωp

R the sets of pixels of
Ω which belong to ΩG and ΩR and are determined using the criterion (13).

As we will see in the numerical tests, the sets Ωp
G and Ωp

R, depending on
the shape of the surface, can be made of several disjoint parts, that is Ωp

G =
Ωp

G(1) ∪ . . . ∪Ωp
G(nG) and Ωp

R = Ωp
R(1) ∪ . . . ∪Ωp

R(nR).

3.4 Predictability of the Number of Global Solutions

Let us suppose that the system (9) always admits two solutions n̂ and ˆ̂n. In fact, (9)
could have no solution in some points where the greylevels do not perfectly match
the Lambertian model. Nevertheless, we know under this assumption that there
exist either one or two possible normals in each twice-lighted point (x, y) ∈ Ω.
If moreover the surface to be reconstructed is supposed to be differentiable
everywhere, then the number of global normal fields is predictable. For example,
if Ωp

R is empty while Ωp
G is not empty, then the normal field is unique, since all

the normals point toward the twice-lighted part SU of S which lies between SG

and SR (see Figs. 1 and 2). More generally, this analysis of the problem allows
us to predict the number of global solutions.

Another interesting advantage one can take from the study of the sets Ωp
G and

Ωp
R is related to the PDE approach (7). For example, let us suppose that no pixel

lying on the boundary ∂Ω belongs to Ωp
R. This means that there are two different

normal fields along the boundary i.e., two different values for ∇u according to
(2), and finally two boundary conditions u(x, y) = g(x, y) considering:

g(β(t)) = g1(β(0)) +
∫ t

0

∇u(β(s))β′(s)ds (14)

where β(t) is a parametrization of ∂Ω. Then, according to Theorem 1, we can
approximate the height of the surface with two values in this case (supposing
one more time that the surface is differentiable on the boundary ∂Ω).
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4 Numerical Tests

Here we present some numerical tests on the synthetic surfaces shown in Fig. 3:
the surface on the left is differentiable everywhere, whereas that on the right is
only Lipschitzian (differentiable almost everywhere).

Fig. 3. Surfaces SRegular (left) and SLipschitz (right) used in the numerical tests.

4.1 Let’s Count the Solutions!

A first example uses the pair of images of SRegular shown in Fig. 4, over which
the two sets Ωp

G and Ωp
R are superimposed. Below each image, the spherical

coordinates (ϕ, θ) of the light vector, such that ω = (sinϕ cos θ, sinϕ sin θ, cosϕ),
are given.

In order to understand how to count the solutions, let us introduce the sets
SU and SD, which are the subsets of the Gaussian sphere lying, respectively,
upon and below the geodesic SR.

ΣI
R(1)

ΣI
G

ΣI
R(1)

ΣI
R(2)

Ωp
G

Ωp
R(1)

Ωp
R(2)

ΣI
R(1)

ΣI
G

ΣI
R(1)

ΣI
R(2)

Ωp
G

Ωp
R(1)

Ωp
R(2)

(ϕ, θ) = (0.15, π) (ϕ′, θ′) = (0.15, π/2)

Fig. 4. Pair of synthetic images of the surface SRegular (400×400 pixels) used to
count the solutions. Note that all the pixels are twice-lighted.

Now, taking into account that these sets can be mapped to the reconstruction
domain Ω (namely Ωp

U = Ωp
U (1)∪ . . .∪Ωp

U (nU ) and Ωp
D = Σp

D(1)∪ . . .∪Ωp
D(nD)),

we show in Fig. 5 the four solutions deduced from the sets previously described.
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ΣI
R(1)

Ωp
G

Ωp
G

Ωp
R(1)

Ωp
R(1)

Ωp
R(2)

Ωp
R(1)

Ωp
R(2)

Ωp
R(1)

Ωp
D(1)

Ωp
D(2)

Ωp
U

Ωp
U (1)

Ωp
U (2)

Ωp
D

Ωp
U (2)

ΣI
R(1)

Ωp
G

Ωp
G

Ωp
R(1)

Ωp
R(1)

Ωp
R(2)

Ωp
R(1)

Ωp
R(2)

Ωp
R(1)

Ωp
D(1)

Ωp
D(2)

Ωp
U

Ωp
U (1)

Ωp
U (2)

Ωp
D

Ωp
U (2)

Ωp
G Ωp

G

Ωp
R(1)

Ωp
R(2)

Ωp
R(1)

Ωp
R(2)

Ωp
D

Ωp
U (1)

Ωp
U (2)

Ωp
U (1)

Ωp
U (2)

Ωp
U (3)

Ωp
G Ωp

G

Ωp
R(1)

Ωp
R(2)

Ωp
R(1)

Ωp
R(2)

Ωp
D

Ωp
U (1)

Ωp
U (2)

Ωp
U (1)

Ωp
U (2)

Ωp
U (3)

Fig. 5. All possible combinations that allow us to predict the number of solutions.

4.2 Combining the Differential and Non-differential Approaches

(ϕ, θ) = (0.15, π + 0.2) (ϕ′, θ′) = (0.1, π)

Fig. 6. Pair of synthetic images of the surface SLipschitz (400×400 pixels) used
for the approximation of the boundary condition. In blue is emphasized the set
of points where the surface is not differentiable.

A second example uses the pair of images of SLipschitz shown in Fig. 6, over
which the set of points where the surface is not differentiable is superimposed in
blue. A problem that we want to avoid is the presence of pixels of Ωp

R on the
boundary ∂Ω, since this would give rise to an ambiguity. In fact, in each pixel of
Ωp

R, the normal can cross the geodesic SR, passing from SD to SU (or vice versa)
or remain on the same side of SR. With this aim we choose the light vectors ω
and ω′ very close to each other, in order to reduce the sizes of SG and SR, and
therefore to reduce those of Ωp

G and Ωp
R. As in the first test, if some pixels of

∂Ω belong to Ωp
R, then we are able to count the different boundary conditions.

In our example, we find that Ωp
G = ∅ and Ωp

R = ∅. This means that there are
only two possible boundary conditions, but only one is admissible for a correct
approximation of the surface. The remaining question is thus: is it possible to
find the correct boundary condition?

Once the two possible normal fields are computed along ∂Ω, we can integrate
them using a very simple method which consists in fixing the height in some
reference pixel and then computing the height along ∂Ω as Strat did (see [8]). It
is well-known that the integration of an irrotational field along a closed contour
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is equal to zero [7]. Therefore, it is possible to decide which boundary condition is
the right one, just comparing both integrals. In our example, we find an L∞(∂Ω)
norm error on ∂Ω between the real and the predicted boundary conditions equal
to 5.38× 10−3 for SRegular and to 3.325× 10−2 for SLipschitz. Unfortunately, due
to the lack of space, we cannot show here the whole 3D-reconstructions obtained
using the PDE approach (7).

5 Conclusion and Perspectives

In this paper, we addressed photometric stereo using two images only. This
particular situation is rarely studied because using more than three images
usually suffices to render the problem well-posed. Nevertheless, there are at least
two reasons which can validate our work. First, the situation where all the light
vectors are coplanar is known to be ill-posed, and reduces to the case with two
lights only. Note that this is exactly the case of an outdoors scene lighted by the
Sun. Second, the “standard” PS technique supposes that the albedo of the scene
is unknown, in order to linearize the problem, but this is not always necessary
and can moreover give rise to inaccuracies in the reconstructions. From that
point of view, our work is an interesting insight in the non-linear PS problem.

Our main result is to show that the number of solutions of PS using two images
is predictable, thanks to particular points where the normal can be estimated
without ambiguity. More tests have to be performed in order to more clearly
show the accuracy of our approach, since this work was rather theoretical. In
addition, it must be questionned to which extent our results could be useful to
standard PS, since n images induce Cn

2 pairs of images!
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