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Perspective Shape from Shading: Ambiguity Analysis

and Numerical Approximations∗

Michael Breuß†, Emiliano Cristiani‡, Jean-Denis Durou§, Maurizio Falcone¶, and Oliver Vogel‖

Abstract. In this paper we study a perspective model for shape from shading and its numerical approximation.
We show that an ambiguity still persists, although the model with light attenuation factor has previ-
ously been shown to be well-posed under appropriate assumptions. Analytical results revealing the
ambiguity are complemented by various numerical tests. Moreover, we present convergence results
for two iterative approximation schemes. The first one is based on a finite difference discretization,
whereas the second one is based on a semi-Lagrangian discretization. The convergence results are
obtained in the general framework of viscosity solutions of the underlying partial differential equa-
tion. In addition to these theoretical and numerical results, we propose an algorithm to reconstruct
discontinuous surfaces, making it possible to obtain results of reasonable quality even for complex
scenes. To this end, we solve the constituting equation on a previously-segmented input image,
using state constraints boundary conditions at the segment borders.

Key words. Shape from shading, ambiguity analysis, Hamilton-Jacobi equations, finite difference methods,
semi-Lagrangian schemes.
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1. Introduction. The shape-from-shading (SFS) problem amounts to the reconstruction
of the 3-D structure of objects given a single 2-D grey value image of them. For this task, the
SFS process relies on information on the illumination and the light reflectance in the scene.
It has been introduced by Horn [20], and it is a classic inverse problem in computer vision
with many potential applications, see e.g. [16, 21, 22, 38] and the references therein for an
overview.

In this paper we deal with a perspective SFS model as proposed in [25, 31, 34], taking
into account the so-called light attenuation factor, cf. [31]. This SFS model has gained some
attention in the recent literature. It combines desirable theoretical properties with a reasonable
quality of results compared to other approaches in SFS. One of its good theoretical properties
is the well-posedness, given under some assumptions. However, the question arises whether all
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the ambiguities (including the notorious concave/convex ambiguity [20]) have entirely been
vanquished by using the perspective SFS model. For the case that the answer is negative, it
would be of interest whether there is a way to avoid ambiguities. Concerning the numerical
realization of the model, a number of iterative solvers has been proposed and compared [6].
However, the mathematical validation of some of them is still lacking.

In this paper we address these open issues. By a thorough investigation, we show that
ambiguities still arise and appear in practical computations. We propose a way to overcome
those ambiguities whenever they are only caused by the discontinuity of the surface to be
reconstructed. We do that by making use of a segmentation step combined with suitable
boundary conditions at the segment borders. In this way, also shapes in relatively complex
scenes can be reconstructed. Moreover, we prove that the two fastest and easy-to-implement
iterative solvers selected in the comparative paper [6] converge to the viscosity solution of the
considered equation.

Models and ambiguities. Perspective SFS models are distinguished by the assumption that
the camera performs a perspective projection of the 3-D world to the given 2-D image. Re-
cently, a number of perspective SFS models have been considered [11, 29, 34], with promising
applications to face reconstruction [29], reconstruction of organs [34, 35], and digitization of
documents [11, 12].

Within the class of perspective SFS models, the one of Okatani and Deguchi [25] is dis-
tinguished by the lighting model. This consists of a point light source located at the optical
center combined with a light attenuation term. Okatani and Deguchi proposed a method to
resolve their model which is an extension of the level set method designed by Kimmel et al.
[23] for solving the classic SFS problem. They claimed that their method could be derived
from a PDE of the form H(x, y, r, rx, ry) = 0, where r is the distance to the point light source,
but did not explicitly state it. Prados and Faugeras stated in [32] the first PDE derived from
this model that we call here the PSFS model (’P’ for ’perspective’). A number of papers by
Prados and his coauthors have dealt with its theoretical basis, cf. [27, 28, 30, 31]. Especially,
the PSFS model has been shown to be well-posed under mild assumptions.

The well-posedness of SFS models has been a point of continuous interest in computer
vision research. This already begins with Horn [20] who mentions the concave/convex am-
biguity in his classic orthographic SFS model; see [22] for extensive discussion. Two main
features for proofs of existence and uniqueness of the solution are the singular points (which
are the points where the surface faces the light) and the limbs (where the light rays graze the
surface, sometimes also referred to as horizons, motivated by the optimal control formulation
of the problem) [4, 7, 8, 17, 26], since the surface normal in such points can be computed
without ambiguity.

It turns out that the classic concave/convex ambiguity is not the only source of non-
uniqueness. Starting from a paper by Rouy and Tourin [33], a modern tool to understand the
hyperbolic partial differential equations (PDEs) that arise in SFS is the notion of viscosity
solutions. For the classic SFS model investigated in [33], one can see that there are still several
weak solutions in the viscosity sense whenever there exist points at maximum brightness (i.e.
I = 1) in the image. These points are called singular points. This lack of uniqueness is a
fundamental property of the underlying class of PDEs. In order to achieve uniqueness in
this setting, one may add information such as the height at each singular point [24], one may
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characterize the so-called maximal solution [10, 19], or one may employ a combination of these
approaches [27, 28]. However, we note that the framework of viscosity solutions for these type
of equations is very natural and is mainly motivated by stability properties, which guarantee
that viscosity solutions can be obtained in the limit adding a regularization term to the first
order equation (typically, a second order term) and letting this term go to 0. We refer the
interested reader to the classical book by Barles [1] for the properties of viscosity solutions
and to [9] for their use in image processing problems. Let us also mention that a discussion on
instabilities arising in the solution of the Eikonal equation for the SFS problem is presented
in [3].

Numerical methods for PSFS. A number of recent papers have considered the numerical
implementation of the PSFS model. The original scheme of Prados et al., see especially
[31], relies on the optimal control formulation of the PSFS model. It solves the underly-
ing Hamilton-Jacobi-Bellman equation using a top-down dynamic programming approach.
However, the method is difficult to implement as it relies on the analytical solution of an
incorporated optimization problem involving many distinct cases. In [14] a semi-Lagrangian
method (CFS) has been proposed. This method also relies on the Hamilton-Jacobi-Bellman
equation but it is easier to code. An alternative approach has been explored in [37] where the
Hamilton-Jacobi equation corresponding to the PSFS model has been discretized with finite
differences (VBW). All the mentioned schemes as well as their algorithmic extensions have
been studied experimentally in [6]. According to the results presented there, the latter two
schemes, i.e. CFS and VBW, have been identified as the most efficient methods with respect
to run times and implementation effort.

Our contribution. The novelties of this paper can be summarized as follows:

(i) We explain in detail why the PSFS model cannot be considered completely well-posed
as concluded in [31, 32]. To this end, we show analytically that ambiguities still exist, and we
present numerical computations proving the practical importance of these ambiguities.

(ii) We prove convergence to the viscosity solution of both the CFS [14] and the VBW [37]
schemes. For validating the convergence of the latter, we show how to make use of previous
work of Barles and Souganidis [2]. Concerning the proof of convergence for the CFS scheme,
we do not rely on that classic approach. Our proof relies on the idea that the CFS iterates are
monotone decreasing (in the sense of pointwise comparison) as well as bounded from below,
implying convergence. A similar strategy has been used in [5] in the context of hyperbolic
conservation laws.

(iii) Relying on the results from (i) and (ii), we explore an algorithmic way to compute
reasonable solutions if the surface to be reconstructed is discontinuous. This is done via a
pre-segmentation of the input image which allows to detect and isolate continuous parts of
the PSFS solution. Segment borders are precisely the points where the considered numerical
schemes strive for a viscous approximation of a continuous solution and where ambiguities
may arise. In these points, state constraints boundary conditions are employed. We show
experimentally that our set-up gives reasonable results using synthetic and real-world data.

Paper organization. The paper is organized as follows. In Section 2, we briefly review the
model and the related equations. The ambiguity problem is discussed in detail in Section
3. The numerical methods and their convergence are considered in Section 4. In Section
5 we deal with discontinuous surfaces, describing an algorithm which couples segmentation
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technique and PSFS equation. The paper is finished by a conclusion. Some technical issues
are described in two appendices.

2. The PSFS model and related equations. In this section, we recall, for the reader’s
convenience, the model for PSFS with point light source located at the optical center and
light attenuation term. We also recall the first related PDE associated to the model, derived
in [32].

2.1. The PSFS model with light attenuation. Let (x, y) be a point in the image domain
Ω, where Ω is an open bounded subset of R2. Furthermore, let

• I = I(x, y) > 0 be the normalised brightness function. We have I = E(x,y)
σ , where E

is the greylevel of the given image and σ is the product of the surface albedo (which
tells us to which extent the surface reflects light) and the light source intensity;

• f be the focal length, i.e. the distance between the optical center C of the camera and
the two-dimensional plane to which the scene of interest is mapped (see Figure 2.1).

Let M be a generic point on the surface Σ to be reconstructed. We choose as unknown of
the problem the function u : Ω → R such that

M = M(x, y) = u(x, y)m′ , (2.1)

where

m′ =
f√

x2 + y2 + f2
m and m = (x, y,−f)⊤. (2.2)

Another definition of the unknown u is given by the relation M(x, y) = u(x, y)m, which differs
from (2.1) and leads to a slightly different PDE, as shown in [32].
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Figure 2.1. Notations for the PSFS model with point light source at the optical center.

Note that, according to these notations, u > 0 holds as the depicted scene is in front of
the camera. We denote by r(x, y) the distance between the point light source and the point
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M(x, y) on the surface. It holds u(x, y) = r(x, y)/f, since the light source location coincides
with the optical center.

The model associated to the PSFS problem is obtained by the image irradiance equation:

R(n̂(x, y)) = I(x, y), (2.3)

making explicit the unit normal n̂ to the surface and the reflectance function R which gives
the value of the light reflection on the surface as a function of its normal.

We denote by ω(x, y) the unit vector representing the light source direction at the point
M(x, y) (note that in the classic SFS model this vector is constant):

ω(x, y) =
(−x,−y, f)⊤√
x2 + y2 + f2

. (2.4)

Adding the assumptions of a light attenuation term and of a Lambertian surface, the function
R is defined as

R(n̂(x, y)) =
ω(x, y) · n̂(x, y)

r(x, y)2
, (2.5)

with an attenuation factor which is equal to the inverse of the squared distance from the
source. Expression (2.5) would still hold for any location of the point light source, but the
same would not be true for the equality u(x, y) = r(x, y)/f nor for (2.4). The case of a light
source coinciding with the optical center corresponds more or less to endoscopic images [25]
and to photographs taken at short distance with the camera flash [32]. Another considerable
advantage of the PSFS model using a point light source at the optical center is that there is
no shadow in the image.

Finally, by (2.3) and (2.5) we obtain the PSFS equation

ω(x, y) · n̂(x, y)
r(x, y)2

= I(x, y). (2.6)

2.2. The corresponding Hamilton-Jacobi equation. In order to write down the corre-
sponding PDE, it is useful to introduce the new unknown v = ln(u) (we recall that u > 0).
Equation (2.6) can be written as a static Hamilton-Jacobi equation (see [31, 32], and Appendix
A for details),

H(x, y, v,∇v) :=
I(x, y)

Q(x, y)
f2 W (x, y,∇v)− e−2v(x,y) = 0 , (x, y) ∈ Ω (2.7)

where

Q(x, y) :=
f√

x2 + y2 + f2
(2.8)

(which is equal to |cos θ|, cf. Figure 2.1) and

W (x, y,∇v) :=
√

f2‖∇v‖2 + (∇v · (x, y))2 +Q(x, y)2, (2.9)

(‖ · ‖ denotes the Euclidean norm). Note that W (x, y,∇v) is convex with respect to ∇v ∈ R
2,

and then the same property holds for the Hamiltonian H.
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The existence and uniqueness of the viscosity solution of (2.7) is proven in [32]. In the
same paper some possible choices for the boundary conditions are discussed.

Equation (2.7) also admits a “control formulation” which can be helpful. In [32] it is
shown that v is the solution of the following Hamilton-Jacobi-Bellman-like equation

−e−2v(x,y) + sup
a∈B(0,1)

{−b(x, y, a) · ∇v(x, y)− ℓ(x, y, a)} = 0 (2.10)

where B(0, 1) denotes the closed unit ball in R
2 and the other terms in (2.10) are defined as

follows:

ℓ(x, y, a) := −I(x, y) f2
√

1− ‖a‖2 , b(x, y, a) := −JGTDGa , (2.11)

with

J(x, y) :=
I(x, y)

Q(x, y)
f2 = I(x, y)f

√
f2 + x2 + y2 , (2.12)

G(x, y) :=





1√
x2+y2

(
y −x
x y

)
if (x, y) 6= (0, 0)

(
1 0
0 1

)
if (x, y) = (0, 0)

, (2.13)

D(x, y) :=

(
f 0

0
√

f2 + x2 + y2

)
. (2.14)

3. Ambiguities. In this section we show that the model presented above suffers from an
ambiguity which shares some features with the classic concave/convex ambiguity. We also
show in detail in which case it is numerically possible to reconstruct the expected surface and
in which case a different surface is computed.

3.1. The ambiguity in the model. In order to prove the existence of two different surfaces
associated to the same brightness function I, it is convenient to reformulate the problem in
standard spherical coordinates (r, θ, φ): the parameters of an image point m(θ, φ) are now
the angles θ and φ, which are respectively the colatitude and the longitude of the conjugated
object point M(θ, φ), with respect to the camera coordinate system (Cxyz). Let us notice
that only the object points M(θ, φ) such that θ ∈ ]π/2, π] are visible (see Figure 2.1), whereas
φ ∈ [0, 2π[. Given a brightness function I(θ, φ), we are looking for a surface Σ in the form
r = r(θ, φ) such that

ω(θ, φ) · n̂(θ, φ)
r(θ, φ)2

= I(θ, φ). (3.1)

A generic point M has coordinates

M(θ, φ) =




r(θ, φ) sin θ cosφ
r(θ, φ) sin θ sinφ

r(θ, φ) cos θ




(Cxyz)

(3.2)
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with respect to the coordinate system (Cxyz). We now introduce the local orthonormal basis
S = (ur, uθ, uφ) of R

3 defined by

ur :=
M(θ, φ)

r(θ, φ)
, uθ :=

∂θur
‖∂θur‖

and uφ :=
∂φur

‖∂φur‖
, (3.3)

which depends on the point M (see Figure 2.1). The expression of n̂ in this new basis is (see
Appendix B for details)

n̂(θ, φ) =
1

((r2 + rθ2) sin
2 θ + rφ2)1/2




−r sin θ
rθ sin θ
rφ




S

, (3.4)

where the dependence of r, rθ and rφ on (θ, φ) are omitted. Using (3.4) and considering that
ω coincides with −ur (since the point light source is located at the optical center), (3.1) can
be rewritten as

r2
(
r2 + rθ

2 +
rφ

2

sin2 θ

)
=

1

I2
. (3.5)

We now return to our purpose. We choose as reference surface Σ the hemisphere r(θ, φ) ≡ 1,
where (θ, φ) ∈]π/2, π]× [0, 2π[, which is associated to the brightness function IΣ(θ, φ) ≡ 1 (see
Figure 3.1).

1

Σ

−1

z

C x

Figure 3.1. Hemisphere Σ: do other surfaces give the same brightness function IΣ ≡ 1?

Then, we look for other surfaces which are not isometric to Σ but give the same brightness
function. For the sake of simplicity, let us limit our search to the surfaces which are circularly-
symmetric around the optical axis Cz i.e., to the functions r of the form r(θ, φ) = r(θ).
Equation (3.5) is thus simplified to the following ordinary differential equation

r2(r2 + rθ
2) =

1

IΣ
2 = 1, (3.6)

which can be rewritten as
r dr√
1− r4

= ±dθ (3.7)
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Σ3π/4+

C

z

π/2

θ0 = 3π/4+

x

Σ7π/8

xC

z

θ0 = 7π/8

(a) ρ3π/4+ = +∞ (b) ρ7π/8 = f tan(3π/8)

C

z

x

θ0 = π

Σπ

C x

θ0 = 9π/8

z

Σ9π/8

(c) ρπ = f (d) ρ9π/8 = f tan(π/8)

Figure 3.2. The four surfaces Σ3π/4+ , Σ7π/8, Σπ and Σ9π/8 drawn in red, which are circularly-symmetric

around the optical axis Cz, have the same image with uniform greylevel I ≡ 1 as the hemisphere Σ shown in
Figure 3.1, according to the PSFS model: they belong to the continuous family {Σθ0}θ0∈ ]3π/4,5π/4[.

since (3.6) imposes r ≤ 1. Integrating (3.7), we obtain the following solutions depending on a
parameter θ0, which is a constant of integration

rθ0(θ) =
√

cos(2(θ − θ0)). (3.8)

Surfaces Σ. Let us denote as Σθ0 the surface of equation r = rθ0(θ). Note that (3.8)
imposes that θ ∈ ]θ0 − π/4, θ0 + π/4[ (bounds excluded because r > 0). Since θ ∈ ]π/2, π] by
definition, each surface Σθ0 has the same brightness I ≡ 1 as Σ in a part Dθ0 of the image
plane, i.e. in its domain of definition, which is circularly-symmetric around the optical axis
Cz, and contains the points such that θ ∈ Iθ0 = ]θ0−π/4, θ0+π/4[∩ ]π/2, π]. If we impose Dθ0

to be non-empty and to contain θ = π, i.e. the origin O in the image plane, this implies that
the parameter θ0 in (3.8) is in the interval ]3π/4, 5π/4[. Then, we see that Iθ0 = ]θ0 − π/4, π]
and that Dθ0 is a disc of center O and of radius ρθ0 = f tan(5π/4 − θ0).

Since all the surfaces Σθ0 , for θ0 ∈ ]3π/4, 5π/4[, are circularly-symmetric around the optical
axis Cz, we can simplify the three-dimensional setting of spherical coordinates to two dimen-
sions, omitting the angle describing the location of points with respect to the y-axis. Doing so,
we have represented the four surfaces Σθ0 which correspond to θ0 = 3π/4+, θ0 = 7π/8, θ0 = π
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Σ′
3π/4+

C

z

θ0 = 3π/4+

x

z

C x

θ0 = 7π/8

Σ′
7π/8

(a) ρ′3π/4+ = ρ3π/4+ = +∞ (b) ρ′7π/8 = ρ7π/8 = f tan(3π/8)

Σ′′
3π/4+

C

z

θ0 = 3π/4+

x

Σ′′
7π/8

z

C x

θ0 = 7π/8

(c) ρ′′3π/4+ = +∞ (d) ρ′′7π/8 = +∞

Figure 3.3. The four surfaces drawn in red have the same image as Σ, according to the PSFS model: (a,c)
the surfaces Σ′

3π/4+ and Σ′′
3π/4+ are constructed by joining Σ3π/4+ (cf. Figure 3.2-a) to Σ in two different

ways; (b,d) the surfaces Σ′
7π/8 and Σ′′

7π/8 are constructed by joining Σ7π/8 (cf. Figure 3.2-b) to Σ.

and θ0 = 9π/8 (cf. Figures 3.2). Note that among those surfaces, only Σπ is differentiable
everywhere (see Figure 3.2-c). We thus have found two differentiable surfaces Σ and Σπ which
give exactly the same image in the disc Dπ = (O, f) under the PSFS model with point light
source at the optical center and light attenuation term.

It is important to stress that all other surfaces Σθ0 , for θ0 ∈ ]3π/4, π[∪ ]π, 5π/4[, have a
unique singularity at their intersection with the optical axis (see Figures 3.2-a,b,d).

Surfaces Σ′ and Σ′′. Each surface Σθ0 , for θ0 ∈ ]3π/4, π[, is tangent to the reference surface
Σ in θ = θ0. Therefore, other differentiable solutions, which are not of class C2 but of class
C1, can be constructed by joining the differentiable part of Σθ0 , for θ0 ∈ ]3π/4, π[, to Σ. Two
examples of such surfaces, which are denoted by Σ′

θ0
, are shown in Figures 3.3-a,b. Of course,

the non-differentiable part of Σθ0 , for θ0 ∈ ]3π/4, π[, can also be joined to Σ. These last
solutions are denoted by Σ′′

θ0
(see Figures 3.3-c,d). The domains of definition of Σ′

θ0
and Σ′′

θ0
are bounded by discs of center O and of radii ρ′θ0 = ρθ0 = f tan(5π/4 − θ0) and ρ′′θ0 = +∞,
respectively.

To conclude, we have found four families of continuous surfaces which give the same image
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as Σ, namely: {Σθ0}θ0∈ ]3π/4,π[, {Σθ0}θ0∈ ]π,5π/4[, {Σ′
θ0
}θ0∈ ]3π/4,π[, and {Σ′′

θ0
}θ0∈ ]3π/4,π[. In the

next subsection, we will see that Σ, which constitutes a common super-solution of all these
solutions, is the initial surface used in the algorithm of Prados et al. [32]. Let us also note
that the surfaces {Σ′

θ0
}θ0∈ ]3π/4,π[ are differentiable everywhere, and that Σ′

3π/4+ (see Figure

3.3-a) is of particular interest since it has the same domain of definition as Σ. Let us finally
note that there could exist further solutions which are not circularly-symmetric around the
optical axis.

The existence of many different surfaces having the same image is not in contradiction with
the uniqueness result proved in [31], since they correspond to different boundary conditions,
or to the same boundary conditions imposed in a different domain of definition. We will see in
the next subsection that all of these solutions can be computed by solving the PSFS equation
(2.7), imposing appropriate boundary conditions on the appropriate domain. However, the
counterexample exhibited in this subsection suffices to prove that the PSFS model is still
ambiguous, even if only the surfaces defined on the whole image plane are considered: apart
from Σ, Σ′

3π/4+ is differentiable everywhere, whereas all the surfaces Σ′′
θ0
, for θ0 ∈ ]3π/4, π[,

are other weak solutions of the same problem.

3.2. Viscosity and weak solutions. In this subsection we investigate when the ambiguity
arises solving the PSFS equation (2.7). The uniqueness of the viscosity solution of (2.7) was
proven in [32] (see also [30]). Nevertheless, the uniqueness of the viscosity solution does not
solve the problem of the model ambiguity, because we could be interested in the reconstruction
of a surface not described by the viscosity solution, rather by another weak solution. This
is a well-known issue in orthographic SFS with light beam parallel to the optical axis. Let
us consider the simple case of a one-dimensional greylevel image with constant brightness
function I(x) ≡

√
2/2, and let us solve the SFS problem by means of the Eikonal equation

|z′(x)| =
√

1

I2(x)
− 1 , x ∈ [−1, 1] (3.9)

imposing exact Dirichlet boundary conditions z = 0 at x = −1 and x = 1. Here z(x) denotes
the height of the surface. The unique viscosity solution is drawn in Figure 3.4-a, while a
possible weak solution is drawn in Figure 3.4-b. Our goal is to show that the PSFS equation
(2.7) has essentially the same features of the Eikonal equation (3.9), thus showing a similar
ambiguity. The starting point is the following proposition.

Proposition 3.1. The viscosity solution u = ev of the PSFS equation (2.7) is increasing
along characteristic curves.

Proof. Let us define

u(x, y) :=
(
I(x, y)f2

)− 1
2 , (3.10)

corresponding to

v(x, y) := ln(u(x, y)) = −1

2
ln

(
I(x, y)f2

)
. (3.11)

Let us prove that the inequality

u(x, y) ≥ u(x, y) ∀(x, y) ∈ Ω (3.12)
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Figure 3.4. (a) Viscosity solution and (b) a weak solution of the Eikonal equation (3.9).

(and similarly v ≥ v) holds. Equation (3.12) easily follows from (2.6) and from the definition
u = r/f, since u is the solution of the equation where ω · n̂ = 1 and it is larger than the
solution u where ω · n̂ < 1. In [32] it is also proven that v is a super-solution of (2.7). Note
that, in the example of Figure 3.2, the super-solution ū corresponds to the hemisphere shown
in Figure 3.1.

Let us consider a point (x, y) where v is differentiable (we recall that v is differentiable
everywhere in Ω except for a zero-measure subset) and assume that there exists a control
a∗ ∈ B(0, 1) in which the maximum in (2.10) is attained. Then (2.10) can be rewritten as

−e−2v(x,y) + (−b(x, y, a∗) · ∇v(x, y) − ℓ(x, y, a∗)) = 0.

We have

∂v(x, y)

∂(−b(x, y, a∗))
= −b(x, y, a∗) · ∇v(x, y) =

ℓ(x, y, a∗) + e−2v(x,y) = −I(x, y) f2
√

1− ‖a∗‖2 + e−2v(x,y) ≥
−I(x, y) f2

√
1− ‖a∗‖2 + e−2v(x,y) = I(x, y)f2(1−

√
1− ‖a∗‖2) ≥ 0 ,

and this proves our assertion.

As a consequence of the Proposition 3.1, every time the surface we want to reconstruct
is described by a function u which is not increasing along characteristics, it cannot be re-
constructed as the viscosity solution of the PSFS equation. This is exactly what happens in
orthographic SFS, see e.g. [15]. Information spreads from the boundaries to the center of
the domain, and the solution can only increase along the way. To overcome this problem
(in orthographic SFS as well as PSFS), we can impose the exact solution in every point of
local minimum for the solution. Doing this, the correct solution is computed, but we face the
new problem of how to recover these values. In this respect, the PSFS model is preferable to
the orthographic SFS model, since the light attenuation term 1/r2 allows to get rid of these
additional unknowns. Let us explain this point in detail.

According to (3.5), if the surface is differentiable, a local minimum point for u corresponds
to a point where I = 1/r2. The latter equation is easily solved for r, and then u is found [36].
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This means that the light attenuation term allows to compute the correct solution exactly
where we need to impose it. It turns out from (2.6) that these points are also those where
ω · n̂ = 1, which characterizes the so-called singular points of the orthographic SFS model [20].
Let us stress that the possibility to compute the correct solution at (differentiable) singular
points is a major feature of the PSFS model which distinguishes it from other models in the
field.

As we will see in Section 4, the numerical resolution of the PSFS equation needs to set
up an iterative procedure, and then an initial guess for u has to be given in order to start the
algorithm. Let us denote that initial guess by u(0). If we choose u(0) as

u(0) := u (3.13)

the algorithm starts from a function which is actually the correct solution of (2.6) at all points
where ω · n̂ = 1, and is larger than the correct solution elsewhere. Since the information
propagates from the smallest to the largest values, the values larger than the correct ones do
not influence the correct ones. Then the values at the local minimum points remain fixed,
becoming characteristic sources, while the other values decrease, converging in the limit to
the viscosity solution. Note that the initial guess (3.13) corresponds to the initial guess for v
suggested in [32], namely

v(0) := v. (3.14)

We conclude that, when the surface is differentiable and local minimum points are not
located at the boundary, we can actually solve the PSFS problem with no boundary data
and no ambiguity, since the right solution at the local minima can be achieved automatically
choosing a suitable initial guess for the iterative algorithm used to solve the equation.

Otherwise, the method described above can not be always applied. In particular, the
method fails whenever one of the following conditions holds true: 1) a point of non-differentia-
bility for the surface is a minimum point, 2) local minimum points coincide with the bound-
aries, and state constraints boundary conditions are used. In these cases, the initial guess
(3.13) is not able to impose the right values automatically and the reconstructed surface will
not be the expected one.

In order to explain and summarize the role of the initial guess, the minimum points
and the boundary conditions, it is useful to consider the four surfaces shown in Figure 3.5.
Characteristic curves are depicted below the surfaces (although they lie on Ω). The surface in
(a) is differentiable, and can be recovered without any additional information. The minimum
points for u are automatically detected (black dots on the surface) just by computing ū.
Characteristics start from these points and the solution increases along them. State constraints
boundary conditions are suitable since no information comes from the boundaries. The surface
in (b) is not differentiable, but the point of non-differentiability does not coincide with a
minimum point for u. Characteristics move away from the minimum points (automatically
determined by ū as before), and they meet each other in the point of non-differentiability.
As in (a), the surface in (b) can be recovered without any additional information. The
surface in (c) is differentiable, but it cannot be correctly reconstructed unless suitable Dirichlet
boundary conditions are given at the boundary of the domain. Indeed, characteristics start
from the automatically-detected minimum point, so that the solution u is correctly computed
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Figure 3.5. Four surfaces with different properties. Characteristic curves are depicted below the surfaces.
(a) Differentiable surface, correctly reconstructed imposing state constraints boundary conditions, starting from
the two singular points automatically detected (black dots). (b) Non-differentiable surface, correctly recon-
structed as before. (c) Differentiable surface with ambiguity if state constraints boundary condition are imposed.
The ambiguity is limited to the region where u should decrease starting from the source points (black dot). (d)
Non-differentiable surface with ambiguity. The non-differentiable point is not recognized as a source by the
initial guess.

from that point as long as it increases. Imposing state constraints boundary conditions, the
viscosity solution to (2.7) near the right-hand boundary corresponds to another surface with
the same brightness function. The surface in (d) is not differentiable, and the point of non-
differentiability coincides with a minimum point. As the correct computation of minimum
points using ū relies on the differentiability there, this minimum point is not detected and
the viscosity solution to (2.7) does not correspond to this surface on a large part of the
domain. Here state constraints are suitable and the surface is correctly reconstructed near
the boundaries. To obtain the correct surface, the value of u at the non-differentiable point
should be given.

At this point it is interesting to compare the classical concave/convex ambiguity in or-
thographic SFS with the ambiguity shown for PSFS. First, the two ambiguities can both be
fixed by assigning the exact value of the solution at the sources of characteristics. Second,
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they are both caused by an ambiguity in the image irradiance equation (2.3). For the PSFS
(Equation (2.6)), for any ω there are more than one couple (n̂, r) associated to the same I.
This is similar to what happens in the orthographic SFS, where, for any ω, there is more
than one n̂ associated to the same I. On the other hand, the concave/convex ambiguity is
related to the possible degeneration of the Eikonal equation, which is instead not possible in
the PSFS equation with light attenuation term. In fact, for the classical SFS the right-hand
side of the Eikonal equation (3.9) vanishes at singular points, causing a lack of uniqueness
even for regular solutions. This situation does not appear in (2.7), due to the presence of the
light attenuation term.

Following our previous discussion, we end this section giving a precise definition of the
ambiguity appearing in the PSFS model.

Definition 3.2.Let Σ and Σ̂ be two piecewise continuous surfaces defined on the same domain
Ω. Let us denote by Γ and Γ̂ their set of discontinuities, respectively. We say that Σ and Σ̂
are ambiguous with respect to the PSFS model with attenuation term (A-ambiguous in short)
if they are piecewise differentiable on Ω \ Γ and Ω \ Γ̂, respectively, and they are associated to
the same brightness function I according to the PSFS model.

3.3. Some numerical approximations for ambiguous cases. In order to have a numerical
confirmation of the theoretical results presented above, we solved the PSFS equation using the
scheme presented in [37], which is proved to be convergent in Section 4. First, we recovered
some of the surfaces described in Figure 3.2, choosing a constant brightness function I on the
same domain Ω and then varying the boundary conditions (state constraints or Dirichlet) or
imposing specific values in some internal points (see Figure 3.6 and its caption).

We have also solved the PSFS problem for two surfaces similar to the surfaces illustrated
in Figures 3.5-c,d, where an ambiguity is expected. The first surface (see Figure 3.7-b) corre-
sponds to u(x) = sin(5x)+5, x ∈ [−0.8, 0.6]. The second surface (see Figure 3.8-b) corresponds
to u(x) = 10|x| + 3, x ∈ [−2, 2]. For each test we show the initial and the reconstructed sur-
face Σ, together with the functions u and the corresponding brightness functions I. The focal
length is set to f = 1 and the discretization steps are chosen to be small enough to reduce
the visible approximation errors. We have applied state constraints boundary condition. We
present our numerical results in Figures 3.7 and 3.8, respectively.

We see that the first surface is correctly reconstructed in some part of the domain, but
the algorithm fails near the right-hand boundary. This is expected because the correct value
should be carried by a Dirichlet boundary condition, which is not imposed. The second surface
is scarcely reconstructed in its shape, but the result is completely wrong if we compare the
scales of the figures (the peak is found at z ≈ −5.5 while the correct value is z = −3). It is
useful to note that the example shown in Figure 3.8 is rather delicate because the ambiguity
is generated by the non-differentiability at a single point. If, for example, we compute the
initial brightness function imposing by hand u′(0) = 0 (at the discrete level), the minimal
point is detected and the surface is perfectly reconstructed. We stress that the approximate
function I (numerically computed by means of the approximate solution u) matches perfectly
the exact function I in both cases, confirming the existence of an ambiguity.

It is plain that the ambiguity is not limited to one-dimensional surfaces. We tried to
reconstruct an upside-down pyramid, with Dirichlet boundary conditions imposed at the basis
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Figure 3.6. Some reconstructed surfaces with constant brightness function on the same domain Ω: (a) with
state constraints boundary conditions (convergence is reached in one iteration), (b) with a particular Dirichlet
boundary conditions, (c) with state constraints boundary conditions and a specific value imposed at the center,
and (d) with mixed state constraints and Dirichlet boundary conditions, and a specific value imposed inside the
domain. The surfaces (a), (b), (c) can be compared, respectively, with those in Figures 3.1, 3.2-c and 3.3-d,
and the surface (d) with a combination of the surfaces in Figures 3.3-c and 3.2-d (rotated by a small angle
around the optical center, as indicated at the end of Section 3.1).

(i.e. the top) of the pyramid. In Figure 3.9 we show the original surface, the reconstructed
surface, and the surface reconstructed imposing an incorrect value at the center of the image,
which forces a peak similar to the one in Figure 3.6-c. We also show the three corresponding
brightness functions, which turn out to be identical but for a zero-measure set. The differences
are concentrated in the non-differentiable regions and are due to the numerical approximation
of the gradient.

4. Two approximation schemes for the PSFS problem. The goal of this section is to
analyse two approximation schemes that have been proposed in [37] and [14] (as indicated
in the introduction, the two schemes will be referred to by the acronyms VBW and CFS
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Figure 3.7. Numerical outcome for a case similar to that described in Figure 3.5-c. First row: exact u, Σ
and I. Second row: approximate u, Σ and I.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

5

10

15

20

25

30

35

40

u (exact)
−25 −20 −15 −10 −5 0 5 10 15 20 25

−12

−10

−8

−6

−4

−2

0

2

Σ (exact)
−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

I (exact)

(a) (b) (c)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

5

10

15

20

25

30

35

40

u (approximate)
−25 −20 −15 −10 −5 0 5 10 15 20 25

−12

−10

−8

−6

−4

−2

0

2

Σ (approximate)
−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

I (approximate)

(d) (e) (f)

Figure 3.8. Numerical outcome for a case similar to that described in Figure 3.5-d. First row: exact u, Σ
and I. Second row: approximate u, Σ and I.
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Figure 3.9. Top, from left to right: Original upside-down pyramid, reconstructed surface, reconstructed
surface in the case a peak is imposed. Bottom: initial image rendered from the upside-down pyramid using the
PSFS model, brightness function of the reconstructed surface, brightness function of the reconstructed surface
in the case a peak is imposed.

respectively). We will study their analytical properties, and we prove that they converge to
the viscosity solution of (2.7). Boundary conditions are handled in a standard way for both
schemes. We do not mention it explicitly in the text in order to simplify the presentation.
We refer the interested reader to [6] for a detailed comparison of the performances of these
schemes. Experimental evidence shows that all the schemes available for the PSFS equation
compute comparable solutions, although relevant differences appear in the accuracy and CPU
time.

4.1. The VBW scheme: properties and convergence. In this section we describe the
VBW scheme, which is the scheme we used in the simulations presented in the previous section.
We prove the convergence of the approximate solution to the viscosity solution of (2.7) when
the discretization step goes to zero.

In order to simplify the presentation, we first prove the properties of the scheme in one
dimension. Then, we will point out how the proofs can be extended to dimension two.

One-dimensional analysis. Let us introduce the discretization of spatial derivative made by
means of the upwind method as in Rouy and Tourin [33]. Let ∆x > 0 be the spatial mesh
width in x direction and denote by N = N(∆x) the number of mesh points xi, i = 1, . . . , N .
Denote by wi the approximate value of v at the i-th mesh point xi and define φi(w) as

φi(w) := min

(
0,

wi+1 −wi

∆x
,
wi−1 − wi

∆x

)
, i = 1, . . . , N, (4.1)
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where w = (w1, . . . , wN ). The approximate gradient is given by

∇v(xi) ≈ ∇̃wi :=

{
−φi(w) if φi(w) =

wi−1−wi

∆x ,
φi(w) otherwise.

(4.2)

By the above upwind discretization, one gets the discrete operator

Li(w) :=

(
−Iif

2

Qi

√
(f∇̃wi)2 + (xi∇̃wi)2 +Q2

i + e−2wi

)
(4.3)

and can write the discrete version of (2.7) as

Li(w) = 0, i = 1, . . . , N. (4.4)

Let us introduce the parameter τ > 0 and the function Gτ : RN → R
N defined componentwise

as follows

Gτ
i (w) := wi + τLi(w) , i = 1, . . . , N. (4.5)

Equation (4.4) can be written in fixed point form as

w = Gτ (w). (4.6)

Note that Gτ
i ∈ C0(RN ) and it is piecewise differentiable in R

N . We describe important
structural properties of Gτ in the following proposition.

Proposition 4.1. Let Gτ : RN → R
N be defined as in (4.5) and w ′, w ′′ ∈ R

N . Then, there
exists τ∗ = τ∗(∆x) > 0 such that
(i) w ′ ≤ w ′′ implies Gτ (w ′) ≤ Gτ (w ′′), for any τ < τ∗ (≤ is intended componentwise);
(ii) ‖Gτ (w ′)−Gτ (w ′′)‖∞ < ‖w ′ − w ′′‖∞, for any τ < τ∗.

Proof. Let us first assume that the evaluation of (4.2) gives ∇̃wi =
wi−wi−1

∆x , which implies
wi − wi−1 > 0. Then, we have

∂Gτ
i (w)

∂wi
= 1− τIif

2

Qi

(x2i + f2)
wi−wi−1

∆x2√
(f2 + x2i )

(
wi−wi−1

∆x

)2
+Q2

i

− 2τe−2wi , (4.7)

∂Gτ
i (w)

∂wi−1
=

τIif
2

Qi

(x2i + f2)wi−wi−1

∆x2√
(f2 + x2i )

(
wi−wi−1

∆x

)2
+Q2

i

(4.8)

and
∂Gτ

i (w)

∂wi+1
= 0. (4.9)

The term ∂Gτ
i (w)/∂wi−1 is always positive, whereas ∂Gτ

i (w)/∂wi is positive only for τ suffi-
ciently small. Note that the maximal value τ∗ can be explicitly computed by means of (4.7),
and the condition τ < τ∗ can be explicitly verified while the algorithm is running.
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If ∇̃wi =
wi+1−wi

∆x we get a similar result. Let us assume now that ∇̃wi = 0. We get

Gτ
i (w) = wi − τIif

2 + τe−2wi

and then
∂Gτ

i (w)

∂wi
= 1− 2τe−2wi ,

∂Gτ
i (w)

∂wi−1
=

∂Gτ
i (w)

∂wi+1
= 0.

Again, the three terms are positive provided τ is sufficiently small. This proves (i).
Let us denote by JGτ the Jacobian matrix of Gτ . Whatever the evaluation of ∇̃w gives,

assuming that τ is sufficiently small, we get

‖JGτ ‖∞ = max
i

{
∂Gτ

i

∂wi−1
+

∂Gτ
i

∂wi
+

∂Gτ
i

∂wi+1

}
= max

i

{
1− 2τe−2wi

}
, (4.10)

which is always strictly lower than 1 and this ends the proof.

The algorithm is implemented in the following iterative form

w
(n+1)
i = Gτ

i (w
(n)) , i = 1, . . . , N , n = 0, 1, . . . (4.11)

The initial guess w(0) is given by the discretization of (3.14).

Proposition 4.2. Let w(0) be chosen as in (3.14) and let τ∗ be the ”constant” defined by
Proposition 4.1. Then, there exists τ∗∗ = τ∗∗(∆x) > 0 such that
(i) the algorithm (4.11) converges to the unique fixed point ŵ∆x, for any τ < τ∗∗;
(ii) if τ < min{τ∗, τ∗∗}, the algorithm converges monotonically decreasing, i.e. for any i =

1, . . . , N , we have w
(n+1)
i ≤ w

(n)
i , n = 0, 1, . . ..

Proof. In order to apply the Banach fixed point theorem, we have only to show that
Gτ : X → X, where X is a compact subset of RN . We choose X = [wmin, wmax]

N where wmin

and wmax are two constants such that wmin < −1
2 ln(Iif

2) and wmax > −1
2 ln(Iif

2) for any
i = 1, . . . , N . This ensures that

−Iif
2 + e−2wmin > 0 , for any i, (4.12)

and
−Iif

2 + e−2wmax < 0 , for any i. (4.13)

Let us fix w ∈ X and i ∈ {1, . . . , N}. The proof is divided in two steps:
(a) We prove that Gτ

i (w) ≥ wmin. We have wi = wmin + δ for some 0 ≤ δ ≤ δmax with
δmax := wmax − wmin. Since all the components of w are larger than wmin, using (4.2) we get

(∇̃wi)
2 ≤

(
δ
∆x

)2
. Then we have

Gτ
i (w) = wi + τLi(w) ≥ wmin + δ + τΨ1(δ)

where

Ψ1(δ) :=


−Iif

2

Qi

√(
f
δ

∆x

)2

+

(
xi

δ

∆x

)2

+Q2
i + e−2(wmin+δ)


 .
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Given (4.12), we know that Ψ1(0) = −Iif
2+e−2wmin > 0. The function Ψ1(δ) is monotonically

decreasing and limδ→+∞Ψ1(δ) = −∞. As a consequence, there exists a unique δ0 > 0 such
that Ψ1(δ0) = 0. If 0 ≤ δ ≤ δ0 we have Ψ1(δ) ≥ 0 and Gτ

i (w) ≥ wmin for any τ . Otherwise, if
δ0 < δ ≤ δmax we choose

τ ≤ δ0
−Ψ1(δmax)

which guarantees τ ≤ δ
−Ψ1(δ)

and we easily conclude.

(b) Let us now prove that Gτ
i (w) ≤ wmax. Similarly as before, we have wi = wmax − δ for

some 0 ≤ δ ≤ δmax with δmax := wmax − wmin. Then we have

Gτ
i (w) = wi + τLi(w) ≤ wmax − δ + τΨ2(δ)

where

Ψ2(δ) :=

(
−Iif

2

Qi

√
0 + 0 +Q2

i + e−2(wmax−δ)

)
=

(
−Iif

2 + e−2(wmax−δ)
)
.

Given (4.13), we know that Ψ2(0) = −Iif
2+e−2wmax < 0. The function Ψ2(δ) is monotonically

increasing and limδ→+∞Ψ2(δ) = +∞. As a consequence, there exists a unique δ0 > 0 such
that Ψ2(δ0) = 0. If 0 ≤ δ ≤ δ0 we have Ψ2(δ) ≤ 0 and Gτ

i (w) ≤ wmax for any τ . Otherwise, if
δ0 < δ ≤ δmax we choose

τ ≤ δ0
Ψ2(δmax)

which guarantees τ ≤ δ
Ψ2(δ)

and we easily conclude. This proves (i).

The choice of the initial guess is the key property to obtain monotone decreasing conver-
gence to the fixed point. In fact, w(0) is larger (or equal) than the solution (see Section 3.2)
and Gτ verifies Proposition 4.1-(i). This proves (ii).

We want to prove convergence of the numerical solution ŵ∆x to the viscosity solution v of
(2.7), for ∆x → 0. We can rely on the classic results of Barles and Souganidis [2], following
the same strategy of Rouy and Tourin [33].

Proposition 4.3. Let w(0) be chosen as in (3.14) and let τ∗, τ∗∗ be the ”constants” defined
by Propositions 4.1 and 4.2. If τ < min{τ∗, τ∗∗}, then the algorithm (4.11) converges to ŵ∆x

for n → +∞, and ŵ∆x converges locally uniformly to v for ∆x → 0.

Proof. Convergence to ŵ∆x for n → +∞ is proved in Proposition 4.2-(i). To prove the
convergence to v we start proving that the scheme is monotone in the sense given in [2]. We
know that the fixed point ŵ∆x satisfies the equation

L(w) = 0 ,

so we will use this form, since in [2] the discrete operator is written in the implicit form
S(∆x, x,w(x), w) = 0, where S : R+ ×Ω×R×B(Ω) → R and B(Ω) is the space of bounded
functions defined on Ω. If the evaluation of (4.2) gives ∇̃wi =

wi−wi−1

∆x , we only have to prove

that ∂Li(w)
∂wi−1

does not change sign. By (4.8) we easily get ∂Li(w)
∂wi−1

> 0. If the evaluation of (4.2)
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gives ∇̃wi =
wi+1−wi

∆x we obtain analogously ∂Li(w)
∂wi+1

> 0. Finally, if ∇̃wi = 0, Li does not
depend on wi−1 nor wi+1.

The stability and consistency of the scheme are easy to prove. Since the comparison
principle for the problem is proven in [32] we know that (2.7) has a unique viscosity solution
v and we can conclude, by the general convergence result in [2], that the approximate solution
converges locally uniformly to v.

It is interesting to note that the property pointed out in Proposition 3.1 is preserved in the
numerical approximation. Let us assume that the assumptions of Proposition 4.3 are satisfied.
We want to show that





w
(n+1)
i > w

(n)
i−1 if ∇̃wi =

wi−wi−1

∆x ,

w
(n+1)
i > w

(n)
i+1 if ∇̃wi =

wi+1−wi

∆x ,

w
(n+1)
i = w

(n)
i if ∇̃wi = 0.

(4.14)

If (4.14) holds true, the solution is constructed from the smallest to the largest values, and then
the solution cannot become lower than the information sources (Dirichlet boundary conditions
or minimum points automatically detected). Let us prove the first line in (4.14). To this end,
we first recall that

w
(n+1)
i = Gτ

i (w
(n)) = w

(n)
i + τLi(w

(n)).

Note that Proposition 4.2-(ii) implies Li(w
(n)) < 0 for any i and n. In order to have w

(n+1)
i >

w
(n)
i−1 the parameter τ must be chosen in such a way that

τ |L(w(n))| < w
(n)
i − w

(n)
i−1

which corresponds to

τ <
w

(n)
i −w

(n)
i−1

−Li(w(n))
. (4.15)

Note that the right-hand term in (4.15) is strictly positive. For any fixed ∆x, the term
Li(w

(n)) → 0 when n → +∞ (this follows by the fact that the algorithm converges to the
fixed point). Then, the condition (4.15) is always satisfied in the limit.

We can also re-obtain the result already proven for the continuous equation. Let us write

w
(n+1)
i − w

(n)
i−1

∆x
=

w
(n+1)
i − w

(n)
i

∆x
+

w
(n)
i − w

(n)
i−1

∆x
.

Since, as we have just seen, w
(n+1)
i −w

(n)
i−1 ≥ 0 and we know that w

(n+1)
i − w

(n)
i ≤ 0 (because

the algorithm computes a decreasing sequence), we obtain that w
(n)
i − w

(n)
i−1 ≥ 0 for any ∆x,

and then, passing to the limit (in the case it exists),

lim
∆x→0+

w(xi)− w(xi −∆x)

∆x
≥ 0 ,

which corresponds to the fact that the solution is increasing along the characteristic direction.
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Two-dimensional analysis. The strategy developed in the one-dimensional case can be easily
generalized, and all the main results still hold. The only difference is a new condition on the
experimental set-up which is necessary to prove that w1 ≤ w2 implies Gτ (w1) ≤ Gτ (w2).

Assuming a square uniform N ×N grid with ∆x = ∆y, the scheme is now defined com-
ponentwise by

Gτ
i,j(w) := wi,j + τLi,j(w) , i, j = 1, . . . N (4.16)

where

Li,j(w) := (4.17)

− Ii,j
Qi,j

f2
√
f2
(
(∇̃xwi,j)2 + (∇̃ywi,j)2

)
+

(
xi∇̃xwi,j + yj∇̃ywi,j

)2
+Q2

i,j + e−2wi,j .

Let us assume that ∇̃wi,j is equal to 1
∆x (wi,j − wi−1,j , wi,j −wi,j−1). We have

∂Gτ
i,j(w)

∂wi−1,j
=

τIi,jf
2

Qi,j

Aij(w)√
Bij(w)

(4.18)

where

Aij(w) := (x2i + f2)
wi,j −wi−1,j

∆x2
+ xiyj

wi,j −wi,j−1

∆x2
(4.19)

Bij(w) : = f2
(
wi,j − wi−1,j

∆x

)2

+ f2
(
wi,j − wi,j−1

∆x

)2

+

+

(
xi
wi,j − wi−1,j

∆x
+ yj

wi,j − wi,j−1

∆x

)2

+Q2
i,j (4.20)

and an analogous result for ∂Gτ
i,j(w)/∂wi,j−1. With no further assumptions, the quantity in

(4.18) can be negative, due to the term xiyj in (4.19), which has no fixed sign. Then, in order to
get the same result as in the one-dimensional case, namely ‖JGτ ‖∞ = maxi,j

{
1− 2τe−2wi,j

}
,

we need to assume that

(x2i + f2) (wi,j − wi−1,j) + xiyj (wi,j − wi,j−1) ≥ 0 (4.21)

and, analogously, that

(y2j + f2) (wi,j − wi,j−1) + xiyj (wi,j − wi−1,j) ≥ 0. (4.22)

As the conditions (4.21)-(4.22) incorporate a coupling of image dimension and focal length,
they imply a condition on the experimental set-up. They are fulfilled if f is sufficiently large,
or if the surface is fully contained in the ”positive” region {x > 0, y > 0}.
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4.2. The CFS scheme: properties and convergence. In order to simplify the notations,
let us prove the result in the one-dimensional case. Generalization to higher dimension is
trivial and all the results are preserved. The semi-discrete formulation of the CFS scheme was
derived in [13, 14], we report it here for the reader’s convenience. For any function w : R → R,
we define the semi-discrete operator F h as

F h[w](x) := min
a∈B(0,1)

{w(x+ hb(x, a)) + hℓ(x, a)} + he−2w(x). (4.23)

The iterative algorithm can be written in compact form as

{
w(n+1)(x) = F h[w(n)](x) , n = 0, 1, . . .

w(0)(x) = −1
2 ln(I(x)f

2).
(4.24)

As usual, the parameter h must be intended as a fictitious-time discretization step used to
integrate along characteristics in the semi-Lagrangian formulation [18]. We do not consider
here the fully-discrete problem in which the operator F h is projected on a grid.

In the following we prove that the sequence generated by the algorithm (4.24) actually
converges to some function wh. Note that we employ here a different approach than the one
used in the previous subsection for the analysis of the VBW method. More precisely, we will
not prove that the operator F h is a contraction mapping, but we prove that the sequence
{w(n)}n≥0 is monotone decreasing and bounded from below.

Proposition 4.4 (boundedness from below). Let w ∈ C0(Ω). For any x ∈ Ω there exists a
step h = h(x) > 0 and a constant wmin ∈ R such that

w(x) ≥ wmin implies F h[w](x) ≥ wmin. (4.25)

Proof. Let us consider separately two cases.
i) Let w(x) = wmin. We first note, by the definition of ℓ in (2.11), that ℓ(x, 0) = mina{ℓ(x, a)}.
Second, by the definition of b in (2.11), we have w(x+hb(x, 0)) = w(x) = mina{w(x+hb(x, a))}
since the minimum of w is attained at x by assumption. As a consequence, the minimum in
(4.23) is attained for a∗ = 0. Then,

F h[w](x) = w(x)− hI(x)f2 + he−2w(x) = wmin + h
(
e−2wmin − I(x)f2

)
.

Similarly to the VBW case, we choose wmin in such a way that

e−2wmin − I(x)f2 ≥ 0 ,

and then F h[w](x) ≥ wmin. Note that it is possible to choose such a wmin uniformly in x. To
this end, it is sufficient to choose wmin ≤ minx∈Ωw(0)(x).

(ii) Let w(x) > wmin. The continuity of w guarantees that there exists a ball B(x, ξ)
centred in x of radius ξ such that w(x′) > wmin for every x′ ∈ B(x, ξ). Let us denote by a∗

the argmin appearing in the definition of F h[w]. Defining ∆w = w(x+ hb(x, a∗))−wmin, we
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have

F h[w](x) = w(x+ hb(x, a∗)) + hℓ(x, a∗) + he−2w(x)

= wmin +∆w + h(e−2w(x) + ℓ(x, a∗))

≥ wmin +∆w + h(0− I(x)f2).

Choosing h in such a way that hmaxa b(x, a) < ξ, we have ∆w > 0. Moreover, we note
that ∆w does not tend to zero if h tends to zero. The conclusion follows by choosing h ≤
∆w/I(x)f2.

Proposition 4.5 (monotonicity).Let us assume that w(n) ∈ C1(Ω) for any n ∈ N. Then, for
any n ∈ N there exists a step h = h(n) > 0 such that the sequence defined in (4.24) verifies

w(n+1)(x) ≤ w(n)(x) for any x ∈ Ω.

Proof. We first consider points x such that the corresponding a∗ is equal to zero at the
first iteration n = 0. These are the points where the initial guess w(0) is actually the correct
solution, see Section 3.2. In this case we have

w(1)(x) = w(0)(x)− hI(x)f2 + he−2w(0)(x) = w(0)(x).

Since the solution already reached convergence at these points, we can simply stop the com-
putation (so that w(n+1)(x) = w(n)(x) for any n).

Let us now consider a point x such that a∗(x) 6= 0 for n = 0. We prove the assertion by
induction on n. We have

w(1)(x) = w(0)(x+ hb(x, a∗)) + hℓ(x, a∗) + he−2w(0)(x).

Since a∗ 6= 0, we have

w(0)(x+ hb(x, a∗)) + hℓ(x, a∗) < w(0)(x+ hb(x, 0)) + hℓ(x, 0) = w(0)(x)− hI(x)f2 (4.26)

and then w(1)(x) < w(0)(x) − hI(x)f2 + he−2w(0)(x) = w(0)(x). Note that we could find two
different optimal controls a∗1 = 0 and a∗2 6= 0 in which the minimum is attained, so that the
strict inequality in (4.26) does not hold true. This issue can be fixed assuming that in such
an ambiguous case we keep a∗1 as optimal control.

Now we prove that

w(n)(x) < w(n−1)(x) implies w(n+1)(x) < w(n)(x).

We have to prove that F h[w(n)](x) < F h[w(n−1)](x). Let us denote by a∗ the argmin for
F h[w(n−1)](x). Note that a∗ is in general different from the argmin for F h[w(n)](x). Then, it
is sufficient to show that

w(n)(x+ hb(x, a∗)) + hℓ(x, a∗) + he−2w(n)(x)

< w(n−1)(x+ hb(x, a∗)) + hℓ(x, a∗) + he−2w(n−1)(x)
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or, analogously, that

w(n)(x+ hb(x, a∗))−w(n−1)(x+ hb(x, a∗)) + h
(
e−2w(n)(x) − e−2w(n−1)(x)

)
< 0.

Since the function z 7→ e−2z is differentiable and w(n)(x) ≥ wmin for any n (see Proposition
4.4), by Taylor’s expansion we get

(
e−2w(n)(x) − e−2w(n−1)(x)

)
< 2e−2wmin

(
w(n−1)(x)− w(n)(x)

)
.

Then, we only need to prove that

w(n)(x+ hb(x, a∗))− w(n−1)(x+ hb(x, a∗)) + 2he−2wmin

(
w(n−1)(x)− w(n)(x)

)
< 0.

Let us define C := 2e−2wmin and use again Taylor’s expansion for w(n) and w(n−1). We have

(1− Ch)w(n)(x) + (Ch− 1)w(n−1)(x) + (4.27)

+hb(x, a∗) ·
(
∇w(n)(x)−∇w(n−1)(x)

)
+O(h2) < 0.

When h tends to zero, the left hand side of the previous inequality tends to w(n)(x)−w(n−1)(x),
which is strictly negative by assumption. Then there exists a h sufficiently small such that
(4.27) holds true.

To conclude, let us observe that assuming I ∈ C1(Ω), we have w(0) ∈ C1(Ω) and then
w(n) ∈ C1(Ω) for any n, since the regularity is preserved by the operator F h. Under this
assumption, the two previous propositions can be applied, and we get the convergence of the
sequence defined in (4.24).

Finally, note that the dependence of the step h on x and n is not an issue in the imple-
mentation of the numerical approximation because the space is discretized in a finite number
of nodes and the algorithm is stopped after a finite number of iterations.

5. Dealing with discontinuous surfaces. In this section we suggest a simple algorithm to
deal with the reconstruction of discontinuous surfaces. Discontinuous surfaces can arise both
because of different objects in a scene and because of parts of the object being occluded by
other parts of the object due to the projection. Numerical tests performed in [6, 13, 14] clearly
show that the PSFS algorithm is not able to catch discontinuities of the surface. In fact, it
tries to reconstruct a continuous surface with the same brightness function as the original
one. In order to deal with discontinuities, the idea is to perform first a segmentation of the
input image, dividing the domain into several subdomains. The boundaries of the subdomains
correspond to the curves of discontinuity of the brightness function. Then, we apply the PSFS
algorithm piecewise in every subdomain where the brightness function is continuous. For each
subdomain, initial data for the iterative schemes are chosen as in (3.14).

It is worth to note that a similar segmentation procedure will not be valid for the ortho-
graphic SFS problem. Indeed, splitting the original image into subdomains will result in a
even more complicated problem where several new boundaries have to be taken into account.
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Since in the orthographic SFS model the grey values do not contain depth information, if no
additional information is available, the segmented SFS problem will be undetermined.

The question arises which boundary conditions have to be imposed at the boundary of each
subdomain for the PSFS model. In the following we have always imposed state constraints
boundary conditions there. This is a natural choice, since they simply inhibit the propagation
of information from outside the segment into the segment. This makes sense, since any
information from outside the segment, i.e. across the discontinuity, is unreliable. To impose
state constraints boundary conditions on each segment we simply set on the boundary of the
segment a value larger than the maximal value of the solution inside the segment. An easy
choice is to set it equal to the maximum machine number.

However we note that, coherently with the previous results about ambiguity in PSFS
model, we can not have guarantee that inside each subdomain the reconstructed surfaces is
the expected one.

Synthetic input data. We test the new algorithm on a synthetic photograph of an upside-
down pyramid over a flat surface. See Figure 5.1-a,b for the input photograph and the true
surface (note that the pyramid hides most part of the background).

Applying directly the PSFS algorithm, we obtain the surface depicted in Figure 5.1-c,
where the discontinuity is totally lost. Note that the reconstructed surface has the same
brightness function as the original one. Applying the PSFS algorithm after the segmentation,
we face to solve two separate problems (for the pyramid and for the frame). The result is
shown in Figure 5.1-d. This time the background is reconstructed at the right distance, i.e.
the discontinuity is preserved. Nevertheless, the sides of the pyramid and the frame are not
completely flat as they should be. This is due to the fact that state constraints boundary
conditions are not suitable here, because the local minimum points are on the boundary of the
domain, as in Figure 3.5-c. For the experiment, we used a 256 × 256 grid and f = 250. The
reconstruction errors (depth error compared to the ground truth) are summarized in Table
5.1.

Table 5.1

Errors for the test described in Figure 5.1.

Algorithm L1 error L∞ error

Direct 8.74% 26.71%

Pre-segmented 2.55% 4.80%

Real-world input data. As an example of a real-world image we consider the scene in Figure
5.2-a. The image was acquired with a Nikon D90 camera, and it has been downsampled to
800× 531 pixels. The light source was the built-in camera flash. The focal length in multiples
of the resulting pixel size is 1525. As usual for real-world images, the reflectance and lighting
parameters need to be estimated. We employed the following values for σ: 100000 for the
background, 73000 for the blue mug, and 110000 for the beige cup.

The segment borders separating the cup from the mug as well as those separating cup/mug
from background were obtained here by hand. They were enhanced a bit in order to mask out
points where interreflections between the objects are very strong. The specular highlight at
the upper lip of the cup was also masked out since such specular reflections are not included in
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(a) (b)

(c) (d)

Figure 5.1. (a) Input image, (b) input surface, (c) reconstructed surface by a direct application of the PSFS
scheme (state constraints b.c.), (d) reconstructed surface after segmentation (state constraints b.c.).

the PSFS model. At the three resulting segments (subdomains) – cup, mug and background –
the PSFS equation was applied separately employing state constraints boundary conditions.

Let us turn to the corresponding experimental result, see Figure 5.2-b. The general shape
of the objects and the background is captured in a rather accurate way. As expected, there is
no tendency to enforce continuous transition between objects. This shows that the proposed
idea to use state constraints boundary conditions at the borders of segmented objects works
properly. Note that in the visualization of the whole scene together, the mug seems to have
a wedge-like shape. This effect can be explained by specular highlights on the mug, which is
not handled in the PSFS model. In this visualization, however, the effect looks more drastic
than it actually is. To give a better impression on the shapes of the reconstruction, we also
included separate visualizations of the mug and cup in Figure 5.2-c,d. The effect of the
surface being pulled towards the optical centre at specular highlights can also be observed in
the reconstruction of the cup.
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Concerning the quality of results we observe some artefacts, as expected for this relatively
difficult real-world input image. The cup is reflected on the surface of the mug, and, in
addition, there are a lot of specular reflections as by the rough surface of the mug, so that
its reconstruction is drawn towards the camera. Both cup and mug are reflected on the green
cardboard of the background, so that the latter is not reconstructed perfectly flat. We also
chose not to display the reconstruction of the ground the cup/mug are standing on, since the
absence of critical points there leads to a misinterpretation of the depth (as in the synthetic
input data test, local minimum points are on the boundary of the domain). Moreover, the
quality of the reconstruction of the ground is degraded since the reflections of both the cup
and the mug are strongly visible there.

(a) (b)
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Figure 5.2. (a) Real-world input image and (b) its 3-D reconstruction. (c) Separate visualisation of the
mug segment reconstruction and (d) separate visualisation of the cup segment reconstruction.

Conclusion. In this paper, we have studied analytically and numerically the PSFS model
and the related Hamilton-Jacobi equation.

It turns out that ambiguities can still arise in the model as well as in practical computa-
tions. If any knowledge of the true depth is available, it is impossible to reconstruct surfaces
such that
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• are not continuous (unless pre-segmentation is performed);
• local minima are located at points of non-differentiability;
• local minima are located at the boundary.

We have also proven the convergence of a finite-difference and a semi-Lagrangian numerical
schemes for the PSFS equation. In the latter case we employed an innovative technique for
the proof that can be useful also in other contexts than PSFS. Our theoretical results on
the numerics complement the analytical investigation of the ambiguity, assuring that the
ambiguity issues are not due to numerical artefacts: ambiguities arise systematically even if
the scheme in use converges to the viscosity solution of the equation.

Modern models like the PSFS studied here have a significant potential for applications.
We believe that this paper represents an important step towards a deeper understanding of
PSFS and other state-of-the-art SFS models as well as towards the use of mathematically
established numerical techniques in computer vision.

Appendix A. Derivation of PSFS equation in Cartesian coordinates.

Starting from (2.1) and (2.2), we have (see Figure 2.1):

M(x, y) =
fu(x, y)

d(x, y)




x
y
−f


 ,

where
d(x, y) =

√
x2 + y2 + f2.

The two vectors ∂xM and ∂yM form a basis in the plane orthogonal to the normal direction
n̂(x, y) at the point M = M(x, y). We have

∂xM =
f

d3
(
d2u+ d2xu− x2u, y(d2ux − xu), f(−d2ux + xu)

)⊤
,

∂yM =
f

d3
(
x(d2uy − yu), d2u+ d2yuy − y2u, f(−d2uy + yu)

)⊤
.

After some algebra, we find

∂xM × ∂yM =
f2u

d2

(
f
(
ux −

xu

d2

)
, f
(
uy −

yu

d2

)
,
f2u

d2
+ xux + yuy)

)⊤

,

which, after a normalization, gives

n̂(x, y) =
±1√

f2‖∇u‖2 + (∇u · (x, y))2 + (fu/d)2




f(ux − xu/d2)
f(uy − yu/d2)

f2u

d2
+∇u · (x, y)


 . (A.1)

Knowing that in each visible point M the normal n̂ points towards C, it follows that the right
sign in (A.1) is equal to +, so we get from (A.1) and (2.4)

ω(x, y) · n̂(x, y) = fu

d
√

f2‖∇u‖2 + (∇u · (x, y))2 + (fu/d)2
.



30 M. BREUß, E. CRISTIANI, J.-D. DUROU, M. FALCONE, AND O. VOGEL

In conclusion, knowing that r = f u, (2.6) can be written as

dfu
√

f2‖∇u‖2 + (∇u · (x, y))2 + (fu/d)2 =
1

I
,

or, using the change in the unknown v = ln(u), as

Idf
√

f2‖∇v‖2 + (∇v · (x, y))2 + (f/d)2 = e−2v, (A.2)

which easily gives the Hamilton-Jacobi equation (2.7), since Q = f/d.

Appendix B. Derivation of PSFS equation in spherical coordinates.

Starting from (3.2)-(3.3), we have (see Figure 2.1)

ur :=
M(θ, φ)

r(θ, φ)
=




sin θ cosφ
sin θ sinφ

cos θ


 , uθ :=

∂θur
‖∂θur‖

=




cos θ cosφ
cos θ sinφ
− sin θ


 ,

and

uφ :=
∂φur

‖∂φur‖
=




− sinφ
cosφ
0


 .

The new system S = (ur, uθ, uφ) is mobile and depends on the surface point M . The coordi-
nates of M in this new system are (r, 0, 0)⊤S .

The two vectors ∂θM and ∂φM form a basis in the plane orthogonal to the normal direction
n̂(θ, φ) at the point M = M(θ, φ). Since M = rur, we have

∂θM = rθur + ruθ and ∂φM = rφur + r sin θuφ,

and then
∂θM = (rθ, r, 0)

⊤
S and ∂φM = (rφ, 0, r sin θ)

⊤
S .

We can write the coordinates of the normal vector in the new system S as

n̂(θ, φ) = ± ∂θM × ∂φM

‖∂θM × ∂φM‖ = ± (r sin θ,−rθ sin θ,−rφ)
⊤
S

((r2 + rθ2) sin
2 θ + rφ2)1/2

. (B.1)

Knowing that in each visible point M , the normal n̂ points towards C, and knowing that
sin θ ≥ 0, it follows that the right sign in (B.1) is equal to −, so we have

ω(θ, φ) · n̂(θ, φ) = (−1, 0, 0)⊤S · (−r sin θ, rθ sin θ, rφ)
⊤
S

((r2 + rθ2) sin
2 θ + rφ2)1/2

.

In conclusion, (3.1) can be written as

sin θ

r((r2 + rθ2) sin
2 θ + rφ2)1/2

= I

or, in an equivalent form, as (3.5).
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