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A B S T R A C T

Eye tracking has historically been a very popular tool. The data it records allow us to understand how people
behave and what they attend to within our visual world; under this perspective the experiments, applications
and use-cases are endless. Therefore, it is not surprising to witness a strong rise in the use of eXtended Reality
(XR) devices with embedded eye trackers in research. These devices allow for less obtrusive experimenting
conditions, and a significantly higher experimental control compared to traditional desktop testing. The use
of eye tracking in XR is increasing and so is the need for a toolbox enabling consensus about eye tracking
methods in 3D. We present the Salient360! toolbox: it implements functions to identify saccades and fixations
and output gaze features (e.g., saccade directions) to generate saliency maps, fixation maps, and scanpath data.
It implements comparisons of gaze data with methods adapted to 3D. We plan continuous improvements of the
toolbox as the community develops new tools and methods dedicated to 360◦ gaze tracking. We hope that this
toolbox will spark discussions about the methodology of 3D gaze processing, facilitate running experiments,
and improve studying gaze in 3D.

https://github.com/David-Ef/salient360Toolbox
1. Introduction

Gaze data is a very rich and complex signal [1,2], it informs us about
where and how someone looked. Today, eye tracking is frequently
utilised in many domains: scientific and engineering alike. Tracking
eyes outside the lab with head-restraints used to be the norm, but mod-
ern devices allow unobtrusive recording of gaze in more naturalistic
conditions: in the field or in the lab with extended reality (XR) devices.
The recent popularity for the use of XR devices as an experimental tool
is easily explained by the fact that they allow for near-perfect control of
a virtual environment, coupled with unobtrusive measurement systems
allowing participants to move and interact freely, all the while allowing
for sufficiently high-quality tracking measures.

The quality of XR headsets has increased tremendously in the last
decades. With the addition of embedded eye trackers, scientists have
begun to rely on it more and more to study gaze and visual attention in
immersive conditions closer to the natural world [3]. As these devices
enter homes, more immersive and 360◦ contents (image, movies, video
games) specific to this viewing paradigm are now being created. As
a result, an understanding of how people look and behave in these
environments [4,5] is required to improve, for example, gaze prediction

∗ Corresponding author.
E-mail address: erwan.david@univ-lemans.fr (E. David).

algorithms, which is essential to developing compression algorithms
adapted to XR. Consequently, there is a need to have robust and
powerful tools to process gaze, eye, and head tracking in 3D.

1.1. Related works

There exist several eye tracking toolboxes meant to handle data
obtained on standard computer screens. Eye tracker vendors often pro-
vide tools themselves, for example, to identify saccades and fixations,
and create saliency maps. Some of these toolboxes are dedicated to
particular eye trackers (e.g., [6]). There are non-specialised toolboxes
meant to be used in many circumstances [7,8], while others are ded-
icated to particular analyses [9], applications [10] or experimental
conditions [11].

When transitioning from on-screen to XR studies, it becomes clear
that eye tracking toolboxes are not applicable. Moving from a screen
as a 2D plane to a 3D world, one must now consider the movement
of the head as part of the gaze. Therefore, eye rotation data are often
referenced by ‘‘eye-in-head’’ and the combined head and eye rotation
by ‘‘eye-in-space’’ [12,13]. In addition to this nomenclature, in this
https://doi.org/10.1016/j.cag.2024.103890
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Fig. 1. Schematic representation of the functionalities of the toolbox, from input to be processed to generated outputs. Inputs appear in green dashed boxes, outputs show similarly
n blue. Processing steps are embedded in boxes with solid black lines. Elements in grey are optional.
aper we choose to employ eye and gaze, respectively. On top of
his, gaze-parsing algorithms need to be modified (e.g., the Euclidean
istance used to compute velocities is replaced by the angle between
ectors; Eq. (8)). Many measures must be updated, which are used
o process raw data, generate features of saccades and fixations, or
aliency data. Saliency and scanpath comparison algorithms [14,15]
eed modifying as well.

The community is certainly aware of that fact. For example, sev-
ral articles have been published describing how to implement gaze
racking experiments in XR [3,16,17], or how best to process the
esulting data in general [18,19]. Work has been published and efforts
re still ongoing to propose gaze event detection algorithms for eye-
n-space data, i.e., considering eye and head movements [20,21], or
cknowledging gaze events not observable on-screen (e.g., vestibulo-
cular reflex, VOR; [21,22]). In spite of these past and ongoing efforts,
nd the number of available toolboxes meant for handling eye track-
ng data obtained from on-screen experiments, the community is still
acking a strong toolbox dedicated to 3D gaze data. To the best of
ur knowledge, the only other toolbox for 3D gaze data handling is
he vrGazeCore,1 unveiled at conferences [23,24] the same year as the
Salient360! toolbox [25]. As of this article the vrGazeCore is marked as
n development by its authors; it implements processing of raw data,
dentifying fixations, and generating 360◦ saliency map. As we will
ee in the next sections, our toolbox implements significantly more
eatures.

The toolbox described in this article was created in response to this
oid in the community. The toolbox’s functionalities related to saccade
nd fixation features are useful to experiments tracking head and eye
otations, whereas those related to saliency maps and visualisation are
onstrained to omnidirectional stimuli, like 360◦ pictures and videos.

As more and more teams come to use gaze tracking in XR we believe
it is of utmost importance to publish updated tools and start broader
discussions about new/adapted tools and methods.

In this article, we expand on a short paper [25] published in the
proceedings of the 2023 Symposium on Eye Tracking Research and
Applications (ETRA, ACM). We report in detail our implementation
choices as the methods used to process gaze data in 3D are particularly
important for the community to discuss. We believe that this will help
the community converge to better methods and practices.

2. What the Salient360! toolbox implements

Written originally for the Salient360! visual attention modelling
challenge [26–28] our toolbox now covers four main applications:
processing raw data, generating saliency and saccadic features, com-
paring saliency and scanpath data, and visualising raw and processed
data (Fig. 1). It supports processing raw eye and head rotations to

1 https://github.com/Robertson-Lab/vrGazeCore-Toolbox
2

produce eye-in-space data, which are processed further to identify
fixation positions for saliency data generation, and more scanpath
features (fixation and saccade features, Table 2). Both type of generated
data (saliency and scanpath features) have methods implemented to be
compared.

Importantly, our toolbox applies to any gaze data sampled in a
3D context, be it in XR conditions or in the field with mobile eye
tracking. As long as the eye-in-space data [12,13] is available or can
be constructed (i.e., eye and head rotation data are provided). In this
article we present examples of gaze data on 360◦ image and video,
which are mapped onto a sphere, but do not possess depth. That does
not mean that the toolbox is not applicable to processing gaze data from
complex 3D scenes viewing; one could, for instance, identify fixations
in the time-series data with the Salient360! toolbox before looking up
what scene objects were fixated over time.

The toolbox is written in Python 3 (Python Software Foundation,
https://www.python.org/) with the help of the scientific computing
toolbox (SciPi [29], with NumPy [30]) and statsmodels [31]. The
OpenCV [32] and scikit-image [33] modules are used to manipulate
saliency maps as images. Numba [34] is used to accelerate some
processing steps (e.g., saliency map calculation), PyOpenGL and PyQt5
were needed to build the visualising part of the toolbox. A list of
requirements and an installation scripts are provided in the repository’s
README file. Installation is made easier with the use of a Conda
environment.

Although the main purpose of the toolbox is to handle gaze data
as the combination of eye and head data, it also supports processing
head data alone. In this particular case, the toolbox behaves as if the
eyes were always perfectly still and centred in their respective orbit.
Moreover, the toolbox also possesses special implementation variants
dedicated to data obtained while visualising dynamic content (e.g. a
360◦ video). Keep in mind that, although we describe most of the
toolbox as pertaining to gaze data obtained from viewing static stimuli,
everything applies to head and dynamic data as well.

It is important to note that our toolbox, and the methods and algo-
rithms implemented therein apply to any eye-in-space data, whether it
is gathered using an XR device or from a mobile eye tracker used for
testing in the field. The reason why we do not focus on the latter is
because head tracking in these conditions is often arduous, (e.g. [35–
37]), often with missing data, forcing the processing of eye-in-head
data alone (e.g., [38]) or what object in a scene is fixated from the
scene capture of a head-mounted camera on a frame-by-frame basis
(e.g. [39]).

2.1. Processing

The minimal input for each sample: a timestamp, an eye direction
vector, and a head rotation value (Euler angles or quaternion). When

loading a raw or processed gaze file, the toolbox will try to identify

https://github.com/Robertson-Lab/vrGazeCore-Toolbox
https://www.python.org/
Antoine Coutrot
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Fig. 2. Example outputs from our toolbox. (a) a fixation map as a 2D matrix with fixation counts pixel-wise. (b) a saliency map obtained by convolving a fixation map with a
Gaussian kernel. (c) a saliency map blended with an image to better identify salient regions. (d) colour-coded points drawn at fixation locations to get a scanpath image showing
time-course development (data from only one trial is shown here); lines between points can be added to help visualise transitions.
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𝑃

the required variables amongst the file columns according to its header
string and a set of allowed variable names (see Table 1 for a full list).
If the timestamp data is not in milliseconds it will be automatically
adjusted (Algo 1). In cases where the eye data saved is not eye-in-head
but eye-in-space (i.e., eye and head rotation data are already combined)
the user still needs to provide head rotations for the toolbox to operate.
For that purpose new columns for the identity quaternion should be
added to the raw data file (𝑥: 0, 𝑦: 0, 𝑧: 0, 𝑤: 1).
Algorithm 1 Method used to automatically adjust timestamp data to

illiseconds
1: 𝑡⃗ ← Timestamp sample vector
2: 𝛥𝑡⃗ ← Time difference between consecutive timestamps
3: 𝑙𝑜𝑔𝑠𝑎𝑚𝑝𝑙𝑒𝑟𝑎𝑡𝑒 ← log10(𝑀𝑒𝑎𝑛(𝛥𝑡⃗))
4: 𝑎𝑑𝑗𝑢𝑠𝑡 ← 3 ∗ 𝐹 𝑙𝑜𝑜𝑟(𝑙𝑜𝑔𝑠𝑎𝑚𝑝𝑙𝑒𝑟𝑎𝑡𝑒)
5: if 𝑎𝑑𝑗𝑢𝑠𝑡 ≠ 0 then
6: 𝑡⃗ ← 𝑡⃗ ∗ 10−𝑎𝑑𝑗𝑢𝑠𝑡

7: end if

Raw data are processed to produce saccade and fixation features
ccording to a set of allowed parameters. First, according to what eye
ata is available, one may choose which eye to use: left, right or
ombined. If combined eye data is not provided it will be computed
s the average of left and right data. We recommend to resample head

and eye data to have matching sampling rates, for example, using the
Vive Pro Eye will result in head data sampled at 90 Hz and eye tracking
data at 120 Hz. Head rotations are stored as quaternions, but if the head
rotation data are provided as Euler angles, they will be converted:

𝑄 =

⎛

⎜

⎜

⎜

⎜

⎝

sin 𝐸𝑥
2 cos 𝐸𝑦

2 cos 𝐸𝑧
2 + cos 𝐸𝑥

2 sin 𝐸𝑦
2 sin 𝐸𝑧

2
cos 𝐸𝑥

2 sin 𝐸𝑦
2 cos 𝐸𝑧

2 − sin 𝐸𝑥
2 cos 𝐸𝑦

2 sin 𝐸𝑧
2

cos 𝐸𝑥
2 cos 𝐸𝑦

2 sin 𝐸𝑧
2 − sin 𝐸𝑥

2 sin 𝐸𝑦
2 cos 𝐸𝑧

2
cos 𝐸𝑥

2 cos 𝐸𝑦
2 cos 𝐸𝑧

2 + sin 𝐸𝑥
2 sin 𝐸𝑦

2 sin 𝐸𝑧
2

⎞

⎟

⎟

⎟

⎟

⎠

. (1)

here 𝐸𝑥, 𝐸𝑦 and 𝐸𝑧 are pitch, yaw and roll respectively. 𝑄 is a
uaternion with components ordered 𝑋, 𝑌 , 𝑍, 𝑊 . We use the spherical
uadrangle interpolation (SQUAD) method [40] to interpolate between
uaternions; cubic interpolation is used for eye direction vectors.

The eye data can provided as 2D positions on an XR device’s left
nd right viewports; in that eventuality eye data should be projected
rom viewport space to world space relative to the head. To do so, first,
3

projection matrix (Eq. (2)) is constructed from the characteristics of
(virtual) camera (𝐹𝑜𝑣𝑦: vertical field of view, 𝐴𝑠𝑝𝑒𝑐𝑡: the display’s
idth to height pixel aspect ratio, 𝑁𝑒𝑎𝑟 and 𝐹𝑎𝑟: the near and far

amera frustum planes distance).

𝑟𝑜𝑗 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1
𝐴𝑠𝑝𝑒𝑐𝑡∗tan(𝐹𝑜𝑣𝑦∕2)

0 0 0

0 1
tan(𝐹𝑜𝑣𝑦∕2)

0 0

0 0 𝐹𝑎𝑟+𝑁𝑒𝑎𝑟
𝐹𝑎𝑟−𝑁𝑒𝑎𝑟 1

0 0 − 2𝐹̇ 𝑎𝑟𝑁̇𝑒𝑎𝑟
𝐹𝑎𝑟−𝑁𝑒𝑎𝑟 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(2)

Second, a simple view matrix is made, from the properties of a
camera positioned at the origin (𝑃𝑜𝑠 = (0, 0, 0)), facing along the
forward vector (𝑇 𝑎𝑟𝑔𝑒𝑡 = (0, 0, 1)), and using the up vector (𝑈𝑝 =
(0, 1, 0)) (Eq. (3)). With 𝐹 = (𝑇 𝑎𝑟𝑔𝑒𝑡 − 𝑃𝑜𝑠)∕‖𝑇 𝑎𝑟𝑔𝑒𝑡 − 𝑃𝑜𝑠‖, 𝑆 =
(𝑈𝑝 × 𝐹 )∕‖𝑈𝑝 × 𝐹‖, and 𝑈 = 𝐹 × 𝑆. Using the OpenGL Mathematics
library, these two steps correspond to calls to perspectiveLH_NO
and lookAtLH respectively.

𝑉 𝑖𝑒𝑤 =

⎛

⎜

⎜

⎜

⎜

⎝

𝑆𝑥 𝑈𝑥 𝐹𝑥 0
𝑆𝑦 𝑈𝑦 𝐹𝑦 0
𝑆𝑧 𝑈𝑧 𝐹𝑧 0

−(𝑆 ⋅ 𝑃𝑜𝑠) −(𝑈 ⋅ 𝑃𝑜𝑠) −(𝐹 ⋅ 𝑃𝑜𝑠) 1

⎞

⎟

⎟

⎟

⎟

⎠

(3)

To finish, the inverse of the projection matrix multiplied by the view
matrix is calculated (𝑉 𝑃−1 = (𝑃𝑟𝑜𝑗×𝑉 𝑖𝑒𝑤)−1) to project a 2D viewport
position (normalised to [−1, 1]) to a 3D direction vector relative to
the head position and rotation (Eq. (4)). The resulting vector should be
normalised.

𝑃𝑜𝑠𝑤𝑜𝑟𝑙𝑑 = 𝑉 𝑃−1

⎛

⎜

⎜

⎜

⎜

⎝

𝑃𝑜𝑠𝑠𝑐𝑟𝑒𝑒𝑛𝑥
𝑃𝑜𝑠𝑠𝑐𝑟𝑒𝑒𝑛𝑦

1
1

⎞

⎟

⎟

⎟

⎟

⎠

(4)

To identify saccades and fixations [41] we provide three methods:

• A velocity-based method — using a velocity threshold parameter
(in ◦/s).

• A hidden Markov model method — model’s parameters are trained
on the velocity signals and hidden states come to represent

samples of low (fixations) and high (saccades) velocities.

Antoine Coutrot
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Table 1
A file will be identified as a raw data file as long as it provides timestamp, either eye rotation (left, right or combined) and head rotation
(either Euler angle or quaternion) data. Non-alphabetic characters are removed before looking up names: camera.quaternion.w is parsed as
cameraquaternionw. Custom column names should be added in functions FindRawFeaturesByHeader of file helper.py.
Data Accepted column names

Timestamp oculots, oculotimestamp, ocutimestamp, etts, ettimestamp, timestamp, ts

Left gaze X leftgazex, leftgazedirx, lgazex, xlgaze, lefteyedirectionx, leftgazedirectionx
direction Y leftgazey, leftgazediry, lgazey, ylgaze, lefteyedirectiony, leftgazedirectiony

Z leftgazez, leftgazedirz, lgazez, zlgaze, lefteyedirectionz, leftgazedirectionz

Right gaze X rightgazex, rightgazedirx, rgazex, xrgaze, righteyedirectionx, rightgazedirectionx
direction Y rightgazey, rightgazediry, rgazey, yrgaze, righteyedirectiony, rightgazedirectiony

Z rightgazez, rightgazedirz, rgazez, zrgaze, righteyedirectionz, rightgazedirectionz

Combined gaze X bingazex, bingazedirx, meangazedirx, lgazex, xlgaze, meangazedirectionx, meangazedirectionx
direction Y bingazey, bingazediry, meangazediry, lgazey, ylgaze, meangazedirectiony, meangazedirectiony

Z bingazez, bingazedirz, meangazedirz, lgazez, zlgaze, meangazedirectionz, meangazedirectionz

Head quaternion X xcam, camx, headx, xhead, camerarotationx, cameraquaternionx
Y ycam, camy, heady, yhead, camerarotationy, cameraquaterniony
Z zcam, camz, headz, zhead, camerarotationz, cameraquaternionz
W wcam, camw, headw, whead, camerarotationw, cameraquaternionw

Head Euler Pitch pitch, campitch, pitchcam, pitchead, headpitch
rotation Yaw yaw, camyaw, yawcam, yawhead, headyaw

Roll roll, camroll, rollcam, rollhead, headroll

Sample validity Left vall, lval
Right valr, rval
• A cluster-based method — DBSCAN [42] is fed sample positions
and used to separate clusters of points (fixations) from noise
(saccades).

ilter parameters to smooth the velocity signal are provided as well
Gaussian or Savitzky–Golay filters).

The following equations are used to convert between position repre-
entations on a sphere; 3D unit vector to 2D equirectangular projection
longitude, latitude):

𝑖𝑥𝑒𝑞𝑢𝑖𝑟𝑒𝑐𝑡 =
(

arctan(𝑓𝑖𝑥𝑥, 𝑓 𝑖𝑥𝑦)
arcsin(𝑓𝑖𝑥𝑧)

)

, (5)

2D equirectangular projection to 3D unit vector:

𝑖𝑥 =

⎛

⎜

⎜

⎜

⎝

sin 𝑓𝑖𝑥𝑒𝑞𝑢𝑖𝑟𝑒𝑐𝑡𝑙𝑎𝑡 ∗ cos𝑓𝑖𝑥𝑒𝑞𝑢𝑖𝑟𝑒𝑐𝑡𝑙𝑜𝑛𝑔
sin 𝑓𝑖𝑥𝑒𝑞𝑢𝑖𝑟𝑒𝑐𝑡𝑙𝑎𝑡 ∗ sin𝑓𝑖𝑥𝑒𝑞𝑢𝑖𝑟𝑒𝑐𝑡𝑙𝑜𝑛𝑔

cos 𝑓𝑖𝑥𝑒𝑞𝑢𝑖𝑟𝑒𝑐𝑡𝑙𝑎𝑡

⎞

⎟

⎟

⎟

⎠

(6)

2D equirectangular projection to 2D Mercator projection

𝑖𝑥𝑚𝑒𝑟𝑐 =
⎛

⎜

⎜

⎝

𝑓𝑖𝑥𝑒𝑞𝑢𝑖𝑟𝑒𝑐𝑡𝑙𝑜𝑛𝑔

log(tan( 𝜋4 +
𝑓𝑖𝑥𝑒𝑞𝑢𝑖𝑟𝑒𝑐𝑡𝑙𝑎𝑡

2 ))

⎞

⎟

⎟

⎠

, (7)

here 𝑓𝑖𝑥𝑒𝑞𝑢𝑖𝑟𝑒𝑐𝑡𝑙𝑜𝑛𝑔 is a longitude (−𝜋 < 𝑓𝑖𝑥𝑒𝑞𝑢𝑖𝑟𝑒𝑐𝑡𝑙𝑜𝑛𝑔 < 𝜋) and 𝑓𝑖𝑥𝑒𝑞𝑢𝑖𝑟𝑒𝑐𝑡𝑙𝑎𝑡 a
atitude (− 𝜋

2 < 𝑓𝑖𝑥𝑒𝑞𝑢𝑖𝑟𝑒𝑐𝑡𝑙𝑎𝑡 < 𝜋
2 ).

As our data samples are gaze points located on a sphere, the distance
between two points is the angle between them, when manipulating
vectors the angle between 𝑢 and 𝑣 is calculated thus:

𝐴𝑛𝑔𝑙𝑒 = arccos(𝑢 ⋅ 𝑣), (8)

The orthodromic distance (great-circle distance) can also be used,
though we chose to reduce the number of data conversions in our
toolbox and work with vectors as much as possible.

Our toolbox allows head data to be processed by itself to produce a
head trajectory. A sliding time-window is used (default width = 90 ms)
to calculate the average position of the head a successive time-intervals.
It should be considered as if the gaze were constantly centred in the
visual field of view (forward vector of the head tracking data projected
on a unit sphere). The result is a succession of head centroid positions
making up a trajectory similar to gaze positions, as such the head
trajectory data can be processed to obtain the same features as from
gaze data (e.g., duration, amplitude; Table 2).

The original use-case of the toolbox was to process data obtained
from experiments implemented in the Unity game engine and SteamVR
4

(now OpenXR). Therefore the coordinate convention used is that of
Unity, i.e., left-handed (second component [Y] is the up axis and the
third [Z] is the depth axis). In order to make sure that new data follow
the same convention we recommend gathering eye and head tracking
data in simple trials where you can verify that looking left and up result
in the same directions in the toolbox.

2.2. Saliency generation

Equirectangular saliency maps can be generated on the basis of
any positional data (on a sphere) by drawing and accumulating 2D
Gaussian kernels (Eq. (9)) at their position (Fig. 2). Traditionally,
saliency maps are 2D matrices depicting gaze information on a flat
plane, such as a desktop computer screen. In our particular case, gaze
data is understood to be a set of points on a unit sphere, surrounding an
observer’s head. To represent this information visually and to be saved
on disk, this is transformed using the equirectangular projection. Even
though the medium is a 2D matrix, its cells are actually positions on a
sphere, therefore, our saliency generation process must account for its
circular characteristic. We generate saliency data by accumulating 2D
Gaussian kernels at the location of data positions on an equirectangular
map:

𝐺𝑎𝑢𝑠𝑠(𝑥) = exp(−
‖𝑥 − 𝑃𝑜𝑠‖2

2𝜎2
). (9)

Where 𝑥 is a 3D position back-projected from equirectangular to unit
sphere coordinates, 𝜎 the spread of the Gaussian kernel, and 𝑃𝑜𝑠 is
another 3D position (e.g., a fixation position). We rely on the Euclidean
distance here to calculate distances on the sphere instead of calculating
the distance between unit vectors (Eq. (8)). This choice was made to
make the process computationally lighter as this is a central operation,
we judge it acceptable because distances are most often short so the
impact is negligible.

The saliency generation process is optimised by defining a Gaussian
window, so that only the relevant parts of an equirectangular map
(saliency matrix) are updated. The Gaussian window’s size is function
of the Gaussian’s 𝜎 and of the latitudinal distortion of the equirectan-
gular projection, i.e., the size grows as a function of the distance to
the equator (Fig. 3). It is defined as centred on a point’s position and
extends latitudinally by a factor of sin(2.5𝜎) times the saliency matrix’s
height, and longitudinally as (1 + |tan(𝑃𝑜𝑠𝑙𝑎𝑡 − 𝜋∕2)|) ∗ 1.5𝜎 times the

matrix’s width, where 𝑃𝑜𝑠𝑙𝑎𝑡 is a latitudinal position in radians ([0, 𝜋]).
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Fig. 3. Illustration of the Gaussian windows calculated when generating saliency
ata. Shown on the equirectangular projection (background image) the height of the
indow is a constant function of the Gaussian’s 𝜎, while the width changes with the

atitudinal position of the point. The Gaussian window appears approximately square
nce projected in a viewport (bottom-right corner) or back-projected on the sphere
bottom-left corner).

Fig. 4. Mock-up data showing a longitudinal and latitudinal linear progression plotted
with 2D Gaussian kernels in order to demonstrate how the distortions obtained from
an equirectangular projection increase as a function of the distance to the equator.
The red lines delimit an artificial viewport’s position, which projection appears in the
bottom right. The equirectangular map is used as the background and is back-projected
on the sphere in the bottom-left corner. It can be observed that the red bands covering
both poles completely (top and bottom of the equirectangular map) appear as isotropic
Gaussian kernels on the sphere.

The Gaussian kernels drawn are isotropic on the sphere, but not on
the equirectangular map due to the latitudinal distortion resulting from
the cylindrical projection (Fig. 4). The default 𝜎 of the Gaussian kernel
is set to 2◦, this value should be evaluated taking into consideration
the precision of the eye tracking device used and the size of the para-
fovea. Someone accustomed to saliency maps created from traditional
screen presentation set-ups may note that an equirectangular saliency
map appears quite sparse unless many sample points are provided.
One has to keep in mind, that while a desktop display may represent
approximately 30 to 40◦ on both axes in a viewer’s field of view, the
equirectangular map represent content measuring 360 by 180◦.

The most common case for saliency data is in relation to fixa-
tion positions, generated to obtain information about where observers
looked the most, this type of information can be compared between
experimental conditions (see Section 2.4). Saliency maps can also be
obtained from raw data instead of fixations. The resulting maps will
implicitly encode information about a fixation’s duration: A longer
lasting fixation will be made of more eye data samples than a shorter
one, as such a long fixation will result in the accumulation of many
more Gaussian kernels drawn at the sample position, and thus will
become more salient. Before producing saliency from raw data one
should consider that the increase in gaze samples to draw will result
in longer computation times.

Video saliency maps can be generated to support protocols showing
dynamic stimuli, such as videos. In that case, a frame index must be
5

provided along with the raw data, saliency will then be computed
frame-wise. A function is provided to output these saliency frames as
images, an ffmpeg command [43] is generated automatically to splice
images together and produce a saliency video. Blended saliency images
and videos are produced if an image or a video is provided. The saliency
data is added over the original stimulus with an opacity of 70% by
default.

2.3. Scanpath generation

Scanpaths (i.e., a fixation sequence) are saved as CSV-formatted
files containing any of all 10 calculated features (Table 2). Absolute
and relative saccade angles are calculated on the Mercator projection
because it is a conformal projection (conserves angles; Eq. (7)); Eq. (8)
is used in that space to obtain angles between 2D vectors. Eq. (8) also
appears when calculating any distance between points on the sphere,
i.e., when calculating fixation dispersion and saccade amplitude. In
addition to these features, we provide an index of the fixation/saccade,
as well as the start and end timestamps of fixations in order to allow
processing raw data samples on the basis of the fixation/saccade data
segmentation. In the case of head trajectory data the exact same
set of features will be calculated, considering time-window points as
fixations, two such ‘‘fixations’’ make the start and end point of a
‘‘saccade’’.

A second type of scanpath generation is proposed in the form of
images where the succession of fixation positions is represented as
points on a 2D equirectangular map. A colour gradient is used to encode
for fixation order, in addition, lines can be drawn between fixation
points to emphasise the order and visualise saccades. The toolbox offers
options to output this visual representation over a black background or
over the original stimulus viewed when the data was recorded.

2.4. Comparing

Saliency data comparison is achieved by comparing equirectangu-
lar saliency outputs (Section 2.2) with established comparison metrics
adapted to 360◦ stimuli. We made available the following metrics:
AUC (area under the curve; Borji [44] and Judd [45]), CC (cross-
correlation), KLD (Kullback–Leibler divergence), NSS (normalised scan-
path saliency), and SIM (similarity measure; see [15,46] for reviews
of the measures). Implementations of AUC (Borji and Judd), CC, NSS
and SIM are originally by Chencan Qian.2 We added a correction to
CC, KLD, and SIM in the form of a weight vector applied to the
saliency maps, in order to correct for the equirectangular distortions
(latitudinal bias) to give less importance to points near the poles (using
sine function). PyTorch [47] implementations of CC, KLD, NSS and SIM
measures are provided in the interest of performance and compatibility,
though the toolbox will use non-PyTorch implementations by default
which are accelerated with Numba.

Scanpaths (time series of saccade/fixation features) are compared
using the MultiMatch method [48]. This method does not rely on
regions of interest, rather it tries to compare the shape of the scanpaths.
It considers and reports several measures of scanpaths:

• Direction – Difference between saccade relative angles [5] (where
𝑓𝑖𝑥𝑚𝑒𝑟𝑐𝑛 is a fixation position on a 2D Mercator sphere projection;
Eq. (7)):

⃗𝑠𝑎𝑐𝑐𝑛 =𝑓𝑖𝑥𝑚𝑒𝑟𝑐𝑛 − 𝑓𝑖𝑥𝑚𝑒𝑟𝑐𝑛−1

∠ ⃗𝑠𝑎𝑐𝑐𝑛 = − arctan( ⃗𝑠𝑎𝑐𝑐𝑛−1 × ⃗𝑠𝑎𝑐𝑐𝑛, ⃗𝑠𝑎𝑐𝑐𝑛−1 ⋅ ⃗𝑠𝑎𝑐𝑐𝑛)

𝛥𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 =𝐴𝑏𝑠(∠ ⃗𝑠𝑎𝑐𝑐1 − ∠ ⃗𝑠𝑎𝑐𝑐2)

(10)

• Duration – Difference between fixation durations (where 𝑓𝑖𝑥𝑑𝑢𝑟𝑛 is
the timestamp difference between the last and first gaze samples
making up a fixation):

2 https://github.com/herrlich10/saliency retrieved 2018.

https://github.com/herrlich10/saliency
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Table 2
List of saccade and fixation features calculated by the toolbox, and available to be saved in CSV files.

Event Name Description

Fixation Duration Time difference between the last and first samples making up the fixation
Position Average gaze (or head position; centroid) as longitude and latitude, or as a unit vector
Dispersion Average distance of a fixation’s samples to its centroid
Peak velocity Maximum velocity observed during the fixation
Peak acceleration Maximum acceleration observed during the fixation

Saccade Amplitude Angular distance between first and last saccade sample on the sphere
Absolute angle Angle between the saccade vector and the longitudinal axis
Relative angle Angle between two consecutive saccade vectors
Peak velocity Maximum velocity observed during the saccade
Peak acceleration Maximum acceleration observed during the saccade
Fig. 5. Screenshot of the display options, outputs, and settings provided by the GUI.
(

𝛥𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = 𝐴𝑏𝑠(𝑓𝑖𝑥𝑑𝑢𝑟1 − 𝑓𝑖𝑥𝑑𝑢𝑟2 ) (11)

• Length – Difference between saccade lengths (where 𝑓𝑖𝑥𝑛 is 3D
unit vector for a fixation position on the unit sphere):

𝑠𝑎𝑐𝑐𝑎𝑚𝑝𝑙𝑛 = arccos(𝑓𝑖𝑥𝑎𝑛 ⋅ 𝑓𝑖𝑥
𝑏
𝑛)

𝛥𝐿𝑒𝑛𝑔𝑡ℎ = 𝐴𝑏𝑠( ‖ ⃗𝑠𝑎𝑐𝑐𝑎𝑚𝑝𝑙1 ‖ − ‖

⃗𝑠𝑎𝑐𝑐𝑎𝑚𝑝𝑙2 ‖)
(12)

• Position – Angular distance between fixation positions on sphere
(where 𝑓𝑖𝑥𝑛 is 3D unit vector for a position on the unit sphere):

𝛥𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = arccos(𝑓𝑖𝑥1 ⋅ 𝑓𝑖𝑥2) (13)

• Shape – Difference between saccade ‘‘shapes’’ (where ⃗𝑠𝑎𝑐𝑐𝑚𝑒𝑟𝑐𝑛 is a
2D vector in Mercator space):

𝛥𝑆ℎ𝑎𝑝𝑒 = ⃗𝑠𝑎𝑐𝑐𝑚𝑒𝑟𝑐1 − ⃗𝑠𝑎𝑐𝑐𝑚𝑒𝑟𝑐2 (14)

Note that the measures are normalised between 0 and 1, allow-
ing them to be interpreted as a percentage of dissimilarity and to
be averaged together to produce a general single-value dissimilarity
score. Thus, all measures are divided by pi, apart from the duration
metric which is divided by the maximum duration observed in the two
scanpaths compared.

When comparing dynamic saliency maps or scanpaths, data is
compared over sequential windows of adjustable duration. For every
time window we calculate gaze features, then we average the results
over the time windows.

2.5. Visualising

We created a graphical interface based on OpenGL and Qt5 to
visualise gaze data. The following will launch it from the command
line:

python -m Salient360Toolbox.visualise

We recommend the following uses:
6

• Assessing data quality, by estimating noise levels in raw data to
determine if a better calibration procedure is required;

• Confirming that the to-be-processed data is what is expected by
the toolbox (e.g., up in the data is north for the toolbox);

• Experimenting with gaze-parsing parameters by plotting fixation
points over saliency maps calculated from raw data sample posi-
tions: a fixation is made of many samples at approximately the
same position, thus its location will appear salient and it is easy
to identify salient areas that are missing a fixation dot over them
as a fixation missed by the gaze-parsing algorithm.3

The GUI boasts a fair number of options and presets, one can
overwrite the default settings by adding to the command line call
(e.g., ‘‘[...] --settings VP.mult=5’’, will make the viewport’s
size five times the default), the list of available settings is provided
by calling ‘‘[...] --show-settings’’. One can load settings from
a file in this manner: ‘‘[...] --load-settings settings.set’’
(settings.set is provided as an example in the toolbox repository). Still
in the terminal call one can provide any number of paths to files or
directories as free parameters. Paths leading or containing images or
videos will be loaded and set as the equirectangular background image,
while the toolbox will attempt to parse, process, and display all CSV
data files.

The GUI allows for a visual assessment of the quality of the data, to
experiment with parameters related to the processing and generating
functions (Fig. 5). The GUI implements exporting functionalities to
output saliency maps (it does not support dynamic stimuli), scanpath as
coloured points on the original stimulus (Fig. 2) or fixation lists with
the features of your choice. The GUI offers an equirectangular view
window on which gaze data appears as points (raw gaze sample or
fixation position) over an image, a greyscale saliency map or an image
blending the stimulus with the saliency data (Fig. 6). This view also
presents a sphere on which the equirectangular data is back-projected
(lower-right), along with a viewport (lower-right) approximating what

3 Here are the steps to achieve this, (1) drop a raw data file over the GUI,
2) in ‘‘display’’ toggle ‘‘saliency map’’ and ‘‘fixation map’’, (3) in ‘‘Settings’’ set

‘‘Data’’ to ‘‘Raw gaze sample’’, (4) in the same section click on the ‘‘Update
data’’ button.
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Fig. 6. Screenshot of the equirectangular rendering in the GUI with a sphere (lower-left) and a viewport (lower-right) showing other projections of the data.
Table 3
A file will be identified as a fixation list file as long as either
equirectangular or unit sphere positions are provided. Non-alphabetic
characters are removed before looking up column names to simplify
the process: x.gaze is parsed as xgaze. Custom column names should be
added in functions FindFixlistFeaturesByHeader of file helper.py.
Data Accepted column names

Equirectangular Longitude long, longitude, longgaze
position Latitude lat, latitude, latgaze

Unit sphere X x, xsph, xgaze
position Y y, ysph, ygaze

Z z, zsph, zgaze

Timestamp time, starttimestamp
timestamp, timestart

Duration dur, duration

Index idx, index, i

would be perceived in a XR headset. The viewport’s boundary appears
on the equirectangular map as a deformed square with a red border.

If a CSV file is dropped over the equirectangular view, the toolbox
will check if it contains raw gaze data or if it is a fixation list containing
a series of fixation positions by checking the file’s column names
(Table 1 for raw file and Table 3 for fixation list files). The content will
then be processed to produce saliency maps and scanpath data (raw
and fixation sequence). If the Control key is pressed while dropping a
text file, its data will be added to what was currently on screen instead
of replacing it. Additionally, if a directory is dropped onto the GUI, the
toolbox will attempt to use all files within (irrelevant of whether they
are images, videos or text files). Internally, a list of path to files is stored
and each file is reloaded to be processed anew if relevant settings are
modified (e.g., gaze-parsing parameters).

3. Usages

One can use the toolbox one of three ways:

• Scripting interface (Python)
• Command line interface (CLI)
• Graphical user interface (GUI)
7

The scripting interface allows the most control of the toolbox, we
recommend it for processing entire databases. We wrote a ‘‘helper’’
module (helper.py) to simplify accessing the most used procedures.
For example, getting features of saccades and fixations from raw data
requires parsing a file, processing raw data, labelling samples as fix-
ation or saccades, then calculating features such as fixation duration
or saccade amplitude. This is streamlined as the getFixationList
function which takes as input a path to a CSV file along with parame-
ters related to all the steps involved (e.g., resampling, gaze-parsing).
The function will deduce the variables it needs from the CSV file’s
header. Similarly, the getSaliencyMap functions takes as input a
fixation list (part of the output from getFixationList) and returns
a saliency maps, along the way it handles static and dynamic saliency
generation, and caching the raw saliency data.

Below is an example of reading, processing, and generating outputs:

# Tracking can be HE (Head+Eye) or H (Head alone)
tracking = "HE"
# Targeted eye
eye = "R"
# Resampling rate
resample = 120
# Filter settings
filterSettings = {"name": "savgol", "params": {"win": 9,

"poly": 2}}↪

# Gaze parsing settings
parsingSettings = {"name": "I-VT", "params": {"threshold":

120}}↪

# Dimensions of output images (Height, Width)
dim = [500, 1000]
# Path to CSV file containing raw gaze data
path_raw_file = "/PATH/TO/FILE.csv"
# Path to image stimulus (or video)
path_stim = "/PATH/TO/IMAGE.png"
# Path to write outputs in
path_out = "./"
savename = "example"

from Salient360Toolbox import helper

# Get processed raw data and list of fix/sacc features
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gaze_data, fix_list = helper.loadRawData(path_raw_file,
# If gaze tracking, which eye to extract
eye=eye,
# Gaze or Head tracking
tracking=tracking,
# Resampling at a different sample rate?
resample=resample,
# Filtering algo and parameters if any is selected
filter=filterSettings,
# Fixation identifier algo and its parameters
parser=parsingSettings)

# Generate saliency map from loaded data
sal_map = helper.getSaliencyMap(fix_list[:, [2,3,4,

0,1]], dim,↪

# Name of binary saliency file created for caching
purposes↪

name=savename,
# If a binary file exists at this location we load the

saliency data from it, unless force_generate is
True. Saliency will be saved if caching is True

↪

↪

path_save=path_out,
# Sigma of the 2D Gaussian drawn at the location of

fixations↪

gauss_sigma=2,
# Asks to return saliency data rather than a path to a

saliency data file if it exists↪

force_return_data=True,
# Generate data instead of reading from pre-existing

file↪

force_generate=False,
# Will save saliency to binary file to fast load at a

later time↪

caching=True)

# Get a fixation map (2d matrix with number of fixations
observed at each pixel location)↪

fix_map = helper.getFixationMap(fix_list[:, :2], dim)

from Salient360Toolbox.generation import saliency as
sal_generate↪

from Salient360Toolbox.generation import scanpath as
scanp_generate↪

sal_image = sal_generate.toImage(sal_map,
cmap="coolwarm")↪

# (fig 2.a) Save fixation map as a gray scale image
fix_map_img = sal_generate.toImage(fix_map,

cmap="binary", reverse=True)↪

sal_generate.saveImage(fix_map_img, path_out + savename
+ "_fixmap")↪

# (fig 2.b) Save saliency map as greyscale image
sal_generate.saveImage(sal_map / sal_map.max() * 255,

path_out + savename + "_salmap")↪

# Save saliency map with as colour map
sal_generate.saveImage(sal_image[:,:, [2,1,0]],

path_out + savename + "_csalmap")↪

# (fig 2.c) Save saliency map blended with stimulus
sal_generate.saveImage(sal_map, path_out + savename +

"_bsalmap", blend=path_stim)↪

# (fig 2.d) Save stimulus with fixation points drawn over
it↪

scanp_generate.toImage(fix_list[:, :2], dim, path_out +
savename + "_bscanpath", blend=path_stim)↪

# Save scanpath data (fixation and saccade features) to

file↪ c

8

scanp_generate.toFile(fix_list, path_out + savename +
"_fixation.csv",↪

# Save all features
saveArr=np.arange(fix_list.shape[1]), mode="w")

The CLI gives access to the toolbox through a terminal or invoked
via another process. It exposes all functionalities of the toolbox, as
well as some of the simplicity of the GUI (see below) by sharing batch
processing functionalities (via helper.py functions), based on passing
directory as an argument and loading all text file within.

The GUI is the most limited of the three solutions because it does
ot allow batch processing of files in order to automatically produce
utputs for a database. Nevertheless, as described previously visually
ssessing data is an important step in many experimental and data
cience processes. The GUI’s state is updated via its options and settings
Fig. 5) and by drag-and-dropping a file onto the graphical interface.
hen registering a file drop event the toolbox will attempt to identify

he file type. If it is an image it will be loaded in memory and will be
et as the background image (replacing the current one if necessary).
s for a video file, OpenCV’s video capture module is used to extract a

rame. In the case of a text file (CSV or otherwise) the toolbox will parse
he first line as a header listing the file’s column names (separated by
ommas) in order to identify it as a raw data file or a fixation list file
see Section 2.1 and Section 2.5 for more information on this process).

. Conclusion

The advent of extended reality devices with embedded eye trackers
llows for interactive and omnidirectional viewing conditions with
nrestricted movements, and easy tracking of head and eye rotations to
tudy eye-in-space behaviour in immersive and controlled conditions.
s such, scientific and industrial communities have enthusiastically
een improving and using XR devices more and more. Today we share
ith the community the Salient360! toolbox: a complete set of tools
edicated to handling eye-in-space data. We provide implementations
hat cover processing, comparing, generating, and visualising gaze
ata. The toolbox’s functionalities also support processing head move-
ents alone, and support dynamic stimuli (e.g., video saliency output).
e project to continuously improve the toolbox as method standards

volve, in particular we plan the following additions in the short
erm: new choices of gaze-parsing algorithms (saccade and fixation
dentification) dedicated to 3D and omnidirectional data (e.g., [49,50]),
he addition of estimated vergence distance data [22], better support
or dynamic stimuli with the identification of smooth pursuits [49].
n addition, saliency maps, scanpaths and data visualisation are here
imited to omnidirectional contents projected onto a sphere (i.e., 360◦

mages or videos). Future work should consider projecting gaze data
nto the geometry of a 3D scene, and creating tools that allow the
nalyses of saliency data and scanpaths in that domain [51]. We hope
hat our work will make analysing 3D gaze data more accessible for
roups that do not have the skills and tools needed to analyse 3D gaze
ata. Example uses of the Salient360! toolbox may be (1) to visually
ssess the quality of the data obtained from a new protocol or device,
2) to process raw gaze into fixations to calculate dwell time on objects
n 3D scenes or segmented regions of interest on flat 360◦ stimuli, (3)
o measure the complexity of visual exploration patterns in 360◦ scenes
e.g., scanpath length or saccade direction distribution), (4) to compare
ixation durations or saccade amplitudes (eye, head, or gaze) across
ime and/or between experimental group conditions, (5) to produce
aliency maps and investigate how experimental groups diverge in
erms of where they looked in scenes, etc. With the release of this
oolbox we anticipate discussions about best practices and methods
hat will certainly lead to improvements and consensus within the

ommunities relying on 3D head and eye tracking.

Antoine Coutrot
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