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We realize textbook experiments on Bose-Einstein condensate tunneling through thin repulsive
potential barriers. In particular, we demonstrate atom tunneling though a single optical barrier
in the quantum scattering regime where the de Broglie wavelength of the atoms is larger than the
barrier width. Such a beam splitter can be used for atom interferometry and we study the case of
two barriers creating an atomic Fabry-Pérot cavity. Technically, the velocity spread of the atoms is
reduced due to the use of a 39K Bose-Einstein condensate with no interactions. The potential barriers
are created optically and their width is tunable due to the use of a digital micro-mirror device. In
addition, our scattering experiments enable in situ characterization of the optical aberrations of the
barrier optical system.

Particle quantum tunneling is a phenomenon in
which a particle passes through a potential energy
barrier, which according to classical mechanics should
not be passable due to insufficient energy. It is
a direct consequence of the wave-nature of matter
and is described by the Schrödinger equation [1].
Experimentally, it was first observed for electrons in
semiconductors by L. Esaki [2], who then used this
effect to build electronic diodes [3]. The scanning
tunneling microscope is an important application based
on quantum tunneling [4].

Equivalently, atoms can also exhibit quantum (wave)
behavior, although they need to be cooled to ultralow
temperatures. Ultracold atoms are indeed used
both for precision measurements using matter-wave
interferometers [5] or for the study of quantum many-
body physics [6]. Tunneling of atoms between sites of
an optical lattice [7] or of a double well-potential [8]
is a commonly observed phenomenon. In a waveguide
configuration in which the atoms move, beam splitting
was realized through Bragg scattering [9], quantum
reflection from the attractive potential close to a solid
surface was observed [10, 11] and tunneling was studied
in a transport experiment between two unbalanced
fermionic reservoirs [12].

In the simple textbook experiment of an atom crossing
a single potential barrier, the interesting regime of
coherent splitting requires a barrier size σ comparable
to the atom de Broglie wavelength λdB = h/mv,
where m is the atom mass, v the atom velocity,
and h the Planck constant. Unless one uses an
advanced technique to create sub-wavelength potential
patterns [13], the minimum optical barrier size is
limited by diffraction and it thus requires one to
reduce and control v to sub-millimeter per second
velocities. As a consequence, there have been only
a few experiments on quantum tunneling through
optical barriers with a moving Bose-Einstein condensate
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(BEC) [14–18]. The low velocity thin barrier regime,
characterized by λdB ≫ σ and also called the quantum
scattering regime, has never been directly observed. In
contrast, numerous theoretical studies have explored
atomic tunneling phenomena, considering various barrier
shapes and incorporating interactions within BECs
[19–21]. Matter-wave Fabry-Pérot interference using
two consecutive barriers remains to be observed with
potential applications for narrowing the atomic velocity
distribution in precision measurements apparatus [22].

In the past ten years, digital micro-mirror devices
(DMDs) have been shown to be a great tool to impose
arbitrary potentials in ultracold-atom experiments [23–
27]. For example, box traps permit one to study gases
at a constant density [24, 27] and donut-shape traps are
nice for the study of superfluid rotation [28]. Thanks
to their versatility and the novel possibilities they offer,
DMDs are increasingly used. The optical resolution of
such setups is usually measured before their installation
in the ultracold atom experiment and not characterized
in situ.

In this paper we perform atom tunneling experiments
through simple and double repulsive optical barriers. The
barriers are generated through a DMD setup allowing
the adjustment of the barrier width and position. The
fine control of the atom velocity is achieved by using
a 39K condensate that can be made non-interacting
due to Feshbach tuning [29]. For single barriers, we
are able to distinctly show the two different regimes of
scattering. When λdB < σ, the scattering is essentially
classical. The transmission curve as a function of barrier
height is close to a step function although rounded by
quantum effects. When λdB > σ, the transmission
curve corresponds to the one expected for a δ potential.
It is the quantum scattering regime. We then realize
double barrier potentials. Interestingly, we observe
oscillations of the transmission as a function of the
distance between the two barriers. By comparison to
numerical simulations, this behavior is interpreted as
originating both from atomic Fabry-Pérot interference
and from optical interference due to the oscillatory
behavior of the point spread-function (PSF) of the optical
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system. Interestingly, our results with various DMD
patterns permit in situ characterization of the PSF.

The experiments start with the production of 39K
Bose-Einstein condensates in the |F = 1,mF = 1⟩ state
by evaporation at 393 G, where the scattering length a is
∼130 a0 ( a0 is the Bohr radius) in a crossed optical dipole
trap [30]. The main horizontal optical trapping beam
has a 40-µm waist, creating an atomic waveguide with
cylindrical symmetry and the longitudinal confinement
comes from a second optical beam with a 150-µm
waist. The final preparation stage takes 100 ms in which
the trap frequencies are modified from (ω⊥, ω∥)/2π =
(115, 47)Hz to (ω⊥, ω∥)/2π = (120, 16)Hz, and the
magnetic field is swept to 350 G in close proximity to
the magnetic field where we observe collapse of the
condensate due to the change of sign of the scattering
length [31]. The gas is then almost non interacting [32].
When the second optical trap is switched off, we observe
a very slow expansion of the condensate in the remaining
optical waveguide, which corresponds to a mean energy of
h×8 Hz or equivalently to a velocity spread upon release
∆v0 ∼ 0.35mm/s [33]. This is only slightly higher
than the kinetic energy hω∥/8π expected from a non-
interacting condensate. There is also a residual ∼20%
non condensed atomic fraction that expands much faster
∆vthermal ∼ 2.6mm/s.

The optical barriers at 532 nm (Verdi V18, Coherent)
are created with an optical setup using a digital micro-
mirror devices (DLP-6500, Texas Instrument). The
DMD is composed of a matrix of 1920x1080 small square
mirrors of pitch size p =7.56µm. Each of them can take
two different angles ±12◦. The DMD is illuminated by a
large collimated beam at an angle of 24◦. We then select
only the most intense order of diffraction orthogonal to
the DMD that corresponds to the specular reflection
and image the DMD plane on the atoms through a
custom-made objective. This objective is composed of
three spherical lenses and has an overall focal length of
41.16 mm at 532 nm. The numerical aperture is 0.27.
The distance from the DMD to the objective is 1.5m
such that the demagnification factor is 38.5 and the
effective pixel size in the atomic plane is measured to
be p=0.196µm. The objective design takes into account
the glass cell and theoretically gives perfect diffraction-
limited performances and an Airy function as PSF. In the
following, we use one-dimensional (1D) DMD patterns
made of lines perpendicular to the propagation of the
atoms. In that case, a more relevant quantity is the
1D amplitude PSF which is theoretically a sinc function.
Given the numerical aperture, the first zero of the sinc
function should theoretically correspond to σth =1.0µm
in the atomic plane (Fig. 1).

The experiment consists in releasing the Bose-Einstein
condensate into the horizontal optical waveguide (by
switching off the second optical trapping beam) and
accelerating the atoms toward the optical barriers. The
longitudinal acceleration is induced by a magnetic field
gradient and is g =0.40 m/s2. The collision with
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FIG. 1. Schematic of the experiment. A Bose-Einstein
condensate is released and accelerated in an optical waveguide
toward a potential barrier. This potential is made with a
DMD optical setup at 532 nm. The measured quantities are
the transmitted and reflected atom numbers after the collision
when the two clouds are well separated. An example of a
measured longitudinal density profile is shown.

a potential barrier results in partial reflection and
transmission of the atomic cloud. The propagation
time in the waveguide (between 15 and 30ms) is chosen
such that the atoms meet the barrier once and such
that the reflected and transmitted atomic clouds are
spatially full separated (Fig. 1). Finally, the main
optical trap is switched off and the magnetic field is
quickly brought to zero such that after a 1.3 ms time of
flight the two transmitted and reflected atomic clouds
are simultaneously imaged by fluorescence imaging.
The transmission can thus be determined in a single
realization of the experiment with no influence of the
condensate atom number fluctuation. Choosing the
distance d from the initial trap to the barrier position
(typ. between 15 and 100µm), we control the speed of
the atoms when they meet the barrier. We can also vary
the barrier height through an acousto-optic modulator
that modifies the 532 nm light power sent to the DMD.
The barrier transmission can then be studied for different
conditions. A key parameter is the ratio of the de Broglie
wavelength of the atoms λdB = h/mv to the barrier
width σ. Another important parameter is the atomic
velocity spread ∆v when the atoms meet the barrier.
Interestingly, since we keep the acceleration on for the
whole sequence, ∆v is not directly given by ∆v0 [34]. The
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kinetic energy of an atom with an initial velocity v0 at a
distance d from the barrier is Ek = 1

2mv2 = 1
2mv20+mgd.

For our parameters, the second term dominates such that
v ≈

√
2gd and ∆v/v ≈ ∆x/2d ≪ 1 where ∆x ≈ 3.5µm

is an estimated rms initial size of the cloud knowing the
longitudinal trap frequency and the measured expansion
energy.

We first focus on a case of high atom velocity 8.6mm/s
(λdB = 1.2µm) and a barrier made of ten pixels on
the DMD, which corresponds to a size σ0 = 1.96µm
on the atoms. In that case, we expect diffraction and
optical aberrations to only slightly enlarge the barrier
width σ ∼ σ0. The transmission as a function of the
barrier height is observed to be a step function although
smoothed in the region of the transition (Fig. 2). Such
a behavior is indeed expected in the classical regime,
λdB < σ. The 50% transmission is then obtained when
the barrier height V0 corresponds to the kinetic energy
of the atoms. The data can be directly compared to
numerical simulations that consist in solving the 1D time-
independent Schrödinger equation for an incoming plane
wave. The ratio of the transmitted plane wave to the
incoming plane wave amplitudes gives the transmission.
The simulation globally matches the experimental data.
The fact that the experimental transmission does not
really span from 1 to 0 in our data is a consequence
of thermal atoms whose behavior is not included in the
simulation. For example, some thermal atoms due to
their backward initial velocities have not encountered the
barrier in the time of the experiment although they are
counted as reflected.
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FIG. 2. Transmission in the classical regime σ ∼ 2µm>
λdB = 1.2µm. The transmission is plotted as a function of
the barrier height V0 that is normalized to its maximum value
Vmax obtained at full laser power. The points are single shot
experimental data. The solid line is the curve expected from
simulations, with the theoretical sinc PSF and assuming no
velocity spread of the atoms. The barrier height is the only
fit parameter. Some typical statistical error bars are shown.

The previous results can be compared to the situation
at low atom velocity 3.7 mm/s (λdB = 3.0µm) and

a barrier made of three pixels on the DMD. The size
of the potential barrier is then mostly given by the
resolution of the imaging system. The transmission
curve then qualitatively changes shape with a smooth
decaying behavior. Such a behavior is expected in
the quantum regime λdB > σ. In that case, the
barrier width is not resolved by the atoms, the barrier
can be theoretically replaced by a δ potential and the
corresponding analytical transmission curve matches the
experimental data. As previously, deviations from the
theoretical transmission curve are probably coming from
the thermal gas contribution (Fig. 3).
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FIG. 3. Transmission in the quantum regime σ ∼ 1µm<
λdB = 3.0µm. The solid line corresponds to the expected
transmission for a δ potential barrier (1/(1+V 2

0 /V
2
ref) and no

velocity spread of the atoms. Here Vref is fitted to the data.

In both previous cases, the shape of the transmission
curve is not very dependent on the actual PSF of the
imaging system. Indeed, in the first case, the barrier
width is dominated by the number of pixels creating
the potential on the DMD, whereas in the quantum
case, the width is not resolved by the atoms. In order
to experimentally access the PSF and its width, we
turn to a different experiment where we compare at a
constant velocity (5 mm/s), the measured 532-nm power
that is necessary to reflect 50% of the atoms for different
barrier widths (Fig. 4). For our parameters (although
we are not always strictly in the classical regime), the
50% transmission is numerically found to correspond
to the situations where the barrier height equals the
kinetic energy V0 = Ekin. Such an experiment thus
permits one to measure the relative barrier maxima for
barriers made of different numbers of pixels Npix or
equivalently of different width σ0. The exact barrier
shape is the absolute value square of the convolution
of the amplitude PSF with door functions of variable
width σ0 = Npixp. In the limit of small σ0, the barrier
maximum is proportional to σ2

0 as the field interferes
constructively. In this case, the 50% transmission power
scales as 1/σ2

0 . On the contrary, for large barrier size,
we expect the barrier maximum height and thus also the
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FIG. 4. Optical power P50 needed to reflect 50% of the atoms
as a function of the barrier width σ0. The optical power is
normalized to its maximum value Pmax. The mean atomic
velocity is 5mm/s, corresponding to a λdB = 2.0, µm. The
dashed (solid) line corresponds to the numerical result with
a sinc PSF with σres = 2.0µm (the ansatz PSF). The real
(dash-dotted line) and imaginary (dotted line) parts of the
ansatz PSF are plotted in the inset (see the textfor details).

50% transmission power to be independent of σ0. These
two limiting behaviors are experimentally observed (Fig.
4). The change of behavior occurs when the resolution
of the imaging system is of the order of σ0. Assuming
a sinc PSF with a resolution σres, we can calculate the
barrier maximum for each barrier width σ0. We find that
in order to reproduce the observed power ratio between
the two limiting regimes, we need σres ≈ 2σth = 2.0µm
(dashed curve in Fig. 4). However, the whole curve is not
well fitted, in particular for barrier widths between 2 and
5 µm. Our results thus point toward a PSF modified
by optical aberrations, i.e. not a sinc function. The
consideration of a more complex PSF as presented below
permits us to better match the observation (solid curve
in Fig. 4).

We now turn to transmission experiments through
double barriers. In this series of experiments, we use a
velocity of 3.3mm/s, barrier widths of two pixels and 75%
of the maximum power available. For such parameters,
the transmission through a single barrier is ∼70%. We
then vary the distance l between the two barriers and, as
previously, study the transmission (Fig. 5). Interestingly,
the transmission shows oscillations as a function of the
barrier distance. However, one should be careful in
directly interpreting them as Fabry-Pérot peaks. First,
in contradiction to the expectation, they do not reach
100% transmission. Second, the peaks are not precisely
positioned at multiples of λdB/2. Note that for larger
barrier distances, the transmission is essentially constant
to ∼ 50% [35].

In order to interpret our data, two important
ingredients have to be taken into account. First,
the atoms have a velocity spread that can eliminate
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FIG. 5. Transmission through two barriers as a function of
the distance between them. The mean atomic velocity is ∼
3.3mm/s (λdB = 3.1µm). The solid line is the numerical
solutions with the ansatz PSF (see the text for details) and
a velocity spread ∆v = 0.25mm/s. The dashed line is the
numerical solution for monokinetic atoms. In this last case,
the Fabry-Pérot resonance peaks are resolved.

interference effects. It can be estimated to ∆v =
0.25mm/s from the experimental parameters and can be
considered in simulations by averaging the transmission
over the velocity distribution. Second the studied barrier
distances are not much larger than the resolution of
the optical system. We should thus take into account
that the barriers have some width and moreover that
the optical fields originating from the two DMD regions
may interfere as we use coherent light. In principle,
the exact calculation of the optical profile requires the
knowledge of the amplitude PSF of the optical objective
(with its real and imaginary parts), which differs from
the theoretical one. In preliminary measurements, prior
to the installation on the atoms, the image of a point
source (corresponding to the intensity PSF) appeared
to be diffraction limited up to a numerical aperture of
∼ 0.15. The outer part of the objective only marginally
contributed to the reduction of the size of the central
image spot and was rather observed to add a broad
background. We attribute this effect to imperfectly
manufactured (non-spherical) lenses. A reasonable
ansatz ampltitude PSF is thus a sinc function originating
from the central part of the objective in addition to a
Gaussian broader background originating from the outer
part of the objective. For simplicity and because there is
no reason to assume a given phase relation between the
two components, we chose the Gaussian component to
be imaginary such that there is no interference with the
real sinc function.

With such an ansatz, we can calculate the optical
potential and simulate the experimental transmission.
We then adjust the PSF parameters to reproduce the
experimental findings of both Fig. 4 and 5. We
find that the amplitude PSF EPSF ∝ sinc(πx/σsinc) +
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iAG exp(−x2/2σ2
G) with σres = 1.30µm, σG = 2.07µm,

and AG = 0.53 (see the inset in Fig. 4) permits us to
reasonably match the data (Fig. 4 and 5). Although, the
actual PSF certainly differ from our ansatz, we expect
the latter to capture its main features such as its size
and its negative real part. Using the previous ansatz
PSF, we also plot in Fig. 5, the expected transmission for
monokinetic atoms. In that case, the transmission does
reach 100% for specific barrier distance corresponding to
Fabry-Pérot resonances. The precise resonance positions
depend on the atom velocity, leading to a broadening
of the transmission peaks after velocity averaging. This
sensitivity to the velocity increases as a higher-order
Fabry-Pérot resonance (at larger barrier distance) is
considered. We thus find that the first Fabry-Pérot
resonance peak is resolved but not the second and third
ones which merge into a single broad peak. Note also that
the monokinetic resonance peaks are not equally spaced.
This is due to optical interference between the optical
fields originating from the different areas on the DMD.
The precise potential barrier heights and positions are
slightly affected by the positive to negative oscillations of
the amplitude PSF. In particular, for a barrier distance
of ∼ 1.9µm (∼ 3.2µm), the barrier heights are minimum
(maximum), because the sinc function is maximally
negative (positive) at those distances. Overall, we thus
attribute the observed oscillations in the transmission
to a combination of Fabry-Pérot interference and optical
interference due to an oscillatory PSF.

In conclusion, we have realized several textbook
experiments on atomic transmission through optical
barriers. Key advantages of our experiments are the
use of non interacting Bose-Einstein condensates and
a digital micro-mirror device for the tuning of the
barrier characteristics. We clearly demonstrated both

the classical and quantum regimes of atomic scattering
on a single optical barrier by adjusting both the barrier
width and the de Broglie wavelength, or equivalently, the
speed of the atoms. We then realized an atomic Fabry-
Pérot interferometer based on two potential barriers
and were able to resolve the first Fabry-Pérot resonance
peak. Interestingly, our setup using a DMD to produce
the optical barriers allows for experiments with varying
barrier widths and distances permitting an in situ
estimation of the PSF of the optical system. Technical
improvements, such as further reduction of the atom
velocity spread using delta-kick cooling technique [36]
and/or the engineering of moving barriers using the
high switching rate capabilities of DMDs [37, 38] could
lead to the observation of a complete atom Fabry-Pérot
resonator spectrum.

In the future, the capacity to realize coherent beam
splitters from single barriers could be important in the
context of atom interferometry. A matter-wave Fabry-
Pérot interferometer acting as a gravimeter has been
proposed [39]. In addition, our results open prospects
for the study of the influence of interactions on collisions
with potential barriers [19–21]. Scattering of a bright
soliton on a barrier has been predicted to lead to non-
classical NOON states [40–43]. In the case of a Fabry-
Pérot interferometer, interactions are expected to lead to
quantum effects such as squeezing of the outgoing atomic
cloud or atomic blockade [44].
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