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We realize textbook experiments on Bose-Einstein condensate tunnelling through thin repulsive
potential barriers. In particular, we demonstrate atom tunnelling though a single optical barrier
in the quantum scattering regime where the De Broglie wavelength of the atoms is larger than the
barrier width. Such a beam splitter can be used for atom interferometry and we study the case of
two barriers creating an atomic Fabry-Pérot cavity. Technically, the velocity of the atoms is reduced
thanks to the use of a 39K Bose-Einstein condensate with no interactions. The potential barriers
are created optically and their width is tunable thanks to the use of a digital micro-mirror device.
In addition, our scattering experiments enable in-situ characterization of the optical aberrations of
the barrier optical system.

Particle quantum tunneling is a phenomenon in which
a particle passes through a potential energy barrier, that
according to classical mechanics should not be passable
due to insufficient energy. It is a direct consequence
of the wave-nature of matter and is described by the
Schödringer equation [1]. Experimentally, it was first ob-
served in 1957 by L. Esaki for electrons in semiconductors
[2], who then used this effect to build electronic diodes
[3]. The scanning tunnelling microscope is an important
application based on quantum tunnelling [4].

Equivalently, atoms can also exhibit quantum (wave)
behavior, although they need to be cooled to ultralow
temperatures. Ultracold atoms are indeed used both for
precision measurements using matter-wave interferome-
ters [5] or for the study of quantum many-body physics
[6]. Tunnelling of atoms between sites of an optical lat-
tice is a commonly observed phenomenon [7]. In a wave-
guide configuration, beam splitting was realized through
Bragg scattering in lattices [8]. Quantum reflection from
the attractive potential close to a solid surface was also
observed [9, 10].

In the simple textbook experiment of an atom cross-
ing a single potential barrier, the interesting regime of
coherent splitting requires a barrier size σ comparable to
the atom De Broglie wavelength λdB = h/mv, where m
is the atom mass, v the atom velocity, and h the Planck
constant. Since the minimum optical barrier size is lim-
ited by diffraction to the optical wavelength, it thus re-
quires to reduce and control v to sub-millimeter per sec-
ond velocities. As a consequence, there have been only
a few experiments on quantum tunnelling through opti-
cal barriers with Bose-Einstein condensate (BEC) [11–
15]. The low velocity thin barrier regime, characterized
by λdB ≪ σ and also called to the quantum scatter-
ing regime, has never been clearly observed. In con-
trast, numerous theoretical studies have explored atomic
tunneling phenomena, considering various barrier shapes
and incorporating interactions within Bose-Einstein con-
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densates (BECs) [16–18]. Matter-wave Fabry-Pérot in-
terference using two consecutive barriers remains to be
observed with potential applications for narrowing the
atomic velocity distribution in precision measurements
apparatus [19].

In the last ten years, digital micro-mirror devices
(DMD) have been shown to be a great tool to impose
arbitrary potentials in ultracold atom experiments [20–
24]. For example, box traps permit to study gases at a
constant density [21, 24] and donut shape traps are nice
for the study of superfluid rotation [25]. Thanks to their
versatility and the novel possibilities they offer, DMDs
are increasingly used. The optical resolution of such se-
tups is usually measured before their installation in the
ultracold atom experiment and not characterized in-situ.

In this paper, we perform atom tunnelling experiments
through simple and double repulsive optical barriers.
The barriers are generated through a DMD setup allow-
ing the adjustment of the barrier width and position.
The fine control of the atom velocity is achieved by us-
ing a 39K condensate that can be made non-interacting
thanks to Feshbach tuning [26]. For single barriers, we
are able to distinctly show the two different regimes of
scattering. When λdB < σ, the scattering is essentially
classical. The transmission curve as a function of bar-
rier height is close to a step function although rounded
by quantum effects. When λdB > σ, the transmission
curve corresponds to the one expected for a delta poten-
tial. It is the quantum scattering regime. We then realize
double barrier potentials. Interestingly, we observe oscil-
lations of the transmission as a function of the distance
between the two barriers. By comparison to numerical
simulations, this behavior is interpreted as originating
both from atomic Fabry-Pérot interference and from op-
tical interference due to the oscillatory behavior of the
point spread-function (PSF) of the optical system. Inter-
estingly, our results with various DMD patterns permit
in− situ characterization of the PSF.

The experiments start with the production of 39K
Bose-Einstein condensates in the |F = 1,mF = 1⟩ by
evaporation in a crossed optical dipole trap at 393G,
where the scattering length a is ∼130 a0, where a0
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is the Bohr radius [27]. Subsequently, within 100ms,
the trapping frequencies are modified to (ω⊥, ω∥)/2π =
(120, 16)Hz and the magnetic field is adjusted to ∼350G
in close proximity to the magnetic field where we observe
a collapse of the condensate. The gas is then almost non-
interacting [28]. If the axial confinement is removed, we
observe a very slow expansion of the condensate in the
remaining optical waveguide. It corresponding to a mean
energy of h×8Hz or equivalently a velocity spread upon
release ∆v0 ∼ 0.35mm/s. This is only slightly higher
than the kinetic energy hω⊥/8π expected from a non-
interacting condensate. There is also a residual ∼20%
non condensed atomic fraction that expands much faster
∆vthermal ∼ 2.6mm/s.

The optical barriers at 532 nm (Verdi V18, Coher-
ent) are created with an optical setup using a digi-
tal micro-mirror devices (DLP-6500, Texas Instrument).
The DMD is composed of a matrix of 1920x1080 small
square mirrors of pitch size p =7.56µm. Each of them
can take two different angles ±12◦. The DMD is illu-
minated by a large collimated beam at an angle of 24◦.
We then select only the most intense order of diffraction
orthogonal to the DMD that corresponds to the spec-
ular reflection and image the DMD plane on the atoms
through a custom-made objective. This objective is com-
posed of 3 spherical lenses and has an overall focal length
of 41.16mm at 532 nm. The numerical aperture is 0.27.
The distance from the DMD to the objective is 1.5m
such that the demagnification factor is 38.5 and the ef-
fective pixel size in the atomic plane is measured to be
p=0.196µm. The objective design takes into account
the glass cell and theoretically gives perfect diffraction-
limited performances and an Airy function as PSF. In
the following, we use one-dimensional (1D) DMD pat-
terns made of lines perpendicular to the propagation of
the atoms. In that case, a more relevant quantity is the
1D amplitude PSF which is theoretically a sinc function.
Given the numerical aperture, the first zero of the sinc
function should theoretically correspond to σth =1.0µm
in the atomic plane (Fig. 1).

The experiment consists in releasing the Bose-Einstein
condensate into an horizontal optical waveguide where
the atoms are accelerated toward the optical barriers.
The longitudinal acceleration is induced by a magnetic
field gradient and is g =0.20m/s2. The collision with
a potential barrier results in partial reflection and trans-
mission of the atomic cloud that are detected through flu-
orescent imaging (Fig. 1). Choosing the distance d from
the initial trap to the barrier position, we can control the
speed of the atoms when they meet the barrier. We can
also vary the barrier height through an accousto-optic
modulator that modifies the 532 nm light power sent to
the DMD. The barrier transmission can then be studied
for different conditions. A key parameter is the ratio of
the De Broglie wavelength of the atoms λdB = h/mv to
the barrier width σ. Another important parameter is the
atomic velocity spread ∆v when the atom meet the bar-
rier. Interestingly, since we keep the acceleration on for
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FIG. 1. Schematic of the experiment. A Bose-Einstein con-
densate is released and accelerated in an optical waveguide
toward a potential barrier. This potential is made with a
DMD optical setup at 532 nm. The measured quantities are
the transmitted and reflected atom numbers after the colli-
sion when the two clouds are well separated. An example of
a measured longitudinal density profile is shown.

the whole sequence, ∆v is not directly given by ∆v0. The
kinetic energy of an atom with an initial velocity v0 at a
distance d from the barrier is Ek = 1

2mv2 = 1
2mv20+mgd.

For our parameters, the second term dominates such that
v ≈

√
2gd and ∆v/v ≈ ∆x/2d ≪ 1 where ∆x ≈ 3.5µm

is an estimated rms initial size of the cloud knowing the
longitudinal trap frequency and the measured expansion
energy.
We first focus on a case of high atom velocity 8.6mm/s

(λdB = 1.2µm) and a barrier made of 10 pixels on the
DMD. It corresponds to a size σ0 = 1.96µm on the
atoms. In that case, we expect diffraction and optical
aberrations to only slightly enlarge the barrier width
σ ∼ σ0. The transmission as a function of the bar-
rier height is observed to be a step function although
smoothed in the region of the transition (Fig. 2). Such
a behavior is indeed expected in the classical regime,
λdB < σ. The 50% transmission is then obtained when
the barrier height V0 corresponding to the kinetic en-
ergy of the atoms. The data can be directly compared
to numerical simulations that consist in solving the 1D
time-independent Schrödinger equation for an incoming
plane wave. The ratio of the transmitted plane wave to
the incoming plane wave amplitudes gives the transmis-
sion. The simulation globally matches the experimental
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data. The fact that the experimental transmission does
not really go from 1 to 0 in our data is a consequence
of thermal atoms whose behavior is not well captured in
the simulation. For example, some thermal atoms due
to their backward initial velocities have not encountered
the barrier in the time of the experiment although they
are counted as reflected.

FIG. 2. Transmission in the classical regime σ ∼ 2µm>
λdB = 1.2µm. The transmission is plotted as a function
of the barrier height V0 that is normalized to its maximum
value Vmax obtained at full laser power. The points are the
experimental data. The solid line is the curve expected from
simulations, with the theoretical sinc PSF and assuming no
velocity spread of the atoms. The barrier height is the only
fit parameter.

The previous results can be compared to the situation
at low atom velocity 3.7 mm/s (λdB = 3.0µm) and a
barrier made of 3 pixels on the DMD. The size of the po-
tential barrier is then mostly given by the resolution of
the imaging system. The transmission curve then quali-
tatively changes shape with a constantly decaying behav-
ior. Such a behavior is expected in the quantum regime
λdB > σ. In that case, the barrier width is not resolved
by the atoms, the barrier can be theoretically replaced by
a delta potential and the corresponding analytical trans-
mission curve matches the experimental data. As previ-
ously, deviations from the theoretical transmission curve
are probably coming from the thermal gas contribution
(Fig. 3).

In both previous cases, the shape of the transmission
curve is not very dependent on the actual PSF of the
imaging system. Indeed, in the first case, the barrier
width is dominated by the number of pixels creating the
potential on the DMD, whereas in the quantum case,
the width is not resolved by the atoms. In order to ex-
perimentally access the PSF and its width, we turn to
a different experiment where we compare at a constant
velocity (5mm/s), the measured 532 nm power that is
necessary to reflect 50% of the atoms for different bar-
rier widths (Fig. 4). For our parameters (although we
are not always strictly in the classical regime), the 50%

FIG. 3. Transmission in the quantum regime σ ∼ 1µm<
λdB = 3.0µm. The solid line corresponds to the expected
transmission for a delta potential barrier (1/(1+V 2

0 /V
2
ref) and

no velocity spread of the atoms. Vref is fitted to the data.

transmission is numerically found to well correspond the
situations where the barrier height equals the kinetic en-
ergy V0 = Ekin. Such an experiment thus permits to
measure the relative barrier maxima for barriers made of
different numbers of pixels Npix or equivalently of differ-
ent width σ0. The exact barrier shape is the absolute

FIG. 4. Optical power P50 needed to reflect 50% of the atoms
as a function of the barrier width σ0. The optical power is
normalized to its maximum value Pmax. The mean atomic
velocity is 5mm/s, corresponding to a λdB = 2.0, µm. The
dashed (solid) line corresponds to the numerical result with
a sinc PSF with σres = 2.0µm (the ansatz PSF). The real
(dotted-dashed line) and imaginary (dotted line) parts of the
ansatz PSF are plotted in the inset (see text).

value square of the convolution of the amplitude PSF
with door functions of variable width σ0 = Npixp. In the
limit of small σ0, the barrier maxima is proportional to
σ2
0 as the field interferes constructively. In this case, the
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50% transmission power scales as 1/σ2
0 . On the contrary,

for large barrier size, we expect the barrier maximum
height and thus also the 50% transmission power to be
independent of σ0. These two limiting behaviors are ex-
perimentally observed (Fig. 3). The change of behavior
occurs when the resolution of the imaging system is of
the order of σ0. Assuming a sinc PSF with a resolution
σres, we can calculate the barrier maximum for each bar-
rier width σ0. We find that in order to reproduce the
observed power ratio between the two limiting regimes,
we need σres ≈ 2σth = 2.0µm (dashed curve in figure 4).
However, the whole curve is not well fitted, in particular
for barrier widths between 2 and 5 microns. Our results
thus point toward a PSF modified by optical aberrations,
i.e. not a sinc function. The consideration of a more com-
plex PSF as presented below permits to better match the
observation (solid curve in figure 4).

FIG. 5. Transmission through two barriers as a function of
the distance between them. The mean atomic velocity is ∼
3.3mm/s (λdB = 3.1µm). The solid line is the numerical
solutions with the ansatz PSF (see text) and a velocity spread
∆v = 0.25mm/s. The dashed line is the numerical solution
for monokinetic atoms. In this last case, the Fabry-Pérot
resonance peaks are resolved.

We now turn to transmission experiments through dou-
ble barriers. In this series of experiments, we use a ve-
locity of 3.3mm/s, barrier widths of 2 pixels and 75%
of the maximum power available. For such parameters,
the transmission through a single barrier is ∼70%. We
then vary the distance l between the two barriers and,
as previously, study the transmission (Fig. 5). Interest-
ingly, the transmission shows oscillations as a function of
the barrier distance. However, one should be careful in
directly interpreting them as Fabry-Pérot peaks. First,
in contradiction to the expectation, they do not reach
100% transmission. Second, the position the peaks are
not precisely positioned at multiple of λdB/2. Note that
for larger barrier distances, the transmission is essentially
constant to ∼ 50%.

In order to interpret our data, two important impor-
tant ingredients have to be taken into account. First, the

atom have a velocity spread that can wash out interfer-
ence effects. It can be estimated to ∆v = 0.25mm/s from
the experimental parameters and can be considered in a
simulation by averaging the transmission over the veloc-
ity distribution. Second the studied barrier distances are
not much larger than the resolution of the optical system.
We should thus take into account that the barriers have
some width and moreover that the optical fields originat-
ing from the two DMD regions may interfere as we use
coherent light. In principle, the exact calculation of the
optical profile requires the knowledge of the amplitude
PSF of the optical objective (with its real and imaginary
parts), which differs from the theoretical one. In pre-
liminary measurements, prior to the installation on the
atoms, the image of a point source (corresponding to the
intensity PSF) appeared to be diffraction limited only
up to a numerical aperture of ∼ 0.15. The outer part of
the objective only marginally contributed to the reduc-
tion of the size of the central image spot and was rather
observed to add a broad background. We attribute this
effect to imperfectly manufactured (non-spherical) lenses.
A reasonable ansatz ampltitude PSF is thus a sinc func-
tion originating from the central part of the objective in
addition to a Gaussian broader background originating
from the outer part of the objective. For simplicity, we
chose this Gaussian component to be imaginary such that
there is not interference with the real sinc function.

With such an ansatz, we can calculate the optical
potential and simulate the experimental transmission.
We then adjust the PSF parameters to reproduce the
experimental findings of both figure 4 and 5. We
find that the amplitude PSF EPSF ∝ sinc(πx/σsinc) +
iAG exp(−x2/2σ2

G) with σres = 1.30µm, σG = 2.07µm,
and AG = 0.53 (see inset in Fig. 4) permits to reason-
ably match the data (Fig. 4 and 5). Although, the actual
PSF certainly differ from our ansatz, we expect the latter
to capture its main features. Using the previous ansatz
PSF, we also plot in figure 5, the expected transmission
for monokinetic atoms. In that case, the transmission
does reach 100% for specific barrier distance correspond-
ing to Fabry-Pérot resonances. The precise positions of
the resonance depend on the atom velocity leading to a
broadening of the transmission peaks after velocity av-
eraging. We thus find that the first Fabry-Pérot reso-
nance peak is resolved but not the second and third ones
which merge into a single broad peak. Note also that
the monokinetic resonance peaks are not equally spaced.
This is due to optical interference between the optical
fields originating from the different areas on the DMD.
The precise potential barrier heights and positions are
slightly affected by the positive to negative oscillations
of the amplitude PSF. In particular, for a barrier dis-
tance of ∼ 1.9µm (∼ 3.2µm), the barrier heights are
minimum (maximum), because the sinc function is max-
imally negative (positive) at those distances. Overall, we
thus attribute the observed oscillations in the transmis-
sion to a combination of Fabry-Pérot interference and
optical interference due to an oscillatory PSF.
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In conclusion, we have realized some textbook exper-
iments on atomic transmission through optical barriers.
Key advantages of our experiments are the use of non-
interacting Bose-Einstein condensates and of a digital
micro-mirror device for the tuning of the barrier charac-
teristics. We have clearly demonstrated both the classi-
cal and quantum regimes of atomic scattering on a single
optical barrier by adjusting both the barrier width and
the De Broglie wavelength, or equivalently, the speed of
the atoms. We then have realized an atomic Fabry-Pérot
interferometer based on two potential barriers and have
been able to resolve the first Fabry-Pérot resonance peak.
Interestingly, our setup using a DMD to produce the op-
tical barriers allow for experiments with varying barrier
widths and distances permitting an in−situ estimation of
the PSF of the optical system. Technical improvements,
such as further reduction of the atom velocity spread us-
ing delta-kick cooling technique [29] and/or the engineer-
ing of moving barriers using the high switching rate ca-

pabilities of DMDs [30, 31] could lead to the observation
of a complete atom Fabry-Pérot resonator spectrum.
In the future, the capacity to realize coherent beam

splitters from single barrier could be important in the
context of atom interferometry. In addition, it open
prospects for the study of the influence of interactions
on collisions with potential barriers [16–18]. Scattering
of a bright soliton on a barrier have been predicted to
lead to non-classical NOON states [32–35]. In the case of
a Fabry-Pérot interferometer, interactions are expected
to lead to quantum effects such as squeezing of the out-
coming atomic cloud or atomic blockade [36].
This research has been supported by CNRS, Min-
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Labex PALM, Quantum Paris-Sacaly, Région Ile-de-
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