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Abstract. We propose the design of an observatory dedicated to the
tactical analysis of handball, involving the use of dynamic graphs to rep-
resent and study patterns of play. This innovative methodology was used
to capture the complex interactions between players, their movements on
the court and passing sequences. By using techniques for extracting fre-
quent subsequences from a dynamic graph constructed from a gnomonic
transformation3 of the court, it was possible to identify the most recur-
rent and therefore significant patterns of play. The extracted sequences
were valued by various measures of interest: emergence rate and expected
goal. These measures of interest introduced a hierarchy between the se-
quences, enabling them to be navigated. Within the observatory, the
tactics discovered were illustrated by an intuitive graphical representa-
tion, giving coaches and analysts a better understanding of the trends,
strengths and weaknesses of the tactics employed.

Keywords: sports analytics · dynamic graphs · handball observatory

1 Introduction

Handball is well studied in the literature on aspects of coordination, agility,
strength and power, endurance, constitution, social factors, cognition (see [57] for
an extensive review). However, tactical and strategic approaches are minor. With
the exception of [11, 33, 48, 55], the collective aspects of handball are very little
studied. However, it is a sport where the collective aspect dominates. In addition,
it produces a large number of stereotypical positioned sequences and tactics are
well documented: looking for recurring combinations should be fruitful.

The identification of these recurrences would allow an automatic indexing
of sequences in the match, the automatic generation of summaries (in handball,
there are a lot of goals, which ones are particularly interesting?) – see [9,52,58] for
soccer – and in fine the detection of the characteristic routines or formation [28]
of a team, in order to obtain a competitive advantage.

3 azimuthal map projection that transforms circles into straight lines.
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Here we transposed the notion of observatory to the field of handball. This
notion comes from linguistics, where the corpus is an observatory of a theory a
priori, it is also a dynamic observation that can be used to describe and then
develop a posteriori models [25,36]. The various activities of the observatory can
be classified into three segments of intervention: an activity of production and
dissemination of knowledge; an activity of a strategic nature through the pro-
duction of analysis notes, sheets or elements of language concerning the situation
of the subject; and an activity of an operational nature by organizing actions
and putting in place tools [35, 43]. Our corpus consisted of handball data from
the 2015 World Championship in Qatar. Our ambition was to analyze tactics
in handball by acting on the three segments of intervention mentioned above:
disseminating knowledge on tactics, producing analysis notes and implementing
analysis tools.

To analyze the tactics used, it was important to consider the sequence of
events in a handball match as recorded in the data available to us. In practice,
we had the trajectories of the players and a succession of events (pass, shot, foul,
etc.). The notion of dynamic graphs was used to capture the dynamic evolution
of the game. A graph is a mathematical structure considering a set of nodes
which are the entities of the game and a set of edges indicating the relationships
between the nodes. A dynamic graph is one that evolves over time.

A tactical element is a short succession of events. This element is interesting
if it tends to recur frequently, which gives it the nature of a pattern. This interest
arises from the reproduction of the situation and the characterization it gives to
the team executing this tactic. The tactics we propose to analyze were therefore
the result of extracting frequent subsequences from the dynamic graph associated
with the game. This method produced knowledge that could be used to activate
the observatory’s first intervention segment. The second segment, dedicated to
the production of analysis notes, would be supported by the creation of an
interface for displaying the tactics detected.

This focus on dynamic graphs is original. Even in soccer, where there are
many studies on the training of players, in terms of spatial organization, the state
of the art emphasizes that no method performs a real-time analysis of the dy-
namics of tactics. Most of the time, aggregations on possession time are analyzed.
For rugby, a specific study dynamically analyzes static graphs by looking at the
relationship between connectivity, assortativity, strongly connected components
and clustering on the player/pass/tackle graph and looks for a correlation with
the amount of progression made [6].

The automatic analysis of trajectories in search for tactics complements the
expertise of the coach. The techniques implemented were agnostic in that they
made no presuppositions about the activity and proposed an objective analysis
of it: the trajectories were transformed into dynamic graphs within which an
exploratory approach was applied in search of regularities. These regularities
were provided with measures of interest to encourage interaction with the expert
using the observatory. We believe that this methodology and the resulting tools
enriched the expert’s analysis and discovery capabilities.
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The article is organized as follows: Section 2 sets out the state of the art,
Section 3 presents the data studied and then Section 4 presents the construction
of the dynamic graph based on a transformation of the court where the trajecto-
ries occur. Section 5 analyzes the results obtained from the court transformation
and the creation of an interface for enhancing the extracted tactics.

2 State of the art

The search for collective regularities is a classic task in the analysis of sports
trajectories, as attested by [17], which provides a very comprehensive synthesis
of research into temporal analysis for team sports. This search for regularities
requires a vector quantization from the continuous spatial domain to a symbolic
domain. The problem of identifying trajectory patterns then becomes a prob-
lem of searching sequences of symbols, on which qualitative spatial reasoning is
possible [5]. For example, spatial relations are encoded in a logic formalism that
allows the prediction of the next pass in football using inductive logic program-
ming [56].

Discretization of the spatial domain is a two-stage process: characterization /
detection of an object of interest, which makes it possible to aggregate continuous
position data, then grouping of objects of interest / reduction of the dimension
in order to limit their number.

For the second phase of grouping objects of interest, we can distinguish be-
tween the use of k-means or EM clustering in [1, 2, 10, 11], dimension reduc-
tion (PCA) in [44] or optimized tensor reduction [32], the use of self-organizing
cards [30]) or neural gas [34] in [15,16,21,27,40,48,55], and finally the calculation
of neighbors by dynamic time deformation [18].

An optional third stage in this process of transforming the space of trajec-
tories into a series of movements concerns the classification of the movement (a
series of displacements), often by comparison with the various representatives of
the clusters [16].

2.1 Handball

We will not go into the details of the many studies on the individual aspects
during the practice of handball (see for example [21,22,24,37,42,45]). However,
contributions on collective aspects are few and far between: in [55], eight cameras
detect the position of the defender in front of the shooter in order to create self-
organizing Kohonen maps [30], a clustering method which can therefore be used
to characterize defensive behavior. The same technique is used in [48] but for
attack: sequences of five passes before the shot are grouped together, highlighting
the eight most-played sequences out of a total of 612 over 6 matches. Finally,
[33] analyses a sequence of temporal patterns (T-patterns [26]) to characterize
defensive behavior.
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2.2 Searching for temporal regularities

The first step in the search for regularity in collective motion patterns is to
characterize the objects of interest. This task is well identified, see for example [8]
which provides an extremely precise and detailed taxonomy of collective motion
patterns. Once this discretization of the spatial domain has been carried out, it
is possible to undertake qualitative spatial reasoning [5]: the spatial relationships
are encoded in a logic formalism which allows the next pass to be predicted using
inductive logic programming [56].

Spatial collective patterns (generic aggregation patterns [31]), although clas-
sic in the trajectory analysis community (flock, dominance, convergence, con-
frontation), are little used in sport. Instead, one can find the temporal patterns
(T-patterns [26]), which are hierarchical sequences of events, hierarchical in the
sense of nesting and relationships between components, for example in [33]. Tech-
niques derived from Kohonen’s concept maps are also favored for their ability to
perform spatial clustering [15,16,21,27,40,48,55].

Finally, there is the use of constellations [11], which describe the relative
position of objects in relation to each other, depending on their distance. A
constellation is thus invariant to rotation and dilation. This approach is applied
to football in [10].

2.3 Dynamic graph

A graph G = (V,E) associates a set of nodes V with a set of edges E, which are
pairs of nodes. A graph is used to model the relationships between entities in a
system. This graph is said to be static, as opposed to a dynamic graph whose
edges and nodes change over time.

A dynamic graph (Gt)t=1..T is therefore defined as a sequence of static graphs
(or snapshot) G1, G2, ..., GT where each Gt represents the state of the graph at
a given time t. Formally, (Gt)t=1..T = (Vt, Et)t=1..T , where Vt is the set of nodes
in Gt at time t and Et is the set of edges at time t [23].

The time t indexing the dynamic graph depends on the representation chosen
for the data. For example, for our data from the World Championship in Qatar,
the trajectories are sampled at 10 Hz. The time t here could be an integer
number of tenth of a second. We could also consider only the sequence of graphs
corresponding to each pass, ball reception, shot or foul event. In this case, t
would be an integer index of the total number of events.

The same dynamic graph can be represented in a number of equivalent
ways [23]: temporal graph, dynamic or temporal network, evolutionary graph,
sequence graph, chronological series of graphs, and so on.

Classical approaches use a sequential representation where each instant is
modelled by an adjacency matrix (At)t=1..T , describing the presence or absence
of edges between nodes at time t [51]. Other temporal models capture the evo-
lution of the graph by assigning time intervals to the edges, making it possible
to follow the evolution of the connections between the nodes. In this way, each
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edge is characterised by a triplet (vi, vj , [tstart, tend]), indicating that the edge
exists between the nodes vi and vj during the time interval [tstart, tend] [12].

Evolutionary graphs combine the structure of a static graph with a sequence
of states. They are suitable for modelling systems that evolve continuously, such
as social networks. Evolutionary graphs (Gt)t=1..T incorporate the static struc-
ture of a graph G and an evolution function ϕ such that Gt = ϕ(G, t). This
function can describe changes in the graph topology over time [46].

3 Data

There are two types of dataset for team sport: spatio-temporal data and event
data. Spatio-temporal data are the trajectories of players or the ball; they provide
location, direction and speed information for each of the entities [17]. Event data
provides logs of player-related events (pass, shot, reception, goalkeeper save, etc.)
or technical events (red card, start of time, stop of time, foul, etc.) for a match.
These data are the result of manual annotations. Each of these events can be
associated with a distance, duration or direction and has a time stamp.

These two ways of looking at data require different technologies and technical
or financial resources. For example, sensors Indoor Position System (IPS) [50]
are inexpensive but not very accurate, while video [41, 47, 49] is accurate but
requires costly treatment.

The data analyzed here comes from 88 matches of the 2015 Handball World
Championship held in Qatar. These data were obtained by video analysis and
manual annotation of the events. This dataset has been little studied, and only
on individual aspects [4, 19,20].

This data combines spatio-temporal and event-based information: the tra-
jectory of each player at 10 Hz and details of match events such as passes,
receptions, shots and goals. For each match, a statistical summary table is avail-
able for each player. This table provides individual information, such as walking
distance, running distance, shooting distance at 7m and 9m and the player’s role
for each match.

4 Handball tactics based on dynamic sub-graphs

In this section, we present our main contribution to the construction of a dynamic
graph of the handball game based on the player trajectories available to us. We
begin by justifying the use of the Delaunay graph, whose dynamic is encoded by
a difference dynamic graph. We then introduce a gnomonic transformation to
take better account of the particular topology of the handball court. We conclude
by explaining how we extracted tactics from frequent dynamic sub-graphs and
indicate how the relevance of these tactics is evaluated.

4.1 Transformation of trajectories into graphs

To transform the available data into dynamic graphs, we first needed to choose
the entities represented by the nodes and the relationships between these entities,
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which would be represented by the edges. The handball entities are naturally
the players and the ball.

Each player could be considered individually or according to its position. In
the first case, a tactic would be personalized by a specific player and a same
different tactics could be instanced by different players. In the second case, the
player’s position was taken into account, rather than the individual, as a col-
lective movement involves roles rather than specific people. The interface we
proposed in the next section allows to choose between these different configura-
tions. The default setting proposed individualizing the members of the French
team and grouping their opponents by position.

As for the ball, it could be considered as a particular entity and give rise
to a node in the graph. We could also consider that the player entities had a
particular attribute which indicated possession of the ball. We have chosen to
consider the ball as a particular entity.

To construct the dynamic graphs in which we are going to explore the re-
curring patterns, we needed to transform the players’ positions into graphs. If
the choice of entities that defined the nodes was clear (the players and the ball),
how should the edges that symbolize the relationships between the entities con-
structed? There were many possible choices for this; define the neighborhood of
each player, which groups together the other closest players; consider the posi-
tions of each player and construct the graph according to the relative positions
of each player in attack/defense.

However, it would be preferable for the transformation into a graph to be non-
parametric and agnostic (i.e. not require any prior knowledge of handball, for
example). We therefore recommended using the Voronoi diagram, which shows
the zones that a player can reach before all the others if they all have the
same speed. It is a tool used in many scientific contributions linked to sport,
for example football [29]. Voronoi zones are bounded by the bisectors of the
segments joining two players4.

The Delaunay triangulation [7] of a set of points is presented as the dual
graph of the Voronoi diagram. Each cell of the Voronoi diagram is represented
by a vertex in the Delaunay triangulation, and these vertices are connected by
edges when the corresponding cells are adjacent. The boundaries of the Voronoi
zones are determined by the bisectors of the segments connecting two nodes.
To transform the raw data into a graph structure, we calculated the zones of
influence at each point in time, then used Delaunay triangulation to encode a
match in the form of a dynamic graph.

4 this definition assumes that each player evolves at the same speed. The notion of
dominant regions [54] or areas of influence [53], taking into account various fac-
tors such as speed, orientation vector, etc., are closer to the reality. There are also
contributions based on probabilistic models of movement and control zones [3, 14].
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4.2 Event differential encoding

To encode the dynamic graph, we chose the event difference. At each instant
t, we examined the changes in the Delaunay triangulation relative to t − 1: we
noted which edge appeared or disappeared. Persistent edges were ignored.

In the end, rather than (Gt)t=1..T , we therefore considered the dynamic dif-
ference graph [39] (∆Gt)t=2..T = (Vt, Et−1\Et, Et\Et−1)t=2..T where Et−1\Et is
the set of vanishing edges and Et\Et−1 those appearing when t−1 changes to t.
Figure 1 provides an example of two snapshots Gt−1 and Gt with their edge sets
Et−1 (Figure 1a) and Et (Figure 1b); their differences Et\Et−1 and Et−1\Et are
at Figure 1c.

Fig. 1: Difference graph.

(a) Et−1 (b) Et
(c) Et\Et−1 in solid lines,
Et−1\Et in dashed lines.

Event difference encoding offers a fine granularity for capturing changes in
the structure of the dynamic graph. In a sporting context, where interactions
between players evolve rapidly, this approach provides a precise representation
of the moments when new connections are formed or dissipated. This makes it
easier to analyze key moments in the match, such as the formation of new tactics
or the break-up of the opposing team. In addition, the event difference makes it
possible to eliminate stationary edges, which would generate a large number of
uninteresting frequent patterns.

Finally, as our data concerned several matches, each with two halves, extra
time, stoppages in play, etc., we had to manage a dynamic graph database. More
precisely, we considered having a dynamic graph for each series of five passes
preceding a shot. This choice was justified by the desire to determine the tactics
applied when approaching the shot and corresponded to the rhythm of collective
movement in handball.

4.3 Conversion of the handball court

A handball court has an atypical topography: the area is rounded and the de-
fenders position themselves around it to form a wall in front of the goal. This
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area is off-limits, unlike in football or basketball. Taking the straight line be-
tween two points, which in theory is the shortest route, is not always possible:
you have to go around the forbidden zone. This prohibition changes the spatial
relationships between players.

However, the aim of a Voronoi diagram is to account for the influence of
the players on the court, and the conventional geometry used for this purpose
does not take account of the particular topography of the handball court. In
order to take better account of the spatial relationships between the players, we
proposed to transform the initial court (Figure 2a) by curving the area using a
gnomonic transformation, so as to create a geometry in which a straight line is
the shortest path between two points (see Figure 2b). The Voronoi diagram was
then calculated for this transformation. Next, the inverse transformation was
applied, to obtain the Voronoi diagram for the initial court with curvature of
the zone (see Figure 2c).

(a) Initial court. (b) Curved court. (c) Back curved court.

Fig. 2: Voronoi diagram and Delaunay triangulation for successive transforma-
tions of the court.

Let M have coordinates (x, y). Let O be the center of the quarter circle of
the zone. Let r = OM and θ be the angle (Ox,OM) (see Figure 3).

The transformation of the court, which turns the quarter-circle zone into a
segment, had the equation: {

x′ = r

y′ = r · θ
π
2

(1)

The level curves shown in Figure 4 corresponded to the constant abscissa
lines on the curved court.

4.4 Extraction of recurrent subsequences

To extract the frequent dynamic sub-graphs that represented the tactics, the dy-
namic graphs were converted into sequences of sets of edges. The frequent closed
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Fig. 3: Representation of a quarter of a plot.

Fig. 4: Level curves (in red) on the court.

subsequences were then extracted from these sequences [13]. A subsequence is
closed if the addition of elements to this sequence reduces its frequency and there-
fore its representativeness. For example, if the algorithm determines that the se-
quences ⟨B,C⟩ (event C follows event B) and ⟨B,C,D⟩ has the same frequency,
then ⟨B,C⟩ is not closed and will be ignored. And if any sequence constructed
from ⟨B,C,D⟩, for example ⟨A,B,C,D⟩ or ⟨B,C,D,E⟩, has a lower frequency
than ⟨B,C,D⟩, this means that ⟨B,C,D⟩ is closed. This technique avoids a lot
of redundancy and focuses attention on the essential frequent sequences.

In addition, the algorithm was provided with temporal constraints, for ex-
ample constraints on the temporal distance between the elements of the sub-
sequences obtained. Here, we required that the elements pointed to were con-
secutive in the data, in order to obtain frequent sequences that represented a
sequence of consecutive events. Otherwise, the algorithm could display sequences
of events belonging to distant phases of the game, for example an event during
the first quarter, followed by an event during the second, then the third, and
so on. It was essential that the information obtained was representative of a se-
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quence of consecutive events. Using temporal constraints, it was guaranteed that
the subsequences extracted from our database of sequences of five passes before
a shot showed a succession of events that occurred during a single sequence of
five passes before a shot, and not straddling several sequences.

4.5 Measures of tactical interest

The extraction algorithm provided a large number of tactics. In order to facili-
tate access to relevant tactics, these had to be sorted according to measures of
interest. Here we proposed three different measures: support, expected goal (xG)
and emergence rate. Support counted the number of game sequences in which a
tactic occurs. Expected goal is a statistical measure indicating the probability of
scoring at the shot position at the end of a sequence. This measure was obtained
using a model trained on data from Qatar 2015 and fed by the position of the
shooter [38]. Finally, the emergence rate measured the ratio between the number
of successful (giving a goal) and unsuccessful occurrences of the tactic.

Note that the emergence rate is a forward-looking or anticipatory measure, as
it refers to the evolution of the situation it measures. In contrast, the expected
goal is a retrospective measure because it is provided by a model calculated on the
basis of aggregated data. The expected goal is therefore not directly influenced
by developments in the situation being characterized.

While the emergence rate provided information about the profitability of a
tactic, the advantage of the expected goal measure was that it did not make any
assumptions about the quality of the shooter or the goalkeeper. Expected goal
provided information on the quality of the situation in which the shooter was
placed to take the shot, independently of the quality of the shot that follows. This
measure was therefore appropriate for the objectives we had set ourselves, which
ware to show the effective reasons for putting the shooter in a very favorable
shooting condition.

5 Results

5.1 Relevance of the court transformation

In order to determine the impact of the court transformation (decurvature then
recurvature), we counted the edge differentials between the initial graph and the
transformed graph. To do this, we aggregated each game situation according
to the player’s position: Goalkeeper (G), Left Wing (LW), Right Wing (RW),
Center Back (CB), Left Back (LB), Right Back (RB), Pivot (P). The defending
team was marked 0 and the attacking team was marked 1. For example, CB0
indicated the center back in a defensive position.

Table 1 and 2 show the counting results, while Figure 5a and 5b give a
quantitative interpretation. The tables count the size of the reference set (initial
or transformed graph), the size of the intersection (with the transformed or
the initial graph) and then the difference. Comparative analysis of the dynamic
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edges initial intersection initial \ transformed ratio (%)

(G0, RW1) 1120 192 928 82,8
(RW0, G1) 1106 216 890 80,5
(RW1, G0) 1114 357 757 68,0
(G1, RW1) 3321 1930 1391 41,9
(RW0, G0) 3993 2999 994 24,9
(RW0, RB1) 3707 2869 838 22,6
(CB1, RB0) 5247 4370 877 16,7
(G1, CB1) 6045 5258 787 13,0
(RB0, G0) 6850 5975 875 12,8
(RW1, CB1) 2279 2213 66 2,9
(RB1, RW1) 2510 2444 66 2,6
(RW0, CB0) 3230 3153 77 2,4
(RW0, CB0) 3146 3080 66 2,1
(RW1, CB1) 3305 3237 68 2,1
(RB0, RW0) 2064 2034 30 1,4

Table 1: Edges lost through court deformation.

edges transformed intersection transformed \ initial ratio (%)

(RB1, RW1) 3968 2444 1524 38,4
(RB0, RW0) 3081 2034 1047 34,0
(LW1, LB1) 4659 3237 1422 30,5
(LW0, CB0) 4285 3080 1205 28,1
(LW1, CB1) 3025 2213 812 26,8
(LW0, LB0) 4113 3153 960 23,3
(LW0, RB1) 3255 2869 386 11,9
(G1, RW1) 2114 1930 184 8,7
(LW0, G0) 3256 2999 257 7,9
(LB1, RB0) 4679 4370 309 6,6
(RB0, G0) 6208 5975 233 3,8
(LW0, G1) 222 216 6 2,7
(G1, CB1) 5394 5258 136 2,5
(LW1, G0) 363 357 6 1,7
(G0, RW1) 194 192 2 1,0

Table 2: Edges created by court deformation.
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(a) Edges present in the initial graph
but absent from the deformed graph.

(b) Edges present in the deformed
graph but absent from the initial
graph.

Fig. 5: Differentiation between edges lost and gained through deformation.

graphs generated from the Qatar dataset revealed significant differences between
the two modeling approaches.

Initially, we observed that the edges removed by our transformation (present
in the initial graph and absent from the transformed graph, see Figure 5a) were
not very useful for understanding handball. These were, for example, the links
between the goalkeeper and his defenders (G0-RB0 and G0-LW0), or the links
between the goalkeeper and his attackers (G1-RW1 and G1-CB1).

The transformation of the court also revealed edges in the transformed graph
that were absent in the initial graph (see Figure 5b). These edges, for example,
involved the relationships between wingers and defenders, which were therefore
better accounted for in the transformed version of the graph.

This comparison between the initial graph and the transformed graph sug-
gested that the transformation of the court added value by capturing more rel-
evant links and eliminating those considered less crucial.

5.2 Tactics visualization interface

The data from the 2015 World Championship in Qatar resulted in a dataset of
760 dynamic graphs of five passes before a shot. The tactic extraction algorithm
in the form of closed sequences was utilized with a minimal support threshold
of 5% (the algorithm pruned sequences with support below this threshold). It
yielded 6,820 tactics, the characteristics of which (number, average support,
emergence rate ρ, and expected goal) are listed in Table 3.

Dynamic frequent subgraph extraction yielded such a significant number of
tactics that it is unrealistic to attempt exhaustive examination of them. There-
fore, it was necessary to provide the expert responsible for their analysis with a
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length number support ρ xG

2 4,836 26.88 1.56 0.58
3 1,420 26.82 1.68 0.58
4 392 26.22 1.30 0.56
5 172 25.23 0.97 0.58

all 6,820 26.88 1.55 0.58

Table 3: Tactics and relevancy measure by size.

visualization interface, both to select a tactic for scrutiny and to contextualize it
within the match. This interface enabled activation of the observatory’s second
intervention segment by generating analysis notes.

The knowledge produced by the tactics extractor was objective, as no as-
sumptions were made about the activity in question. Our method did not use
any model for handball interaction: trajectory segmentation was performed us-
ing the Delaunay graph, and tactics were obtained by extracting regularities. To
involve the expert in the analysis of our results and bridge the semantic gap be-
tween our disciplines, it was important to favor a holistic approach by situating
the obtained results within the framework of handball activity: edge sequences
should be visualized on a player position diagram, integrated into the course of
a match.

The interface should offer the expert considerable freedom to choose among
the many discovered tactics. While the currently analyzed tactic naturally oc-
cupies a central position within the interface (zone 1), it is possible to select
priority orders for the whole set (zone 2): attack or defense, associated inter-
est measure (xG, emergence, support), pattern length, place attack or counter-
attack, triggering position within the data sequences. The currently visualized
tactic then has statistical measures (zone 3) relative to the entire data set, as-
sociated with the order selector: xG, emergence, support, triggering position.
More sports-oriented semantic measures (zone 4) allow the expert to diversify
potential explanations for the pattern’s interest and to place it within the se-
quence from which it originates: xG, triggering, opponent pressure (number of
links between the ball and opponents in the Delaunay graph), and richness of the
solution offered by teammates (number of links between the ball and teammates
in the Delaunay graph).

Finally, occurrences of the analyzed tactic are located in the complete corpus
of matches (zone 5). It is possible to display a two-dimensional representation of
the Delaunay graph where the tactic’s edges are highlighted (zone 6), or to access
video footage (zone 7). The expert can navigate within the complete sequence
or from one occurrence to another (zone 8).

Numerous interactions between different parts of the visualization interface
are available. Firstly, by selecting the tactic to analyze, a context transfer is
made to the parts of the interface providing measures or visualization, ensuring
coherent navigation. Navigation within tactics is dynamic through actions on
priority order selection or tactic filtering.
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It’s also worth noting that the measures of interest used to sort tactics were
just as useful for scrutinizing those that performed well as those that were un-
suitable or had a low success rate. It was therefore just as possible to analyze
the strengths and weaknesses of one’s own team, as part of match preparation
feedback, as it is to analyze the strengths and weaknesses of a future opponent.

Figure 6 presents in the observatory the analysis of the following tactic: [[’28
Valentin Porte=Left Back 1’], [’Pivot=Left Wing 1’]] which indicates a relation-
ship being created between Valentin Porte and the opponent Left Back, then
one pass later a relationship being created between the opponent Pivot and
Left Wing. This pattern appears 22 times (support), and scores 6.33 times more
than not scoring (rho), gives a favorable shooting position with a 63% chance
of converting shots into goals (xG). This was a placed attack pattern, generally
triggered 4 passes before the shot is fired. This pattern appeared in game se-
quences of around 14” and gives an average xG at the moment of the shot of
0.63 even with the pressure of 3 opponents on the shooter.

Fig. 6: Handball tactics observatory.5

5.3 Interest of the observatory for the expert

The tactics observatory helped identify recurring patterns in the highly dynamic
sport of handball. This tool enabled to analyze the own style of play, to ensure
that the match preparation was correct. It was intended to complement tradi-
tional video analysis, which was carried out by humans who made choices on the
extracts and introduced numerous biases. The automatic analysis proposed here
had the merit of being exhaustive and objective. The objectivity of the tactics

5 https://morteli211.users.greyc.fr/observatory/

https://morteli211.users.greyc.fr/observatory/
https://morteli211.users.greyc.fr/observatory/
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displayed was enhanced by the accompanying prospective or retrospective mea-
surement, which complemented the focus that a coach would like to give to his
fetish tactics.

The observatory was also invaluable for understanding an opponent’s tactics,
both from the point of view of successes, which could be countered, and failures,
which could be exploited or encouraged. Dynamic graphs potentially provided
information on deeper aspects of the activity, which were not easily and at first
sight accessible to a more traditional analysis.

6 Conclusion

In this article, we presented a method for designing an observatory dedicated
to the tactical analysis of handball, implementing the use of dynamic graphs to
visualize and study patterns of play. This approach added a temporal dimension
to the exploration of game patterns, going beyond the simple snapshots that
had been observed until now. By capturing the complex interactions between
players, their trajectories on the court and passing sequences, this representation
offered a better understanding of the dynamics of the game. Our choice of event-
difference graph encoding provided the fine granularity essential for capturing
changes in the structure of the dynamic graph. Using an approach based on the
Voronoi diagram to create the relationships between players, we adapted this
method to take better account of the specific topography of the handball court.
This sequential graph structure then allowed us to extract recurrent tactical
subsequences, which were evaluated according to measures of interest such as the
emergence rate and the expected goal. These measures introduced a hierarchy of
tactics, making it easier to navigate the observatory. The tactics discovered were
then graphically illustrated in the observatory, providing coaches and analysts
with a better understanding of the trends, strengths and weaknesses of the tactics
employed.

For future prospects, it would be interesting to further explore the possibili-
ties of integrating additional data, such as player physiological data or individual
performance data, to enrich tactical analysis and offer deeper insights. In addi-
tion, extending this methodology to other sports could open up new avenues of
research and enable enriching interdisciplinary comparisons. Ultimately, it would
be advantageous to engage in ongoing collaboration with coaches and sports an-
alysts to further develop and tailor this approach with a refined focus on UX
design, thereby ensuring its applicability and effectiveness in the practical realm
of handball and beyond.
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