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Abstract: In this paper, a direct hydromechanical modelling approach is proposed for
hydropower plants, capturing their main characteristics via a few physical parameters of
industrial interest. A kinetic model is developed and compared to the standard mechanical
model while some parameters are estimated using an instrumental variable method. The model
is finally validated with industrial data, showing a good consistency between real behaviors and
simulated ones.

Keywords: Modeling and simulation of power systems, Power and Energy Systems, Digital
twins for power and process systems

1. INTRODUCTION

Hydropower plants are the main source of renewable elec-
tricity in the world. For monitoring and predictive main-
tenance purposes, it is useful to have a digital twin based
on a physical hydromechanical model involving constant
or varying meaningful parameters. Using such a model
indeed, combined with sensor data, can help engineers to
diagnose the state of the plant and provide early fault
detection (increase of head losses in the tunnel and pen-
stock, bearing, actuator or sensor failure, turbine erosion,
presence of a foreign object in the turbine, cavitation
phenomenon).

Physical modelling ingredients can be found in various
references, such as Munoz-Hernandez et al. (2012) and
Robert and Besançon (2019). The recent review Ozkaya
and Kosalay (2018) on system identification for vari-
ous power generation systems includes hydropower case,
but with black-box, or grey-box, approaches. References
De Jaeger et al. (1994) and Gracino et al. (2021) instead
provide some physical-based identification studies, but
with pretty simplified models.

In the same spirit of tractable models, the main objec-
tive of this article is to fully re-derive and validate a
physical model for a hydroelectric power plant, usable
to estimate some of its physical parameters of interest
for its monitoring (coefficients of head losses, efficiency
of the turbine, inertia constant of the generating unit),
from commonly available industrial measurements. The
modelling approach which is considered here relies on
underlying mechanics and hydraulics, while validation is
achieved on the basis of real industrial data collected on
plants from EDF group (the main French electric utility

company). For such data, illustrative simulation results are
provided.

The paper is organized as follows: the proposed modelling
approach is first developed in section 2 and its validation
based on industrial data is then presented in section 3.
Some conclusions finally end the paper in section 4.

2. PROPOSED MODELLING APPROACH

2.1 Mechanical Model

The power balance diagram (valid for all speeds) presented
in Fig. 1. summarizes the intermediate powers between the
hydraulic power and the electrical power supplied by the
alternator. The power absorbed by the rotor is not shown
because it is immediately dissipated by Joule effect. In our
assumptions, we choose to neglect the friction losses in the
flanges, the iron losses and the copper losses in the stator.

Let us set:

• ω∗, ω0 the angular electrical velocities of the rotor and
synchronism, rad.s−1 (ω0 = 2πf0 = 100π rad.s−1, f0
represents the nominal frequency of the network).

• np the number of pole pairs of the rotor.
• Ω, Ω0 the angular mechanical velocities of the rotor

and synchronism, rad.s−1.

The angular velocities are related with each other:

ω∗ = npΩ (1)

ω0 = npΩ0 (2)

The normalized angular velocity (in p.u.) is then defined:

ω =
ω∗

ω0
=

Ω

Ω0
(3)



Fig. 1. Power diagram

The fundamental principle of dynamics, applied to a ro-
tating mass, gives the equation of motion of the generating
unit shaft (see Bergen and Vittal (2000), page 533):

JΩ̇ = Cm − Cem − Cf (4)

with:

• J the momentum of inertia of rotating masses (rotor
and turbine), kg.m2.

• Cm the mechanical torque on the shaft line, N.m.
• Cem the electromagnetic torque of the synchronous
machine, N.m.

• Cf the friction torque generated in the bearings,N.m.

In our assumptions, the friction torque is neglected.

As for the electromagnetic torque Cem, it can be de-
composed (see Barret (1987) pages 151-152) into a syn-
chronous torque Ces (N.m) and an asynchronous torque
Cea, N.m (referenced to a fictitious reference frame rotat-
ing at the synchronism speed):

Cem = Ces + Cea (5)

where Cea corresponds to some damping D0 (N.m.s) as:

Cea = D0(Ω− Ω0) (6)

Thus we have:

JΩ̇ = Cm − Ces −D0(Ω− Ω0) (7)

On the other hand, the mechanical power Pm supplied
by the turbine (W ) and the synchronous electromagnetic
power of the alternator Pes (W ) satisfy:

Pm = CmΩ, Pes = CesΩ (8)

From Figure 1 we also have:

Pes = Pe + PFs + PJs (9)

where Pe is the electrical power produced by the alternator
(W ), and PFs, PJs are power losses related to iron and
copper losses respectively, which will be here neglected.
Namely:

Pes ≈ Pe (10)

Now multiplying equation (7) by Ω, we obtain:

JΩΩ̇ = CmΩ− CesΩ−D0Ω(Ω− Ω0) (11)

which gives according to (3), (8) and (10):

JΩ2
0ωω̇ = Pm − Pe −D0Ω

2
0ω(ω − 1) (12)

Let Ec be the kinetic energy of rotating masses:

Ec =
1

2
JΩ2 (13)

It can be normalized into:

ec =

(
Ω

Ω0

)2

= ω2 (14)

then giving:
ėc = 2ωω̇ (15)

By also normalizing the powers as:

pm =
Pm

Sn
, pe =

Pe

Sn
(16)

for Sn the apparent rated power of the alternator (VA),
we obtain:

JΩ2
0

Sn
ωω̇ = pm − pe −

D0Ω
2
0

Sn
ω(ω − 1) (17)

Let us set:

Hc =
JΩ2

0

2Sn
and D =

D0Ω
2
0

Sn
(18)

where Hc represents the inertia constant of the generating
unit, then:

2Hcωω̇ = pm − pe −D(ω2 − ω) (19)

and from (14) and (15):

Hcėc = pm − pe −D(ec −
√
ec) (20)

Considering now the hydraulic power Ph (W ) and the
efficiency of the turbine η = η(ω, h, q) ≈ η(h, q) (for ω
close to 1 and h and q defined in section 2.2), we have the
following identity, and normalization:

Pm = ηPh; ph =
Ph

Sn
(21)

Finally, the mechanical model, which can be called kinetic
model, can be described by the following first order state-
space representation:

{
Hcėc = ηph − pe −D(ec −

√
ec)

ω =
√
ec

(22)

Notice that this model is consistent with the more stan-
dard one as it can be found in Machowski et al. (2020) (p.
195) for instance, and written as:

Mω̇ = pm − pe −D(ω − 1) (23)

for some M .

Model (23) can indeed be recovered from equation (19) by
dividing it by ω and considering an approximate lineariza-
tion of the equation around ω = 1 (also corresponding to
powers pm = pe), that is for Ω close to Ω0.
In that case indeed, equation (23) is directly obtained,
with:

M = 2Hc =
JΩ2

0

Sn
(24)



2.2 Hydraulic Model

In order to clarify hydraulic power ph in equation (22),
let us now consider the hydraulic part of the hydropower
plant. Figure 2 represents the hydraulic configuration of a
single penstock scheme with k immersed turbines (Francis
type).
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Fig. 2. Hydroelectric power plant layout

In this study, we consider the generating unit n°i turbin-
ing/pumping a flow rate Q = Qj , j ∈ [1, k].

We define the set of points A = {b, e, s, d} as shown in
Figure 2, and the following notations:

• Qa, Qce, Qc the flow rate in the headrace, the surge
tank and the penstock, respectively, m3.s−1;

• Qj (1 ≤ j ≤ k) the flow rate turbined/pumped by
the jth generating unit, m3.s−1;

• Ka, Kc the coefficient of head losses in the headrace
tunnel and the penstock respectively;

• La, Lc the length of the headrace tunnel and the
penstock, respectively, m;

• Sa, Se, Sc the cross-section surface of the headrace
tunnel, surge tank and penstock, respectively, m2;

• Zi(i ∈ A) the height of the point i, in reference to
the altitude of the minimum operating surface point
of the lower reservoir, m;

• P r
atm the atmospheric pressure at points (b, e, d), Pa;

• P r
s the ambiant pressure at point s, Pa;

• ρ the water density (≈ 1000 kg.m−3);
• g the acceleration due to gravity (≈ 9.81 m.s−2).

We clearly have:

Qc =

k∑
j=1

Qj , Qa = Qc +Qce (25)

It is assumed that:

• Water is an incompressible fluid.
• The penstock is inelastic.
• The regular head losses of the two reservoirs are
negligible.

• The head losses in the surge tank and the branches
are neglected (a branch is the junction between a
penstock and a turbine).

• The generating units can operate in turbine or pump
mode (the units can be reversible).

• The kinetic terms (of the form V 2

2g for a velocity V )

in the reservoirs are neglected.

By applying generalized Bernoulli’s principle to the non-
permanent flows (see Robert and Michaud (2017)) between
the upper reservoir (point b in Fig. 2) and the surge tank
(point e in Fig. 2), we get:

Zb +
P r
atm

ρg
= Ze +

P r
atm

ρg
+Ka|Qa|Qa +

La

Sag
Q̇a (26)

Let us set:

αa =
La

Sag
, the inertia coefficient of the headrace tunnel.

(27)
Then:

αaQ̇a = Zb − Ze −Ka|Qa|Qa (28)

Let us now apply generalized Bernoulli’s principle to the
non-permanent flows between the surge tank (point e) and
the penstock separation point (point s), this yields:

Ze +
P r
atm

ρg
= Zs +

P r
s

ρg
+

Vs
2

2g
+Kc|Qc|Qc +

Lc

Scg
Q̇c (29)

where:

Vs =
Qc

Sc
(30)

With notations:

αc =
Lc

Scg
, βc =

1

2gSc
2 , Hs =

P r
s − P r

atm

ρg
(31)

Wet get:

αcQ̇c = Ze − Zs −Hs − βcQc
2 −Kc|Qc|Qc (32)

We can again apply generalized Bernoulli’s principle to the
non-permanent flows now between the surge tank ( point
e) and the downstream reservoir (point d):

Ze +
P r
atm

ρg
= Zd +

P r
atm

ρg
+Kc|Qc|Qc + αcQ̇c +H (33)

where H denotes the net head height (the counter-
electromotive force generated by the hydraulic unit), in
m.

Hence:
H = Ze − Zd −Kc|Qc|Qc − αcQ̇c (34)

Using generalized Bernoulli’s principle once more between
the penstock separation point (point s) and the down-
stream reservoir (point d) further gives:

Zs +
P r
s

ρg
+

Vs
2

2g
= Zd +

P r
atm

ρg
+H (35)

that is:
H = Zs − Zd +Hs + βcQc

2 (36)

Neglecting the role of the surge tank (Qce = 0), it
is possible to apply generalized Bernoulli’s principle to
the non-permanent flows between the upstream reservoir
(point b) and the downstream reservoir (point d):

Zb +
P r
atm

ρg
= Zd +

P r
atm

ρg
+Ka|Qa|Qa +Kc|Qc|Qc

+αaQ̇a + αcQ̇c +H

(37)

Notice that when Qce = 0, we have Qa = Qc, and thus:

H = Zb − Zd −K|Qc|Qc − αQ̇c (38)



with:
K = Ka +Kc, α = αa + αc (39)

However, the water level in the surge tank can be modelled
by the following equation:

SeŻe = Qa −Qc (40)

Combining equations (28), (32) and (40), we obtain the
following state model:

αaQ̇a = Zb − Ze −Ka|Qa|Qa

αcQ̇c = Ze − Zs −Hs − βcQc
2 −Kc|Qc|Qc

Że =
Qa −Qc

Se

(41)

Let us normalize the involved quantities as follows:

zi =
Zi

Hmax
(i ∈ A) (42)

h =
H

Hmax
, hs =

Hs

Hmax
(43)

qa =
Qa

Qcmax

, qc =
Qc

Qcmax

(44)

Kn
a =

KaQ
2
cmax

Hmax
, Kn

c =
KcQ

2
cmax

Hmax
, Kn = Kn

a +Kn
c (45)

αn
a =

αaQcmax

Hmax
, αn

c =
αcQcmax

Hmax
, αn = αn

a + αn
c (46)

βn
c =

βcQ
2
cmax

Hmax
(47)

with:

Qamax = Qcmax =

k∑
i=1

Qimax (48)

and

• Hmax the maximum gross head, m;
• Qimax

the maximum flow rate of the ith production
generating unit, m3.s−1.

State model (41) then becomes:
αn
a q̇a = zb − ze −Kn

a |qa|qa
αn
c q̇c = ze − zs − hs − βn

c qc
2 −Kn

c |qc|qc
że = σ(qa − qc)

(49)

where:

σ =
Qcmax

HmaxSe
(50)

On the other hand, equations (34), (36) and (38) become:

h = ze − zd −Kn
c |qc|qc − αn

c q̇c (51)

h = zs − zd − hs + βn
c qc

2 (52)

h = zb − zd −Kn|qc|qc − αnq̇c (53)

providing three different expressions for h.

Equation (51) will be preferred if both the height Ze and
the flow rate Q are known, while equation (52) relies on
the pressure P r

s and the flow rate Q. If neither of these
two expressions can be used to compute h due to lack
of required measurements, we may then rely on equation
(53) keeping in mind that it is based on an additional
simplifying assumption.

This quantity h is needed for the hydraulic power, which
is obtained by:

Ph = ρgHQ (54)
where Q the flow rate turbinated/pumped by the consid-
ered generating unit, m3/s.

When normalized, this becomes:

ph = γhq (55)

with:

γ =
ρgQmaxHmax

Sn
, q =

Q

Qmax
(56)

and Qmax the maximum flow turbined/pumped by the
considered generating unit, m3/s.

2.3 Hydromechanical Model

By combining the mechanical model and the hydraulic
model (by injecting (55) into (22)), an overall hydrome-
chanical model can be given by the following state repre-
sentation:{

Hcėc = ηγhq − pe −D(ec −
√
ec)

ω =
√
ec

(57)

where w is indeed usually measured in industrial plants, as
well as driving variables pe and q, while h can be obtained
from (51), (52), or (53) as discussed before.

This model can also be written in the (approximate)
standard form:

Mω̇ = ηγhq − pe −D(ω − 1) (58)

3. INDUSTRIAL-DATA-BASED VALIDATION

Let us illustrate and comment here the validity of models
(57) and (58) when using industrial data collected on
plants in real operation.

3.1 Model Comparison

As a first validation approach, both models (57) (kinetic
model) and (58) (standard model) are simulated on the
basis of industrial recordings of rotor speed w and driving
powers (in short pe and pm).
Two cases are presented here:

• A first one with large disturbances, as they can be met in
small electrical networks (as in islands). In that case, the
models produce quite different results (Fig. 3), claiming
for the choice of the kinetic model.

• A second one with small disturbances (most common
in large networks): in that case the results with the two
models do not allow to distinguish them clearly (Fig. 4).

The most suitable model can therefore be chosen depend-
ing on the stability of the network to which the syn-
chronous generator is connected.

We can also compare here the three ways to calculate the
net head (h) using (51), (52) and (53), with normalized
parameters Kn

c and Kn taken from industrial measures,
coefficient βn

c and σ from known geometry, and all other
variables from sensor data.
Results are presented in Figure 5, showing a good consis-
tency, even though with some larger deviations when using
the approximate version (52).
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Fig. 3. Model comparison for a large disturbance
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Fig. 4. Model comparison for small disturbances

Fig. 5. (gross and net) head height (top), with time zoom
(bottom).
n°1 is calculated with equation (53)
n°2 is calculated with equation (51)
n°3 is calculated with equation (52)

3.2 Parameter Identification

Let us here consider data from a large electrical network
case, for which there is no big difference between kinetic
and standard model. We can then consider model (58).

In order to estimate model parameters M , η and D, we
can use Laplace transform so as to obtain the output as
a function of the different inputs in the form of a sum of
transfer functions (Y =

∑
i HiUi) :

ω(s) =
η

Ms+D
γhq(s) +

1

Ms+D
(−pe(s)) +

D

Ms+D
(59)

where ω(s), hq(s), pe(s) stand for Laplace transforms of
ω(t), h(t)q(t), pe(t) respectively.
For the identification, ω, q and pe are given by industrial
measurements, while h is calculated from (52) using q, ze
and hs (the pressure, see 6, the electrical power and the
hydraulic power are filtered using a 2nd order low pass
filter without delay) which are industrial measures too.
The other parameters like the section or the lenght of the
headrace tunnel and the penstock are also known.
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Fig. 6. Pressure hs (raw and filtered)

We can then use the SRIVC-based (Simplified Refined In-
strumental Variable method for Continuous-time systems)
function from the CONTSID Matlab Toolbox (see Garnier
and Gilson (2018)) to estimate these parameters.

On the other hand, normalized parameters Kn
c and Kn,

entering in hydraulic model (49) and characteristic of some
losses, can be estimated from equations (51), (52) and (53)
as follows (see estimation results in Fig. 7):

Kn
c =

1

|qc|qc
(ze − zs + hs − αn

c q̇c − βn
c q

2
c ) (60)

Kn =
1

|qc|qc
(zb − zs + hs − αnq̇c − βn

c q
2
c ) (61)

(where q̇c is estimated from measurement of qc).

3.3 Model Validation

The model validation can be achieved by comparing the
simulated output of the model when fed with industrial
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Fig. 7. Estimation of head loss coefficients Kn
c and Kn

data, to the corresponding industrial measurements.
This is done here on the basis of identification results, both
for hydraulic model (49), and for hydromechanical one
(58). For the first one, qc and ze are shown in Figures 8 and
9 respectively, while ω is displayed for the second one, in
Figure 10. They all show a pretty good accordance between
simulation and measurements, which is quite promising for
possible future monitoring purposes.
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Fig. 10. Rotor speed ω measured and simulated

4. CONCLUSION

In this article, we have exhibited hydraulic and mechanical
models that can be applied to hydroelectric power plants
and that involve parameters whose knowledge at any time
informs about the health of the studied plant. The models
have been validated using measurements from sensors
installed on operating plants. The results confirm the idea
to push further the identification of the parameters in
order to monitor them (for instance in the spirit of Robert
and Besançon (2019)).
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