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Abstract

This work is inspired by a recent study of a two-dimensional stochastic fragmen-
tation model. We show that the configurational entropy of this model exhibits
log-periodic oscillations as a function of the sample size, by exploiting an exact
recursion relation for the numbers of its jammed configurations. This is seem-
ingly the first statistical-mechanical model where log-periodic oscillations affect
the size dependence of an extensive quantity. We then propose and investigate
in great depth a one-dimensional analogue of the fragmentation model. This
one-dimensional model possesses a critical point, separating a strong-coupling
phase where the free energy is super-extensive from a weak-coupling one where
the free energy is extensive and exhibits log-periodic oscillations. This model is
generalized to a family of one-dimensional models with two integer parameters,
which exhibit essentially the same phenomenology.

Keywords: Log-periodic oscillations, Oscillatory critical amplitudes,
Fragmentation models, Finite-size scaling, Non-linear recursions,
Discrete scale invariance

1. Introduction

From the very beginning of the renormalization-group era, it has been sug-
gested that discrete real-space renormalization-group transformations might re-
sult in the modulation of critical behavior by a log-periodic function of the
distance t = |T − Tc|/Tc to the critical point [1, 2, 3]. Oscillatory critical
amplitudes have been later observed and investigated for models defined on
hierarchical lattices [4, 5, 6, 7, 8, 9, 10]. These lattices are self-similar geomet-
ric structures that exhibit discrete scale invariance, and therefore admit exact
renormalization-group transformations. Similar features are shared by other
fractal structures, on which various models have been shown to exhibit log-
periodic oscillations (see e.g. [11, 12, 13, 14, 15, 16, 17]). The same phenomenon
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has also been evidenced as a consequence of the fractal spectra of some aperi-
odic structures (see e.g. [18, 19, 20, 21]). The first ever mention of log-periodic
oscillations seems to date back to 1948, long before the renormalization group
was applied to phase transitions. In a work devoted to the theory of branch-
ing processes, Harris suggested that iterating a discrete mapping might yield
log-periodic oscillations [22]. These oscillations have then been observed and
studied in a more detailed investigation of a germane combinatorial problem,
namely the enumeration of a class of binary trees [23].

Log-periodic oscillations have since then been reported in a broad variety of
situations, as testified by the overview by Sornette [24]. In many settings includ-
ing turbulence, fracture, earthquakes, financial crashes, and quantum gravity,
the occurrence of oscillations is attributed to the emergence of an approximate
discrete scale invariance. The associated scaling factor is often around two. Var-
ious physical mechanisms, including the period-doubling route to chaos, have
been invoked to explain this phenomenon. In most of the above situations,
the observed amplitude of oscillations is sizeable, i.e., of the order of 10 per-
cent. This figure is in stark contrast with the historical example of critical
phenomena, where log-periodic oscillations are typically tiny, with a magnitude
of order 10−5, and therefore hard to observe.

The singular behavior of physical quantities might also be modulated by
periodic amplitudes for reasons that are unrelated to discrete scale invariance.
Confining the discussion to statistical physics, one-dimensional disordered sys-
tems provide a breadth of examples of interest. There, periodic oscillations are
eventually due to a discrete translation invariance, reflecting the atomic na-
ture of the underlying lattice [25, 26]. In some models exhibiting anomalous
biased diffusion, the growth law of the mean displacement is modulated by a
log-periodic function of time [27, 28]. In electron and phonon spectra of disor-
dered chains, the density of states has exponentially small Lifshitz tails, whose
amplitudes are modulated by periodic functions of (∆E)−1/2, where ∆E is the
distance to the band edge [29, 30].

A last example, which motivated the present work, consists of a stochastic
fragmentation model introduced in [31]. A rectangular sample with size (m,n)
drawn on the square lattice is randomly cut into four smaller ones. The process is
then repeated and stops when the system reaches a jammed configuration where
all parts are sticks, i.e., the smaller size of each part equals unity. Consider for
definiteness a square sample of size n. In the first step of the fragmentation
process, the square is cut into four parts whose linear sizes are of the order
of n/2. This observation suggests the emergence of some weak form of discrete
scale invariance with scaling factor two, that is somehow reminiscent of what is
claimed to occur in more complex phenomena such as turbulence or diffusion-
limited aggregation [24]. The main advantage of the above fragmentation model,
which triggered our interest, is the existence of an exact recursion formula for
the numbers Zm,n of jammed configurations.

The setup of the present paper is as follows. In Section 2 we revisit the
stochastic fragmentation model introduced in [31]. By exploiting the exact
recursion recalled above, we demonstrate that the configurational entropy based
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on the numbers Zn,n of jammed configurations on square samples exhibits tiny
log-periodic oscillations in the sample size n. We then introduce and investigate
in detail a one-dimensional (1D) toy model capturing the essential features of
the combinatorics of the fragmentation model (Sections 3 to 6). In spite of
its relative simplicity, the 1D model turns out to have a rich phenomenology,
with a critical point (Section 4) separating a strong-coupling phase (Section 5)
from a weak-coupling one (Section 6). In Section 7 we consider several other
examples of 1D non-linear recursions. A brief discussion of our findings is given
in Section 8.

2. The fragmentation model revisited

In this section we revisit the second fragmentation model introduced in [31].
This irreversible stochastic model is defined recursively as follows. The sample
is a rectangle with size (m,n) drawn on the square lattice. The first step of
the fragmentation consists in cutting the rectangle into four smaller ones, of
respective sizes (i, j), (i, n − j), (m − i, j), (m − i, n − j) (see Figure 1). The
integers i and j are chosen uniformly in the ranges 1 ≤ i ≤ m− 1 and 1 ≤ j ≤
n − 1. The process is repeated and stops when the system reaches a jammed
configuration where all parts are sticks, i.e., the smaller size of each part equals
unity. Figure 2 shows a jammed tiling thus obtained on a square of size 50.

m i m-i

n

j

n-j

Figure 1: First step of the fragmentation of a rectangular sample with m = 5, n = 3,
i = 2 and j = 1.

This fragmentation model enjoys the property that the stochastic histories of
different rectangles are mutually independent from the epoch they are formed.
As a consequence, the numbers Zm,n of jammed tiling configurations on rect-
angular samples of size (m,n) obey the recursion formula [31]

Zm,n =

m−1
∑

i=1

n−1
∑

j=1

Zi,jZi,n−jZm−i,jZm−i,n−j , (1)

with initial conditions Zm,1 = Z1,n = 1 for all m and n. These ‘initial’ val-
ues actually express the ‘final’ condition that a jammed tiling is reached when
all parts are sticks, i.e., the smaller size of each part equals unity. The recur-
sion formula (1) determines all the numbers of jammed tilings, which obey the
symmetry Zm,n = Zn,m. The first few of them are listed in Table 1.

3



Figure 2: A jammed tiling of a square sample of size 50 (courtesy Paul Krapivsky).

m\n 1 2 3 4 5 6 7 8

1 1 1 1 1 1 1 1 1

2 1 1 2 3 4 5 6 7

3 1 2 4 10 20 36 60 94

4 1 3 10 33 98 258 618 1 379

5 1 4 20 98 436 1 676 5 848 18 906

6 1 5 36 258 1 676 9 524 48 296 225 938

7 1 6 60 618 5 848 48 296 354 224 2 387 112

8 1 7 94 1 379 18 906 225 938 2 387 112 23 097 969

Table 1: Numbers Zm,n of jammed tilings on rectangular samples of size (m,n) for m and n

up to 8.

The numbers Zm,n of tiling configurations grow very rapidly with the sample
size (m,n). It is indeed to be expected that their logarithm is extensive, in the
sense that it obeys an area law of the form

lnZm,n ≈ Smn, (2)

where S is the bulk configurational entropy of the model per unit area [32, 33],
for which the estimate S ≈ 0.2805 is given in [31]. There are therefore some
10304 different configurations of jammed tilings on a square of size 50, only one
of which is shown in Figure 2. A more complete thermodynamical expression
for lnZm,n, including the contributions Se of the edges of the sample and Sc of
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its corners, reads

lnZm,n ≈ Smn+ 2Se(m+ n) + 4Sc. (3)

The asymptotic behavior of lnZm,n emerges as a global property of the
solution to the recursion (1), that has resisted all our attempts at analysis. As
it turns out, the entropies S, Se and Sc are modulated by log-periodic oscillations
(see below). Moreover, at variance with the thermodynamical expectation (3),
the edge and corner entropies Se and Sc have a complex dependence on the
aspect ratio r = m/n of the sample (not described here). None of these peculiar
features was mentioned in [31].

From now on, we focus our attention onto square samples. As already put
forward in Section 1, a square of size n is cut into four parts whose sizes are of
the order of n/2 in the first step of the fragmentation process. This suggests
the emergence of some weak form of discrete scale invariance with scaling factor
two, that is somehow reminiscent of what is claimed to occur in turbulence or
in diffusion-limited aggregation [24]. This intuitive line of reasoning therefore
opens the possibility that the area law (2) might be modulated by a 1-periodic
oscillatory function of the variable

x =
lnn

ln 2
. (4)

Our main goal is to demonstrate that log-periodic oscillations of this very
kind are indeed present in the configurational entropy of the fragmentation
model on square samples. To do so, we have devised an improved numerical
scheme allowing an accurate iteration of the recursion (1) up to n = 210 = 1024,
where the integer Zn,n has some 127 000 digits, as lnZn,n ≈ 294 112.573 480.
In order to avoid all overflows and underflows, we turn (1) into a recursion
involving lnZm,n, rather then Zm,n itself. This is possible because all terms
entering (1) are positive, so that there can be no compensations. This goes as
follows.

• For fixed m and n, find i0 and j0 corresponding to the largest term in the
sum entering (1). This yields the estimate

lnZm,n ≈ lnZi0,j0 + lnZi0,n−j0 + lnZm−i0,j0 + lnZm−i0,n−j0 . (5)

• Take all other terms into account by using the obvious identity

ln(a+ b) = ln a+ ln(1 + b/a), (6)

where ln a stands for the leading expression (5), whereas b stands for the
sum of all other subleading terms with (i, j) 6= (i0, j0).

For methodological reasons, we begin by considering the ratio

Rn =
Zn,n

(Zn/2,n/2)4
(7)
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for even n. The denominator of (7) is nothing but the central term in the
expression (1) for Zn,n, corresponding to i = j = n/2. It is therefore natural to
interpret Rn as the effective number of terms contributing to the recursion (1)
for Zn,n.

7 8 9 10
x

3.02

3.04

3.06

3.08

3.10

ln
 R

n

Figure 3: Logarithmic plot of the ratio Rn introduced in (7) against the logarithmic
variable x defined in (4). The observed log-periodic oscillations imply that the edge
configurational entropy Se vanishes for square samples. The average value (lnR)ave
gives access to the corner configurational entropy Sc (see (11)).

Figure 3 shows a logarithmic plot of Rn against the logarithmic variable x
defined in (4). If the numbers Zn,n of tiling configurations were exactly given
by the thermodynamic formula (3), we would have

lnRn ≈ −4Sen− 12Sc. (8)

It is obvious from Figure 3 that the edge configurational entropy Se vanishes
for square samples. Indeed lnRn would otherwise exhibit a linear growth in n
with slope 4|Se|, i.e., an exponential growth in x.

The quantity lnRn plotted in Figure 3 clearly exhibits 1-periodic oscillations
in x. Here and throughout the following, we characterize an oscillatory periodic
function f(x) by its average fave over one period and by the relative magnitude
of oscillations,

fosc =
fmax − fmin

fave
. (9)

The data shown in Figure 3 yield

(lnR)ave ≈ 3.060, (lnR)osc ≈ 9.8 10−3. (10)

Pre-asymptotic corrections to log-periodic behavior are negligible in the range
shown in Figure 3.

The corner configurational entropy of a large square can be estimated as

Sc = − (lnR)ave
12

≈ −0.255, (11)
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whereas the effective number Rn of terms entering the recursion (1) approaches
the rather large but finite limit

Reff = exp ((lnR)ave) ≈ 21.32. (12)

A more accurate definition of the bulk configurational entropy of square
samples is given by

Sn =
lnZn,n − 4Sc

n2
, (13)

where Sc is taken from (11). Figure 4 shows that this quantity exhibits very
small but very clear 1-periodic oscillations in the logarithmic variable x. This is
seemingly the first instance where log-periodic oscillations are reported for the
size dependence of an extensive quantity in a statistical-mechanical model.

The subtraction of the corner entropy 4Sc has drastically improved conver-
gence, so that corrections are again negligible in the range shown in Figure 4.
From a quantitative viewpoint, we have

Save ≈ 0.280481, Sosc ≈ 1.44 10−4. (14)

The numerical value of Save is in full agreement with the estimate S ≈ 0.2805
given in [31]. The magnitude Sosc of oscillations is within the range commonly
observed, e.g. in the critical properties of models on hierarchical lattices.

7 8 9 10
x

0.28044

0.28046

0.28048

0.28050

0.28052

S
n

Figure 4: Configurational entropy Sn defined in (13), plotted against the logarithmic
variable x defined in (4). This quantity exhibits very small 1-periodic oscillations
(see (14)).

3. 1D model: generalities

In this section we introduce a one-dimensional (1D) analogue of the combi-
natorics of jammed configurations in the fragmentation model investigated in
Section 2. This 1D toy model captures the main features of the fragmentation
model, whereas it is simple enough to be studied in great depth (see Sections 4
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to 6). Furthermore, the 1D model has a richer phenomenology than the original
fragmentation model, with a critical point separating a weak-coupling phase,
where the free energy is extensive and exhibits oscillations, from a strong-
coupling one, where the free energy is super-extensive and does not manifest
oscillations.

The 1D model is defined by the recursion relation

Zn =

n−1
∑

k=1

Z2
kZ

2
n−k (n ≥ 2). (15)

This recursion keeps the essential characteristics of its two-dimensional ana-
logue (1), including chiefly the global degree four of the right-hand side, and
the symmetric roles of Zk and Zn−k. The recursion (15) requires only one initial
condition, namely Z1. We set

Z1 = a. (16)

Hereafter the parameter a is chosen to be positive, and viewed as a coupling
constant. The Zn are then positive, and interpreted as partition functions.

The simplest of all initial conditions, a = 1, yields integer values for the Zn:

Z1 = 1, Z2 = 1, Z3 = 2, Z4 = 9, Z5 = 170,

Z6 = 57 978, Z7 = 6722 955 416, (17)

and so on. These numbers are listed as sequence number A053294 in the
OEIS [34], where they are defined as the solution to the very recursion (15),
without any motivation nor any useful result.

For a generic initial condition, we have

Z2 = a4,

Z3 = 2a10,

Z4 = a16 + 8a22,

Z5 = 8a28 + 2a34 + 32a40 + 128a46,

Z6 = 18a40 + 32a46 + 128a52 + 128a58 + 64a64 + 1032a70

+ 4352a76 + 3072a82 + 16384a88 + 32768a94, (18)

and so on. The partition function Zn is a polynomial in a of the form

Zn = Ana
αn + · · ·+Bna

βn . (19)

The terms Ana
αn of lowest degrees and Bna

βn of largest degrees will be inves-
tigated in detail hereafter (see (38), (39), (51), (63)). Furthermore, the degrees
of successive powers of a differ by six, and so

Zn = aαn Pn(z), (20)

where
Pn(z) = An + · · ·+Bnz

∆n (21)
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is a polynomial in the variable
z = a6 (22)

with degree

∆n =
βn − αn

6
. (23)

We have

P1(z) = 1,

P2(z) = 1,

P3(z) = 2,

P4(z) = 1 + 8z,

P5(z) = 8 + 2z + 32z2 + 128z3,

P6(z) = 18 + 32z + 128z2 + 128z3 + 64z4 + 1032z5

+ 4352z6 + 3072z7 + 16384z8 + 32768z9, (24)

and so on. Table 2 gives the degrees αn, βn and ∆n up to n = 14.

n αn βn ∆n n αn βn ∆n

1 1 1 0 8 64 382 53

2 4 4 0 9 88 766 113

3 10 10 0 10 112 1534 237

4 16 22 1 11 136 3070 489

5 28 46 3 12 160 6142 997

6 40 94 9 13 184 12286 2017

7 52 190 23 14 208 24574 4061

Table 2: Degrees αn, βn and ∆n, defined in (19) and (23), up to n = 14.

Figure 5 shows a plot of the 237 zeros (or roots) of the polynomial P10(z)
in the complex z-plane. Most zeros sit near the circle with radius R = 1/2,
shown in black (see (43)). The zeros pinch the positive real axis at zc ≈ 0.411
(red symbol), corresponding to ac ≈ 0.862. This observation points toward the
emergence of a non-trivial phase diagram driven by the initial condition (16),
where a critical point at ac separates a strong-coupling phase (a > ac) from a
weak-coupling one (a < ac). The detailed analysis performed in Sections 4 to 6
corroborates this picture.

4. 1D model: critical region

The 1D model has a critical point at the following value

ac = 0.862 322 847 096 001 235 198 066 . . . (25)
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Figure 5: Blue symbols: the 237 zeros of the polynomial P10(z) in the complex z-plane.
Red symbol: accumulation point of the zeros on the positive real axis at zc ≈ 0.411.
The radius R = 1/2 of the black circle is the modulus of a typical zero of Pn(z) for
large n (see (43)).

of the coupling constant. This critical point is somewhat similar to a separatrix
in nonlinear dynamics. The accuracy of the above number will be commented
on at the end of this section.

Right at a = ac, the partition functions obey a power law of the form

Zn ≈ C nγ . (26)

Inserting this asymptotic behavior into (15), and using a continuum setting
where the sum over k is replaced by an integral over y = k/n, we successively
obtain γ = 4γ + 1, hence

γ = −1

3
, (27)

and

C = C4

∫ 1

0

(y(1− y))−2/3dy, (28)

hence

C =

(

Γ(2/3)

Γ2(1/3)

)1/3

= 0.573 557 545 . . . (29)

Near a = ac, along the lines of finite-size scaling theory [35, 36], we expect
a scaling behavior of the form

Zn ≈ C n−1/3
(

1 +D(a− ac)n
σ + · · ·

)

, (30)

where the crossover exponent

σ =
1

ν
(31)
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is the inverse of the correlation length exponent ν. Inserting the scaling be-
havior (30) into (15), working to first order in a − ac, and using the same
continuum setting as above, we obtain the following ‘quantization condition’ for
the crossover exponent:

Γ(σ + 1/3)Γ(2/3)

Γ(σ + 2/3)Γ(1/3)
=

1

4
, (32)

hence
σ = 8.260 875 323 . . . , ν = 0.121 052 547 . . . (33)

The above scaling analysis yields the exact values of γ, C, σ and ν, but it neither
predicts ac nor the crossover amplitude D.

As a consequence of the very large crossover exponent σ, the recursion (15)
is very unstable in the vicinity of ac, i.e., very sensitive to deviations from ac,
so that the very accurate numerical value of ac given in (25) can be obtained.
This level of accuracy will be needed at some places hereafter.

5. 1D model: strong-coupling phase

In this section we consider the strong-coupling phase (a > ac) of the 1D
model, which is simpler to analyze than its weak-coupling partner.

The partition functions Zn grow very fast in this phase, so that the sum
in (15) is expected to be dominated by its extremal terms (k = 1 and k = n−1).
Forgetting about prefactors, this reads

Zn ∼ Z2
n−1. (34)

Several heuristic equations of this kind will be met hereafter in the context of 1D
models. The recursion (34) does not point toward the existence of oscillations.
It yields an exponentially super-extensive growth law of the form

lnZn ≈ K(a) 2n. (35)

The quantity K(a) is referred to as the generalized free energy of the model in
its strong-coupling phase.

5.1. a → ∞ regime

Let us begin by considering the situation where a → ∞. In this regime, we
have (see (19))

Zn ≈ Bna
βn . (36)

The above assumption that the sum in (15) is dominated by its two extremal
terms is consistent and translates to the recursion relations

βn = 2(βn−1 + 1), Bn = 2B2
n−1 (n ≥ 3), (37)

yielding
βn = 32n−1 − 2 (n ≥ 1) (38)
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and
Bn = 22

n−2−1 (n ≥ 2). (39)

These results agree with the form (35) and yield the asymptotic form of K(a)
at large a, namely

Kasy(a) =
3

2
ln a+

1

4
ln 2. (40)

The first correction term to the above asymptotic form is in 1/a6. The expres-
sion (40) vanishes at

a0 = 2−1/6 = 0.890 898 718 . . . , (41)

whereas K(a) vanishes at ac (see (25)). The small difference (3 percent) be-
tween ac and its strong-coupling approximation a0 will be demonstrated in Fig-
ure 6. It can be alternatively illustrated in terms of the zeros of the polynomials
Pn(z), shown in Figure 5 for n = 10. The form (21) implies that the product of
all zeros zk of Pn(z) reads

∆n
∏

k=1

zk = (−1)∆n

An

Bn
. (42)

It will be shown below (see (51) and (63)) that αn and An grow much less
rapidly than βn and Bn. As a consequence, we have ∆n ≈ βn/6 ≈ 2n−2 and

R = lim
n→∞

(

An

Bn

)1/∆n

=
1

2
. (43)

This number represents the modulus |zk| of a typical zero of Pn(z) for large n.
It is therefore to be expected that most zeros lie near the circle with radius 1/2.
This prediction is corroborated by Figure 5. Finally, z0 = a60 = 1/2 sits right on
the above circle, whereas zc = a6c , shown by a red symbol in Figure 5, is slightly
inside that circle.

5.2. Generic values (a > ac)

We have performed a numerical iteration of the recursion (15) by means of
the scheme already used in Section 2 (see (5) and (6)). This numerical analysis
clearly demonstrates that the super-exponential behavior (35) holds throughout
the strong-coupling phase. Figure 6 shows the generalized free energy K(a) thus
obtained and its asymptotic formKasy(a), plotted against a in some range above
the critical point. The values ac and a0 where these functions vanish are shown
by arrows. The relatively small difference between these numbers, emphasized
just above, goes hand in hand with the observation that Kasy(a) provides a
good overall representation of the true K(a), except in the immediate vicinity
of the critical point.

The critical behavior of the generalized free energy K(a) can be predicted by
means of the following scaling argument. If a−ac is very small, the exponential

12
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Figure 6: Generalized free energy K(a) (red) and its asymptotic form Kasy(a) (blue),
plotted against a in some range above the critical point. Arrows: values ac and a0

where these functions respectively vanish. The asymptotic form Kasy(a) provides a
good representation of K(a), except in the vicinity of the critical point.

growth (35) only sets in when the sample size n has exceeded a crossover length
diverging as (a − ac)

−ν . This yields an exponentially small essential critical
singularity of the form

K(a) ∼ exp
(

−C1(a− ac)
−ν

)

. (44)

This functional form is corroborated by Figure 7, showing − lnK(a) against
(a− ac)

−ν . The slope of the blue line yields

C1 ≈ 9.3. (45)

The rightmost plotted point is the deepest into the critical region, with a−ac ≈
2.05 10−15 and K(a) ∼ 10−233. These numbers call for two remarks. First,
only the numerical evaluation of exact equations such as the recursion (15) can
achieve such accuracy. Second, it is crucial to use a very accurate value of ac
itself (see (25)).

6. 1D model: weak-coupling phase

We now turn to the weak-coupling phase of the 1D model (a < ac). There,
it will be shown that the free energy is extensive, growing as n2, and exhibits
log-periodic oscillations as a function of the sample size n, corresponding to
a discrete scaling factor two, just as the two-dimensional fragmentation model
studied in Section 2.

The partition functions Zn fall off to zero as n increases, so that the sum
in (15) is expected to be dominated by its central terms (k ≈ n/2). Forgetting
about prefactors, this reads

Zn ∼ Z4
n/2. (46)
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Figure 7: Plot of − lnK(a) against (a−ac)
−ν , corroborating the critical singularity (44)

of the generalized free energy. The slope of the blue line yields C1 ≈ 9.3. The
rightmost point is the deepest into the critical region, with a − ac ≈ 2.05 10−15 and
K(a) ∼ 10−233.

This heuristic relation suggests a growth of lnZn of the form

lnZn ≈ −F (a, x)n2, (47)

where F (a, x) exhibits 1-periodic oscillations in the logarithmic variable x de-
fined in (4). This quantity is hereafter referred to as the free energy (density)
of the model.

6.1. a → 0 regime

Let us begin by considering the situation where a → 0. In this regime, the
presence of log-periodic oscillations can be explained in simple terms. We have
(see (19))

Zn ≈ Ana
αn . (48)

We shall successively investigate the degrees αn and the coefficients An.
The degrees αn entering (48) obey the recursion

αn = 2 min
1≤k≤n−1

(αk + αn−k). (49)

These integers are given in Table 2 up to n = 12. They are listed as sequence
number A073121 in the OEIS [34], together with useful formulas and references.
In particular, they obey the recursions

α2n = 4αn, α2n+1 = 2(αn + αn+1). (50)

These relations exhibit a discrete scale invariance with scaling factor two. In
particular, αn = n2 whenever n = 2m is a power of two. For n in the interval
2m ≤ n ≤ 2m+1, the degrees αn exhibit an exact linear growth in n, of the form

αn = 2m(3n− 2m+1), (51)
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so that
αn − n2 = (2m+1 − n)(n− 2m). (52)

It is then useful to split the logarithmic variable x defined in (4) into its integer
and fractional parts according to

x =
lnn

ln 2
= m+ ξ (0 ≤ ξ ≤ 1), (53)

and to introduce another reduced co-ordinate,

η =
n

2m
− 1 = 2ξ − 1, (54)

that is also in the range 0 ≤ η ≤ 1. The result (51) can be exactly recast as

αn = n2f(x), (55)

where f(x) is a 1-periodic function of x, given by

f(x) = 2−ξ(3− 21−ξ) = 1 +
η(1− η)

(1 + η)2
(56)

in terms of the co-ordinates ξ or η. The function f(x) will be plotted in Figure 8.
It reaches its minimum fmin = 1 at integer x and its maximum fmax = 9/8 for
ξ = ln(4/3)/ ln 2, i.e., η = 1/3. We have

fave =
3

4 ln 2
= 1.082 021 280 . . . , fosc =

ln 2

6
= 0.115 524 530 . . . (57)

We have thus established the validity of the scaling form (47), including log-
periodic oscillations, to leading order as a → 0, and derived a first estimate of
the free energy in the small-a regime,

F (a, x) ≈ f(x)| ln a|. (58)

Let us now turn to the analysis of the coefficients An entering (48). The
minimum in (49) turns out to be generically highly degenerate. More precisely,
for n in the interval 2m ≤ n ≤ 2m+1, i.e., n = 2m + i with 0 ≤ i ≤ 2m, this
minimum is reached for all integers k of the form k = 2m−1 + j, where j runs
over the following range:

{

0 ≤ i ≤ 2m−1 : 0 ≤ j ≤ i,
2m−1 ≤ i ≤ 2m : i− 2m−1 ≤ j ≤ 2m−1.

(59)

Denoting by Kn the set of integers k defined above, the coefficients An obey the
recursion

An =
∑

k∈Kn

A2
kA

2
n−k. (60)

When n = 2m is a power of two, the set Kn consists of a single element, k = n/2,
and so An = 1. When n = 3 2m−1 is half-way between two successive powers of

15



two, the set Kn is the largest, with 2m−1 + 1 elements, and the coefficient An

is (locally) maximal. We have

A3 = 2, A6 = 18, A12 = 113 170, (61)

and so on. More generally, we have the symmetry

An = Añ, ñ = 32m − n. (62)

The coefficients An obey the asymptotic growth law

lnAn ≈ n2g(x), (63)

where g(x) is a 1-periodic function of x. We have thus obtained a more complete
estimate of the free energy in the small-a regime:

F (a, x) ≈ f(x)| ln a| − g(x). (64)

The function g(x) is positive, vanishes at integer x, and its average reads

gave ≈ 0.058 187 830. (65)

At variance with (49), the recursion (60) cannot be solved in closed form, so
that no analytic expression for g(x) is available. As a consequence of (59), g(x)
exhibits cusps at (presumably) all dyadic values η = j/2k of the coordinate η
introduced in (54). The strongest of these cusps are situated at η = 2−k and
η = 1 − 2−k. Figure 8 shows the 1-periodic functions f(x) − 1 and g(x) over
one period. The cusp singularities of g(x) are not visible at this scale. Figure 9
shows the ratio

R(x) =
g(x)

f(x)− 1
(66)

against the co-ordinate η introduced in (54). The formulas (52) and (62) imply
that R(x) is invariant under the change of η into 1− η. The two main series of
cusp singularities are now clearly visible (red symbols).

6.2. Generic values (a < ac)

A numerical iteration of the recursion (15) by means of the scheme already
used in Section 2 (see (5) and (6)) clearly demonstrates that the scaling behav-
ior (47) holds throughout the weak-coupling phase. We shall focus our attention
onto the average Fave(a) and the relative magnitude of oscillations Fosc(a) of
the free energy F (a, x).

In the a → 0 regime, the estimate (64) shows that the average free energy
diverges logarithmically according to

Fave(a) ≈ fave| ln a| − gave, (67)

where fave and gave are respectively given in (57) and (65), whereas Fosc(a) goes
to the finite limit (see (57))

Fosc(0) = fosc = 0.115 524 530 . . . , (68)
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Figure 8: The 1-periodic functions f(x) − 1 (blue) and g(x) (red), entering the full
estimate (64) of the free energy in the small-a regime, plotted against x over one
period.
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Figure 9: Ratio R(x) defined in (66), plotted against the co-ordinate η. Equations (52)
and (62) imply that R(x) is invariant under the change of η into 1− η. Red symbols:
two main series of cusps at η = 2−k and η = 1− 2−k.

whose value is quite sizeable.
In the critical regime (a → ac), scaling theory suggests that the average free

energy vanishes according to

Fave(a) ≈ C2(ac − a)2ν , (69)

whereas the relative magnitude of oscillations has a finite limit Fosc(ac). These
expectations are corroborated by Figures 10 and 11. The data plotted there
have been extrapolated by means of very accurate 4th-degree polynomial fits.
There is no rationale behind the choice of the abscissas used in these plots:
the chosen powers of ac − a just turn out to allow for accurate extrapolations.
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Figure 10 shows the combination (ac − a)−2νFave(a) against (ac − a)ν , yielding

C2 ≈ 0.0050. (70)

Comparing this number to the amplitude C1 given in (45), we notice that, even
though C1 is large and C2 is small, the dimensionless combination C2

1C2 ≈ 0.43
is of order unity. Figure 11 shows Fosc(a) against (ac − a)2ν , yielding

Fosc(ac) ≈ 0.00111. (71)

The relative magnitude of free energy oscillations at the critical point is therefore
very small, but definitely non zero.
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(a
c
-a)

ν
0.00

0.01

0.02

0.03

(a
c-a

)-2
ν F

av
e(a

)

Figure 10: Red symbols: (ac − a)−2νFave(a) against (ac − a)ν . Blue curve: polynomial
fit yielding C2 ≈ 0.0050. The individual amplitudes C1 and C2 entering (44) and (69)
are respectively large and very small, but their dimensionless combination C2

1C2 ≈ 0.43
is of order unity.

As the coupling constant a is increased from 0 to ac, the average free energy
Fave(a) decreases steadily from infinity to zero, interpolating smoothly between
the behaviors (67) and (69). In the same time, the relative magnitude Fosc(a)
of oscillations decreases by a factor of order 100 from (68) to (71). Figure 12
shows that Fosc(a) does not decay monotonically between those two limits. In
particular, it exhibits a cusp at a∗ = 0.537 750 . . .

The cusp in Figure 12 has to do with a change in the shape of the 1-periodic
function F (a, x). Figure 13 shows the reduced oscillations F (a, x)/Fave(a)
against the logarithmic variable x. Two consecutive periods are shown for clar-
ity. For the smaller values of a (upper panel), the oscillations strongly decrease
in magnitude, while keeping essentially the shape of f(x) (see Figure 8), with
a cusp around a single minimum at integer x. For a near a∗ (lower panel), the
structure of the oscillations becomes richer and changes rapidly with a. A second
minimum with a cusp develops at η = 1/2, i.e., ξ = ln(3/2)/ ln 2 = 0.584 962 . . .
This second cusp and the original one have exactly the same height at a = a∗.
This degeneracy causes the structure observed in Figure 12. For larger a (not
shown), the oscillations soon become very small and harmonic.
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Figure 11: Red symbols: Fosc(a) against (ac−a)2ν . Blue curve: polynomial fit yielding
Fosc(ac) ≈ 0.00111. The relative magnitude of free energy oscillations at the critical
point is therefore very small, but definitely non zero.
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Figure 12: Logarithmic plot of Fosc(a) against a all over the weak-coupling phase. Blue
symbols: limit values (68) at a = 0 and (71) at a = ac. Green arrow: cusp in Fosc(a)
due to the change in the shape of the 1-periodic function F (a, x) at a∗ ≈ 0.537750.

7. Further 1D examples

In this section we propose four other 1D analogues of the recursion (15) for
the partition functions of the fragmentation model. In each case, we determine
whether the model may cross a phase transition when its initial conditions are
varied and whether is exhibits log-periodic oscillations in one of its phases.
These outcomes lead us to introduce, as our fifth example, what we can think
of as the most general recursion of this kind exhibiting log-periodic oscillations.
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Figure 13: Reduced oscillations F (a, x)/Fave(a), plotted against the logarithmic vari-
able x for several a (see legends). Note the different vertical scales in both panels.

Example 1

This first example is obtained by suppressing the squares in the recur-
sion (15) defining the 1D model. We thus obtain the bilinear recursion

Zn =

n−1
∑

k=1

ZkZn−k (n ≥ 2), (72)

with initial condition Z1 = a. In terms of the generating series

G(z) =
∑

n≥1

Znz
n, (73)

this reads
G(z) = az +G(z)2, (74)

hence

G(z) =
1−

√
1− 4az

2
. (75)
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The partition functions therefore read

Zn = Cn−1a
n ≈ (4a)n

4
√
πn3

, (76)

where

Cn−1 =
(2n− 2)!

n!(n− 1)!
(77)

is the (n−1)-st Catalan number. These integers have a panoply of combinatorial
interpretations. They are listed as sequence number A000108 in the OEIS [34],
together with many useful formulas and references. The exponential growth
rate of the Zn depends smoothly on the initial condition. This example neither
exhibits a phase transition nor oscillations.

Example 2

This second example is an extension of the previous one, defined by the
trilinear recursion

Zn =
∑

k+l+m=n

ZkZlZm (n ≥ 3), (78)

with initial conditions Z1 = a and Z2 = b. For a = b = 1, the Zn are positive
integers which count ternary trees. They are listed as sequence number A019497
in the OEIS [34]. In full generality, the corresponding generating series, defined
in analogy with (73), obeys

G(z) = az + bz2 +G(z)3. (79)

We thus obtain the asymptotic behavior

Zn ≈ C

n3/2 z0n
, (80)

where z0 is the smallest zero of the discriminant of (79), namely

∆ = 27z2(a+ bz)2 − 4. (81)

In the range of physical relevance (a and b positive), the exponential growth
rate 1/z0 is positive and has a smooth dependence on the initial conditions.
This example therefore neither exhibits a phase transition nor oscillations.

Example 3

The third example is obtained by replacing each square in (15) by a higher
power, namely

Zn =

n−1
∑

k=1

Zp
kZ

p
n−k (n ≥ 2), (82)
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with Z1 = a. For any integer p ≥ 3, the model exhibits the very same phe-
nomenology as the 1D model investigated above, with a critical point at some
p-dependent ac. The strong-coupling phase (a > ac) is captured by the heuristic
equation

Zn ∼ Zp
n−1, (83)

generalizing (34) and yielding an exponentially growing free energy of the form

lnZn ≈ K(a) pn. (84)

The weak-coupling phase (a < ac) is captured by the heuristic equation

Zn ∼ Z2p
n/2, (85)

generalizing (46) and yielding a free energy growing as

lnZn ≈ −F (a, x)nd, (86)

where the effective dimension reads

d =
ln 2p

ln 2
, (87)

and F (a, x) is a 1-periodic function of the logarithmic variable x defined in (4).

Example 4

The fourth example is obtained by replacing the squares in (15) by two
different integer powers p and q, such that p > q ≥ 1, namely

Zn =

n−1
∑

k=1

Zp
kZ

q
n−k (n ≥ 2), (88)

with Z1 = a. This is the first situation where Zk and Zn−k play asymmetrical
roles. The model has a critical point at some ac depending on p and q. The
strong-coupling phase (a > ac) is similar to that of the previous example. In the
weak-coupling phase (a < ac), the free energy grows as a power of the sample
size, namely

lnZn ≈ −F (a)nd, (89)

where the effective dimension d is given by

(

p1/(d−1) − 1
)(

q1/(d−1) − 1
)

= 1. (90)

The power-law (89) is modulated by slowly damped erratic oscillations. This
example therefore exhibits a continuous phase transition, but no everlasting
log-periodic oscillations.
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Example 5

This fifth example is meant to represent the most general recursion exhibit-
ing log-periodic oscillations, at least within the class of models under scrutiny.
The study of the previous examples suggests that the following ingredients are
necessary: each partition function enters non-linearly and all parts play sym-
metric roles. We are thus led to consider the recursion

Zn =
∑

k1+···+kr=n

Zp
k1

. . . Zp
kr

(n ≥ r). (91)

The recursion (91) has to be supplemented with the r − 1 initial conditions
Zn = an for n = 1, . . . , r − 1. This model has two integer parameters, the
degree p ≥ 2 and the number r ≥ 2 of parts. The recursion (15) defining the 1D
model is recovered for p = r = 2, whereas the recursion (82) defining Example 3
is recovered for r = 2 and p arbitrary.

For physically relevant, i.e., positive initial conditions, the simplest phase
diagram one can think of consists of a single critical surface in the space of
initial conditions, separating a strong-coupling phase from a weak-coupling one.
More complex scenarios allowing for other kinds of behavior in intermediate
regimes are however not entirely ruled out.

The strong-coupling phase is captured by the heuristic equation

Zn ∼ Zp
n+1−r, (92)

generalizing (34) and (83), and yielding an exponentially growing free energy of
the form

lnZn ≈ K enµ, µ =
ln p

r − 1
. (93)

The weak-coupling phase is captured by the heuristic equation

Zn ∼ Zpr
n/r, (94)

generalizing (46) and (85), and yielding a free energy growing as a power of the
sample size modulated by periodic oscillations, of the form

lnZn ≈ −F (x)nd, (95)

where the effective dimension reads

d =
ln pr

ln r
, (96)

and F (x) is a 1-periodic function of the logarithmic variable

x =
lnn

ln r
. (97)

The constant K and the function F (x) depend on the r − 1 initial conditions.
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8. Discussion

The stochastic fragmentation model introduced in [31] sparked our interest
in revisiting the subject of log-periodic oscillations. The fragmentation model
is unique in that it combines the following two characteristics. On the one
hand, from a heuristic viewpoint, it can be expected to exhibit some weak
discrete scale invariance, in analogy with what occurs e.g. in turbulence or in
diffusion-limited aggregation. On the other hand, the numbers Zm,n of jammed
configurations obey an exact recursion formula. We have used the latter prop-
erty to demonstrate by numerical means that the model indeed exhibits the
log-periodic oscillations predicted by the former one. To our knowledge, this is
the first instance of a statistical-mechanical model where periodic oscillations
are reported in the size dependence of a physical quantity.

A 1D analogue of the fragmentation model has then been introduced and
investigated in detail. This 1D toy model has many appealing features. First
of all, it is simple enough to lend itself to a very detailed investigation. In spite
of this, it has a richer behavior than the 2D fragmentation model. There is a
critical value ac of the initial condition, interpreted as a coupling constant, that
is somewhat similar to a separatrix in nonlinear dynamics. This critical point
separates a strong-coupling phase where the free energy is super-extensive and
does not manifest oscillations, from a weak-coupling one where the free energy
is extensive and exhibits log-periodic oscillations. The above characteristics can
be established on much firmer ground than for the 2D fragmentation model by
means of so-called heuristic equations such as (34) and (46). Finally, we have
generalized the 1D model into a family of models with two integer parameters,
which exhibit essentially the same phenomenology.

This work leaves a number of questions unanswered. The most pressing one
concerns what can be established by either rigorous or analytical means about
log-periodic oscillations in the fragmentation model. Possible answers range
from simply proving their existence to deriving explicit formulas for the log-
periodic functions that modulate the bulk configurational entropy and related
aspect-ratio-dependent quantities.
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