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Semi-Discrete Optimal Transport: Nearly Minimax Estimation With

Stochastic Gradient Descent and Adaptive Entropic Regularization

Ferdinand Genans∗, Antoine Godichon-Baggioni†, François-Xavier Vialard‡

and Olivier Wintenberger§

Abstract

Optimal Transport (OT) based distances are powerful tools for machine learning to compare probability
measures and manipulate them using OT maps. In this field, a setting of interest is semi-discrete OT,
where the source measure µ is continuous, while the target ν is discrete. Recent works have shown that the
minimax rate for the OT map is O(t−1/2) when using t i.i.d. subsamples from each measure (two-sample
setting). An open question is whether a better convergence rate can be achieved when the full information
of the discrete measure ν is known (one-sample setting). In this work, we answer positively to this
question by (i) proving an O(t−1) lower bound rate for the OT map, using the similarity between Laguerre
cells estimation and density support estimation, and (ii) proposing a Stochastic Gradient Descent (SGD)
algorithm with adaptive entropic regularization and averaging acceleration. To nearly achieve the desired
fast rate, characteristic of non-regular parametric problems, we design an entropic regularization scheme
decreasing with the number of samples. Another key step in our algorithm consists of using a projection
step that permits to leverage the local strong convexity of the regularized OT problem. Our convergence
analysis integrates online convex optimization and stochastic gradient techniques, complemented by the
specificities of the OT semi-dual. Moreover, while being as computationally and memory efficient as vanilla
SGD, our algorithm achieves the unusual fast rates of our theory in numerical experiments.

Keywords: Optimal Transport; Stochastic Gradient Descent; Statistical Estimation

1 Introduction

Optimal transport (OT) is now a widely used tool to compare probability distributions in different areas
of data science such as machine learning [Courty et al., 2014, Genevay et al., 2018, Bigot et al., 2017],
computational biology [Schiebinger et al., 2019], imaging [Feydy et al., 2017, Bonneel and Digne, 2023],
even economics [Galichon, 2018] or material sciences [Buze et al., 2024]. The computational and statistical
efficiency of OT solvers is the key to facilitating their use in practical applications. Therefore, both
computational methods and the statistical bottleneck in optimal transport (OT), often referred to as the
curse of dimensionality, have received significant attention over the past decade [Peyré et al., 2019, Weed and
Bach, 2017]. Regularization such as Entropic OT (EOT) [Cuturi, 2013] is a popular method to alleviate these
two issues. It consists of adding an entropic regularization term to the objective function. Annealing schemes
on the regularization parameter to approximate the true solution of OT by its entropic approximation are
efficient, as shown in [Kosowsky and Yuille, 1994, Schmitzer, 2019a, Feydy, 2020]. Still largely open is the
theoretical understanding of these methods [Sharify et al., 2011, Schmitzer, 2019a], which can shed light on
the design of the annealing scheme, also called ε-scaling.

OT and its entropic regularization apply to different contexts of interest. The most general context is
when the two distributions are accessed via samples and one wants to estimate the OT distance and the
correspondence plan or map. Another context of interest in some applications is the case of semi-discrete
OT, as in Kitagawa et al. [2016], in which one of the two distributions is discrete and the other continuous.
This setting is slightly simpler than the general case since (i) the OT problem reduces to the estimation of
Laguerre cells and (ii) the curse of dimensionality is alleviated [Pooladian et al., 2023].
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Related works. In many applications of OT, one or both of the measures are accessed via i.i.d. samples.
The goal then becomes to construct estimators of the OT map and/or cost. It is known that without any
assumptions on the measures, the estimation of OT quantities suffers from the curse of dimensionality. For
instance, estimating the Wasserstein distance from t samples achieves a rate of O(t−

1
d ) for d ≥ 3. Despite the

curse of dimensionality, estimating OT quantities attracts a lot of interest. Relevant works include Fournier
and Guillin [2015], Weed and Bach [2017], Chizat et al. [2020], Rigollet and Stromme [2022] for the OT cost,
and Deb et al. [2021], Hütter and Rigollet [2021], Vacher et al. [2021], Pooladian et al. [2023] for the OT map.

We study here the estimation of OT quantities in the semi-discrete setting, where the continuous
distribution is accessed through sampling, similarly to Mensch and Peyré [2020], Pooladian et al. [2023], but
we assume full access to the discrete target measure, as in Genevay et al. [2016], Bercu and Bigot [2021]. This
setting is of interest since, as recently shown in Pooladian et al. [2023], the OT map estimation escapes the
curse of dimensionality, even without assuming the map to be smooth or continuous. Indeed, they showed
that a rate of O(t−

1
2 ) is achievable in the ”one-sample” and ”two-sample” settings (sampling only from the

source measure or from both measures). To do so, their work uses the EOT map estimator [Seguy et al.,

2017, Pooladian and Niles-Weed, 2021] with a regularization ε ≍ t−
1
2 , as well as results on the convergence

rate of the entropic optimal potential to the Kantorovich potential in the semi-discrete setting proved in
Altschuler et al. [2022], Delalande [2022]. Moreover, they showed that the rate O(t−

1
2 ) is minimax for the

estimation of the OT map in the two-sample setting.
Beyond the statistical challenges, building efficient solvers for semi-discrete OT is also a considerable

challenge. Many solvers of (E)OT in this setting are based on optimizing the semi-dual, which is a finite-
dimensional convex optimization problem. In particular, efficient Newton and quasi-Newton methods [Mérigot,
2011, Lévy, 2015, Kitagawa et al., 2016] are proposed for low dimensions, employing meshes when the source
density is known. For arbitrary dimensions, or when the source measure is only accessible via samples,
Genevay et al. [2016] propose using semi-dual EOT and Stochastic Gradient Descent (SGD) based solvers as
proxies for OT. The study of SGD and Averaged SGD (ASGD) for EOT was further investigated by Bercu
and Bigot [2021], which notably demonstrated that the objective function is self-concordant and benefits
from enhanced strong convexity near an optimum. Using these facts, Bercu and Bigot [2021] showed that a
convergence rate of O(t−1) can be achieved for the squared Euclidean distance estimation of the discrete
entropic optimal potential. However, terms in ε−1 were considered negligible in their study, thus excluding
small regularization.

Contributions. Our main contribution is twofold. First, we introduce an SGD-based algorithm to solve
the semi-dual formulation of OT. This algorithm incorporates a projection step and an entropic regularization
scheme that decreases with the number of samples. While being as computationally and memory efficient as
vanilla SGD, our algorithm achieves enhanced convergence rates, thanks to the decreasing regularization.
Specifically, given t i.i.d. samples of the source measure, it achieves a convergence rate of O(t−2b) with
b ∈ (1/2, 1) for both the discrete Kantorovich potential and OT cost estimation. We then construct an OT
map estimator based on our discrete potential estimator and the closed form of the gradient of Fenchel
transforms. By studying the difference between the Laguerre cells formed by the Kantorovich potential and
our estimator, we retrieve a O(t−b) convergence rate for the OT map, for b ∈ (1/2, 1).

Second, building upon the parallel between measure support estimation and Laguerre cell estimations, we
derive two new minimax lower bounds, characteristic of the fast rates of non-regular models: a O(t−2) rate
for the Kantorovich potential and a O(t−1) rate for the OT map (compared to O(t−1/2) in the two-sample
setting [Pooladian et al., 2023]). These lower bounds are nearly achieved by our estimators since b < 1.
Finally, we numerically showcase the convergence rates of our algorithm for the OT potential, map, and cost
estimators.

Notations. We note ∥ · ∥ the euclidean norm, and for C ⊂ Rd, DC := sup{∥x− y∥ : x, y ∈ C} denote its
diameter. For a, b ∈ R, a ∨ b := max{a, b} and a ∧ b := min{a, b}. For v ∈ Rd, vmin := min1≤j≤d vj . 1d and
0d denote the vectors (1, . . . , 1) and (0, . . . , 0) in Rd. λRd is the Lebesgue measure in Rd. P(Rd) is the set of
probabilities in Rd, and for ρ ∈ P(Rd), Supp(ρ) is its support. O(·) and o(·) are the usual approximation
orders. We use f ≲ g if there exists a constant C > 0 such that f(·) ≤ Cg(·). We write a ≍ b if both a ≲ b
and b ≲ a.
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2 Behind stochastic approximation for Optimal Transport

2.1 Background on (Entropic) Optimal Transport

Given a source and target probability measures µ, ν ∈ P(Rd), a cost function c : Rd × Rd → R+ and a
regularization parameter ε ≥ 0, the Entropic Optimal Transport (EOT) problem is

OTε
c(µ, ν) := min

π∈Π(µ,ν)

∫
Rd×Rd

c(x, y)dπ(x, y) + ε

∫
Rd×Rd

ln

(
dπ

dµdν
(x, y)

)
dπ(x, y), (1)

where Π(µ, ν) is the set of joints probability measures on Rd×Rd with marginals µ and ν. Mild conditions on
µ, ν and the cost can be made so that this problem is well-posed, see Villani [2009]. When ε = 0, Problem (1)
recovers the Kantorovich formulation of OT. In this article, we focus on the quadratic cost c(x, y) = 1

2∥x−y∥2,
although some of our results can be extended to more general costs. Our analysis relies on the semi-dual
formulation of the convex problem (1) given by

OTε
c(µ, ν) = max

f∈C(Rd)

∫
Rd

f(x)dµ(x) +

∫
f c,ε(y)dν(y), (2)

where for all y ∈ Rd,

f c,ε(y) : =

{
minx∈Rd c(x, y)− f(x) if ε = 0,

−ε log
(∫

Rd exp
(
f(x)−c(x,y)

ε

)
dµ(x)

)
if ε > 0.

Under mild conditions on the cost or densities, a positive ε makes the semi-dual formulation ε−1-smooth
[Cuturi and Peyré, 2018]. The key property of this semi-dual formulation of (E)OT is to retain more convexity
than the standard dual of (1) (see Hütter and Rigollet [2021], Vacher and Vialard [2023]).

Optimal maps and Brenier’s theorem. We consider the quadratic cost, ε = 0 and µ, ν having
second-order moments. Under the additional assumption that the measure µ is absolutely continuous, the
optimal potential f∗, called Kantorovich potential, is (locally) Lipschitz and the map

Tµ,ν(x) := x−∇f∗(x) (3)

pushes forward µ onto ν (see Brenier [1991]). In addition, Tµ,ν is the gradient of a convex function. This
optimal map has more importance than the OT cost in subfields of machine learning such as generative
modeling [Khrulkov and Oseledets, 2022] or domain adaptation [Courty et al., 2017].

2.2 Semi-discrete OT

Semi-discrete (E)OT is when the source measure µ is absolutely continuous and the target measure ν =∑M
j=1wjδyj is a finite sum of M ≥ 1 Dirac masses with weights wj > 0. In this case, the semi-dual formulation

reduces to a finite-dimensional convex optimization problem on RM

min
g∈RM

Hε(g)
def.
= −

∫
Rd

gc,ε(x)dµ(x)−
M∑
j=1

gjwj , (4)

where for all x ∈ Rd, gc,ε(x) is a (vectorial) (c, ε)-transform with respect to a vector g = (g1, . . . , gM ) ∈ RM ,
defined by

gc,ε(x) =

{
minj∈J1,MK

[
1
2∥x− yj∥2 − gj

]
if ε = 0,

−ε ln
(∑M

j=1 exp
(
− 1

2
∥x−yj∥2+gj

ε

)
wj

)
if ε > 0.

The vector g corresponds to the value of the potential function at the points yj . For notational convenience,

we write Hε(g) =
∫
Rd hε(x,g)dµ(x) with hε(x,g) = −gc,ε(x)−∑M

j=1 gjwj . For all g ∈ RM and given X ∼ µ,
an unbiased estimator of the gradient is given by

∇ghε(X,g)j = −wj + χε
j(X,g), 1 ≤ j ≤ M ,
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where for x ∈ Rd,g ∈ RM , we have

χε
j(x,g) =

exp
(
− 1

2
∥x−yj∥2+gj

ε

)
wj∑M

k=1 exp
(
− 1

2
∥x−yk∥2+gk

ε

)
wk

·

For ε = 0, χj(x,g) = ⊮Lj(g)(x) is an indicator function and we have a partition Rd =
⋃M

j=1 Lj(g), where for
all j ∈ J1,MK,

Lj(g) :=

{
x ∈ Rd;gc(x) =

1

2
∥x− yj∥2 − gj

}
.

The convex sets Lj(g) are called power or Laguerre cells and µ(Li(g) ∩ Lj(g)) = 0 when i ̸= j. By the
first-order optimality condition, solving semi-discrete OT amounts to finding g such that for all j ∈ J1,MK,
µ(Lj(g)) = wj . Semi-discrete OT is a case of application of Brenier’s theorem. Given the optimal potential
g∗, the optimal map reads ∇(g∗)c(x) = x− yj if x is in the interior of Lj(g

∗).

2.3 Solving semi-discrete (E)OT with the semi-dual formulation

Exploiting its finite-dimensional nature, optimizing the OT semi-dual H0 has become a popular approach.
Notably, Newton and quasi-Newton methods are highly effective in scenarios with low dimensions and known
source densities, utilizing meshes to approximate the source density [Mérigot, 2011, Lévy, 2015, Kitagawa
et al., 2016]. In scenarios involving arbitrary dimensions or when only sample-based access to the source
measure is available, EOT emerges as a favored strategy. Notably, to avoid working with a discretized version
of the source measure, such as with the Sinkhorn Algorithm, Genevay et al. [2016] recommend employing
stochastic optimization to solve (4). Indeed, the semi-dual EOT problem has a convex objective of the form

Hε(g) = EX∼µ[hε(X,g)],

with X as a random variable under µ. As noted in Genevay et al. [2016], the main advantage of stochastic
optimization algorithms is that they are suited for really large-scale problems, keeping in memory only the
discrete measure ν. Moreover, not relying on discretization permits an unbiased approach to solving the
semi-discrete EOT problem.

For a given fixed regularization parameter ε > 0, stochastic first-order methods are predominantly
employed to solve (4). Starting with an initial value g0 ∈ RM , these algorithms consider at each iteration
one or many samples Xt ∼ µ and rely on an update of the form

gt = gt−1 − γt∇ghε(Xt,gt−1).

At time t, the Averaged Stochastic Gradient Descent (ASGD) returns the averaged estimate gt =
1

t+1

∑t
k=0 gk,

while Stochastic Gradient Descent (SGD) returns gt. ASGD, as an acceleration of SGD, has been widely
studied in the literature (see Polyak and Juditsky [1992], Pelletier [2000], Bach and Moulines [2013], and
Bercu and Bigot [2021] for the specific case of EOT).

Choosing the regularization parameter ε for EOT. Approximating the EOT problem rather than the
OT one benefits from an enhanced convergence rate, especially in the discrete setting. The introduction of
the Sinkhorn Algorithm for solving the EOT problem, as highlighted by Cuturi [2013], has led to a resurgence
of interest in OT within the Machine Learning community.

The choice of the regularization parameter ε then becomes a practical and/or statistical problem:

1. In the discrete case, selecting the regularization parameter is a practical issue that aims to strike an
optimal balance between convergence speed and accuracy [Cuturi, 2013, Dvurechensky et al., 2018]. To
address this trade-off, some heuristics, such as ε-scaling [Schmitzer, 2019b], which involves a decreasing
regularization scheme, are employed, although they lack strong theoretical guarantees.
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2. In the semi-discrete and continuous settings, the initial statistical problem is to determine the number
of samples needed to accurately approximate the OT quantities. In this line of work, the use of
EOT to construct estimators has also been proven to be satisfactory. In this case, studies show that
regularization must decrease as the number of samples increases [Pooladian and Niles-Weed, 2021,
Pooladian et al., 2023]. However, discrete solvers do not adjust to the number of drawn points, as the
solver is initiated once the points to approximate the measures have been sampled.

3 DRAG: Decreasing Regularization Averaged Gradient

3.1 Setting.

We focus here on the one-sample setting of semi-discrete OT. Specifically, we sample from the source measure
µ and leverage the full information of the discrete measure ν. Furthermore, fixing R > 0 and α ∈ (0, 1], we
make the following mild assumption, already present in Delalande [2022], Pooladian et al. [2023].

Assumption 1. Let µ ∈ P(Rd), such that Supp(µ) ⊂ B(0, R) and its density dµ is α-Hölderian with,
0 < dµ < ∞ on its support. We note Pα(B(0, R)) the set of these measures.

The target measure ν is discrete, of the form ν =
∑M

j=1wjδyj , with w = (w1, . . . , wM ) its probability

weights and (y1, . . . , yM ) ∈ B(0, R)M its support.

3.2 DRAG: A gradient-based algorithm adaptive to both the samples size and regular-
ization parameter

Having a regularization parameter ε that decreases as the number of drawn samples increases is crucial to
approximate the true OT cost and the Brenier map. However, no algorithm in the OT literature adapts to
both entropic regularization and sample size simultaneously. In the discrete setting, the concept of decreasing
regularization, known as ε-annealing [Schmitzer, 2019b], is recognized for accelerating the convergence of the
Sinkhorn algorithm in practice. However, the sample size remains fixed. In contrast, SGD algorithms are
inherently adaptive to the number of samples. Thus, we propose a decreasing sequence (εt)t and suggest
replacing the usual gradient step in ASGD with the following projected step with adaptive regularization

gt = ProjC
(
gt−1 − γt∇ghεt−1(Xt,gt−1)

)
,

where for U ⊂ RM convex, we define the projector as ProjU (g) := argmin{∥g−g′∥,g′ ∈ U}. This method can
be interpreted as a decreasing bias SGD scheme. For such a method, employing a projection step can be highly
effective in ensuring convergence [Cohen et al., 2017, Geiersbach and Pflug, 2019]. In the context of EOT, it is
well established that the (c, ε)-transform enables the localization of a minimum of the semi-dual problem when
the cost is bounded [Nutz and Wiesel, 2022]. Specifically, since sup{c(x, yj);x ∈ Supp(µ), j ∈ J1,MK} < 2R2

by Assumption 1, a preliminary projection set can be expressed as C∞ := [0, 2R2]M . Nonetheless, leveraging
the regularity of the cost function, we can have a projection set with a unique optimizer, as described in the
following Lemma.

Lemma 1. (Proof in Appendix B.7) Under Assumption 1, for all ε ≥ 0, there exists a unique solution g∗
ε to

(4) in Cu := {g ∈ RM ; g1 = 0 and |gj | ≤ R∥y1 − yj∥, j ∈ J1,MK}.
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Algorithm 1 DRAG

Parameters: (γ1, a, b, C)
Initialize g0 ∈ C, g0 = g0, ε0 = 1.
for k = 1 to t do

γk = γ1k
−b

Xk ∼ µ

gk=ProjC
(
gk−1 −γk∇ghεk−1

(Xk,gk−1)
)

gk = 1
k+1gk +

k
k+1gk−1

εk = k−a

end for
return gt

Note that the choice g1 = 0 is arbitrary. In what follows, we refer to C = C∞ or C = Cu as our projection
set. Note that for both set, the projection is nearly cost-free, as it involves merely clipping each coordinate
of our vector.

Finally, in order to accelerate the convergence, we consider the Decreasing Regularization projected
Averaged stochastic Gradient descent (DRAG) defined by

gt =
1

t+ 1
gt +

t

t+ 1
gt−1,

with g0 = g0. The pseudo-code of our algorithm is given in Algorithm 1. A main advantage of DRAG is
that it has a O(dtM) computational complexity and O(dM) spatial complexity.

3.3 Convergence rate before averaging

As a key step to the convergence rate of DRAG, we will provide the convergence rate of the non averaged
estimate gt to g∗

εt , solving (4) with regularization εt. Note that, up to a transformation of the form g∗
εt +a1M ,

where a ∈ R∗, the minimizer of the semi-dual is unique. Consequently, no matter the set C chosen, we focus
our analysis on the orthogonal complement of the subspace spanned by 1M , denoted as Vect(1M )⊥. For
simplicity, for g,g′ ∈ RM , we denote for p ∈ [1,∞]

∥g − g′∥p := ∥g − g′∥p Vect(1M )⊥ , ⟨g,g′⟩ := ⟨g,g′⟩Vect(1M )⊥ .

Our analysis is greatly influenced by the findings in Corollary 2.2 from Delalande [2022], which states that
for 0 ≤ ε′ ≤ ε, under Assumption 1 with µ ∈ Pα(B(0, R)), for any α′ ∈ (0, α), there exists a constant K0,
notably depending on the caracterstics of ν (see Delalande [2022]), such that

∥g∗
ε − g∗

ε′∥ ≤ K0ε
α′ (

ε− ε′
)
. (5)

In addition, the convergence rates of our algorithm take advantage of the two following properties of the
entropic semi-dual. For any ε > 0, noting wmin := minj∈J1,MK wj ,

• Hε is locally strongly convex on Vect(1M )⊥ and the smallest eigenvalue of its Hessian at g∗ε on
Vect(1M )⊥ is greater than wminε

−1 (Bercu and Bigot [2021], Lemma A.1).

• Hε is 1
ε -self concordant (Bercu and Bigot [2021], Lemma A.2).

Let us emphasize that, surprisingly, the first point reveals that the strong convexity at the optimum increases
as we decrease the parameter ε. By combining these two points and benefiting from our projection step, we
derive the following lemma.

Lemma 2. (Proof in Appendix 2) For all regularization ε > 0 and for all g ∈ C, we have∥∥∇Hε(g)−∇2Hε (g
∗
ε) (g − g∗

ε)
∥∥ ≤ 4

ε
∥g − g∗

ε∥2∞. (6)

Moreover, defining Kw := 2w−1
minmax{2R2, 1} and Ag,ε := 1− e−

2
ε
[1∧∥g−g∗

ε∥], we have

⟨∇Hε(g),g − g∗
ε⟩ ≥

Ag,ε

Kw
∥g − g∗

ε∥2. (7)
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While technical, this lemma is a key step for our convergence guarantees and thus warrants further
discussion. Note that Ag,ε/Kw can be interpreted as a form of local strong convexity coefficient of Hε.
However, if ∥g − g∗

ε∥/ε is small, the term Ag,ε tends to 0, and we would not be able to exploit more local
strong convexity. This situation is unavoidable with any fixed regularization ε, if convergence to g∗

ε is desired.
The use of a decreasing regularization scheme helps to avoid this problem. Indeed, if the term Agt,εt remains
small for any t and εt tends to 0, then ∥gt − g∗

εt∥ also tends to 0. However, if at time t, Agt,εt is close
to 1, we can exploit strong convexity. Thus, a decreasing regularization scheme ensures good convergence
behavior, regardless of Agt,εt . Building on these essential properties, we obtain the convergence rate for the
non-averaged iterates of DRAG.

Theorem 1. (Proof in Appendix B.1) Under Assumption 1 with µ ∈ Pα(B(0, R)), taking the parameters
(γ1, a, b) of DRAG such that γ1 > 0, 1 + a+ aα > 2b, a ≥ b

2 and b ∈
(
1
2 , 1
)
, we have

E
[
∥gt − g∗

εt∥2p
]
≲

1

wp
mint

bp
, t ≥ 1, p ∈ {1, 2}.

Remarkably, we achieve a convergence rate without any undesirable dependence on regularization. Our
projection step and the improvements in Lemma 2, compared to Lemma A.1 in Bercu and Bigot [2021], were
crucial for this achievement. In contrast, Bercu and Bigot [2021] derived a convergence rate of the form
O(ε−ct−b) for a fixed regularization, with c at least equal to 1. Note that having no adverse dependence
on the regularization parameter is essential for our algorithm, as it (i) employs a decreasing regularization
scheme and (ii) aims to leverage the increased strong convexity at the optimum as εt decreases. This last
point will be further discussed in the next section.

3.4 Acceleration and quadratic convergence rate for DRAG

In convex stochastic optimization, it is known that averaging SGD iterations can lead to acceleration. More
precisely, ASGD can adapt to the possibly unknown local strong convexity of the objective function at the
optimizer [Bach, 2014]. As we saw previously, the strong convexity of Hε increases as the regularization
parameter ε decreases. Despite the fact that our objective function changes at each time t, Theorem 2 (Proof
in Appendix B.2) shows that DRAG fully exploits the increase in local strong convexity.

Theorem 2. (Proof in Appendix B.2) Under the same assumptions as in Theorem 1, taking a ≥ b,

E[∥gt − g∗∥2] ≲ 1

w4
mint

2b
, t ≥ 1 .

Note that as b tends to 1, we achieve a quadratic convergence rate. We emphasize that this convergence
rate is surprising, since for a general strongly convex function, the expected convergence rate would typically
be linear. This difference comes from the fact that we face a Laguerre cells support problem. In parametric
statistics, support problems are known to often be non regular and can yield an enhanced quadratic
convergence rate (see, for instance, Wainwright [2019], Chapter 15). In the next theorem, we show that our
convergence rate to g∗ is nearly minimax.

Theorem 3. (Proof in Appendix B.5) Let ν ∈ P(R) be a fixed discrete measure of M points. Then,

inf
g(t)

sup
µ∈Pα(B(0,R))

E
[
∥g(t) − g∗∥2

]
≳

M

t2
,

where g∗ is the discrete optimal vector, solving the non regularized semi-dual in (4). The infimum is taken
over all vectors g(t) ∈ RM constructed using t ∈ N∗ i.i.d samples of µ.

Remark: While the dependence on wmin (or M) may seem minor in our context since it is a constant, we
have included it in our analysis. This is pertinent, especially when applying DRAG to a discretized version
of a continuous measure, which could result in a large M . We highlight that such results, demonstrating
explicit dependence on the weights or number of points, are novel in the semi-discrete optimal transport
(OT) literature. Additionally, when the weights of the discrete measure are uniform, our analysis achieves a
convergence rate closer to O(M2t−2b) (refer to the proof of Theorem 2 for further details). We believe that a
theoretical convergence rate of O(w−2

mint
−2b) is achievable for DRAG. Indeed, a quadratic dependence on the

strong-convexity coefficient is commonly observed in ASGD [Bach, 2014]. This dependence is illustrated in
Figure 4.
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4 Optimal Transport cost and Brenier map estimation rate with DRAG

4.1 OT and EOT cost estimation

In this part, we derive convergence rates of the (E)OT costs using DRAG.

Corollary 1. (Proof in Appendix B.3) Taking the same assumptions as Theorem 2, with 0 < ε < 1 and
0 < α′ < 1, we have the following convergence rate for the approximation of the (E)OT costs

E |Hε(g
∗
ε)−Hε(gt)| ≲ ε2α

′−1(ε− εt)
2 +

1

εt2b
, (8)

E |H0(g
∗)−H0(gt)| ≲

1

t2b
. (9)

Once again, we achieve a superior rate compared to the typical O(t−1) observed in strongly convex and/or
smooth scenarios, highlighting that semi-discrete OT deviates from conventional problems. Interestingly,
while Hεt(gt) could approximate the OT cost, this estimator worsens in convergence rate as εt decreases.
Here, the regularization parameter ε introduces a trade-off, necessitating a balance between convergence rate
and precision. Conversely, for OT, we exploit the consistent smoothness of H0 (as noted in Theorem 4.1,
Kitagawa et al. [2019]), which allows us to derive our asymptotic result without such a trade-off.

4.2 Brenier map estimation

When employing entropic regularization, a popular choice involves using the estimator of the entropic Brenier
map

T ε
µ,ν(g

∗
ε)(x) = x−∇(g∗

ε)
c,ε. (10)

Indeed, for ĝ ∈ RM , T ε
µ,ν(ĝ)(x) could serve as an estimator. The objective is then to find an accurate

estimator, ĝ, close to g∗
ε , and to analyze its performance based on the bias-variance decomposition

∥Tµ,ν − T ε
µ,ν(ĝ)∥2L2(µ) ≲ ∥T ε

µ,ν(ĝ)− T ε
µ,ν(g

∗
ε)∥2L2(µ) + ε,

using the fact that ∥Tµ,ν − T ε
µ,ν(g

∗
ε)∥2L2(µ) ≲ ε (Pooladian et al. [2023], Theorem 3.4). However, the mapping

g 7→ T ε
µ,ν(g) is ε

−1-Lipschitz, complicating the bias-variance trade-off given that εt = t−b. Instead, we rely

on the gradient computed thanks to the c-transform of the estimator gt of DRAG. In fact, for any x ∈ Rd, if
there exists j ∈ J1,MK such that x is in the interior of Lj(g

∗) ∩ Lj(gt), we have

Tµ,ν(x) = x−∇(gt)
c(x).

Indeed, no matter g, as soon as x ∈ Rd is in the interior of Lj(g), the gradient of gc is given by

∇(g)c(x) = argmax
k

{
1

2
∥x− yk∥2 − gj

}
= yj . (11)

By analyzing the differences of Laguerre cells partitions between L(gt) and L(g∗), we derive the following
theorem.

Theorem 4. (Proof in Appendix B.4) Under the same assumptions as Theorem 1, defining for all x ∈ Rd

and time t ≥ 0 T (gt)(x) = x−∇gc
t , we have for all 1 ≤ p < ∞ the convergence rate

E
[
∥Tµ,ν − Tµ,ν(gt)∥pLp(µ)

]
≲

1

tb
.

Minimax estimation. In the two-sample setting, where we subsample from both µ and ν, Pooladian
et al. [2023] shows that a convergence rate of O(t−1/2) is minimax for the squared L2 error of the Brenier
map estimation. As we see in Theorem 4, this rate can be improved to O(t−1) in the one-sample setting, as
b tends to 1. In the following theorem, we prove that this rate is minimax.

Theorem 5. (Proof in Appendix B.6) Under the assumptions of Theorem 2, for any p ∈ [1,∞[,

inf
T (t)

sup
µ∈Pα(B(0,R))

E
[
∥Tµ,ν − T (t)∥pLp(µ)

]
≳

1

t
,

where the infimum is taken over all maps T (t) constructed using t ∈ N∗ iid samples of µ.
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5 Numerical experiments

In this section, we numerically verify our convergence rate guarantees through various examples. For each
example, we know the theoretical OT map, cost, and discrete potential. The first two examples are similar to
those in Pooladian et al. [2023]. In all figures, we fixed the parameters of DRAG to (γ1 =

√
wmin, a = b = 0.75).

While increasing b leads asymptotically to a better convergence rate, it decreases the step size of our gradient
descent. Therefore, we need to wait longer to observe the acceleration from averaging. Our numerical
investigation found that our parameter selection achieves a good compromise between convergence rate and
the time before acceleration and is robust without further hypertuning.

102 103 104

Iterations

10−4

10−3

10−2

E
rr

or

∝ t−b

∝ t−2b

|H0(gt)−H0(g∗)| 1

|H0(gt)−H0(g∗)| 2

|H0(gt)−H0(g∗)| 3

Figure 1: Cost error evolution through iterations, approximated with 107 Monte Carlo samples, for Examples
1,2 and 3.

Examples settings: (1) µ ∼ U([0, 1]10), Supp(ν) = {yj = ( j−1/2
J , 12 , ...,

1
2), j ∈ J1, 100K}, w = 1

1001100.
(2) µ ∼ U([0, 1]10), M = 30 and y1, ..., yM randomly generated in [0, 1]10 . We then also randomly
generate g∗ ∈ R30 and approximate w with Monte Carlo (MC) , such that g∗ is the discrete optimum
potential. This setting led to wmin = 0.00103. (3) µ ∼ U([δ, 1 + δ]), δ = 0.5, Supp(ν) =

{
k
M ; k ∈ J1,MK

}
,

w = 1
M 1M ,M = 1000. While in dimension 1, this example is interesting since it appears in the proofs of

Theorem 3 and 5.
OT cost, map and potential convergence.
In Figures 1 and 2, we show the convergence rates of the OT cost, map, and discrete potential. As we

can see, we match our theoretical rates perfectly, except for the OT cost, where the rates are slightly slower.
This discrepancy could be due to (i) our results for the OT cost estimations being asymptotic and (ii) our
OT cost estimation already being extremely precise, with 107 MC samples proving insufficient to achieve
precision around 5 · 10−4.

100 1000 10000

Iterations

10−3

10−2

10−1

100

E
rr

or

Example 1

100 1000 10000

Iterations

10−3

10−2

10−1

100 Example 2

∝ 1/tb

∝ 1/t2b

‖gt − g∗‖2

‖gt − g∗‖2

‖Tµ,ν − T (ḡt)‖2
L2(µ)

100 1000 10000

Iterations

10−4

10−3

10−2

10−1

100 Example 3

Figure 2: Convergence rate of our discrete potential and map estimators for Examples 1,2 and 3.

Visualisation of the OT map estimators with DRAG.
We visualize our OT map estimator T (gt) = x−∇(gt)

c on a concrete example of Monge-Kantorovich
(MK) quantiles [Chernozhukov et al., 2017]. In this context, having a target measure ν to investigate, the
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source measure is set to be the uniform measure on the unit Euclidean ball µ ∼ U(B(0, 1)). The goal is
then to visualize the destinations through the OT map of points in regions B(0, (k + 1)/10) \B(0, k/10) for
k ∈ J0, 9K, which define MK quantile regions. We used M = 105 points to approximate ν, a discrete version
of a boomerang-shaped measure. Finally, we launched DRAG with t iterations. In Figure 3, we present the
estimated MK quantiles regions of ν, where each color represents a region, starting from B(0, 0.1) in the
center. In this example, taking t = 107 samples was sufficient and produced a similar result to when more
samples were used.

(a) Target measure (b) OT map approx.

Figure 3: MK Regions and OT map approximation with DRAG.

Dependence of our convergence rate as M grows.
As discussed in Section 3.4, our theoretical analysis indicates a dependence on w4

min. In examples 1 and
3, where similar problems arise with increased point counts, we run our algorithm with progressively larger
M and M2 iterations. Our theory predicts that the error of the estimator gt should decrease linearly, yet if
the dependence of DRAG is indeed on w4

min, the error would increase quadratically, or remain constant if the
actual dependence is w2

min. As illustrated in Figure 4, our theoretical bound accurately matches the behavior
of ∥gt − g∗∥2. Moreover, the behavior of ∥gt − g∗∥2 suggests that our theoretical bound may not be sharp,
as discussed after Theorem 2.

102 103

M

10−5

10−4

E
rr

or

∝ 1/t

‖gt − g∗‖2 1

‖gt − g∗‖2 1

‖gt − g∗‖2 3

‖gt − g∗‖2 3

Figure 4: Error evolution of DRAG for gt and gt as M grows, for Examples 1 and 3, t = M2 iterations.

Further experiments. In the appendix, we present additional experiments that, while not altering
our theoretical findings, could be highly beneficial for practitioners. Specifically, we provide evidence that
mini-batching with GPU computation and weighted averaging of the iterates gt can significantly accelerate
the algorithm. We also briefly discuss the choice of the parameters a and b and compare DRAG with SGD
and ASGD.
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6 Conclusion

In EOT, a decreasing regularization parameter naturally appeals to practitioners who aim to speed up
Sinkhorn-like algorithms with an annealing scheme. Similarly, in the statistical community, a regularization
that decreases with the number of points is favored to more accurately approximate true OT quantities. With
our algorithm, DRAG, we demonstrate that these two motivations for decreasing regularization can coexist
successfully. Moreover, we derive two new minimax lower bound theorems to approximate OT quantities in
the one-sample setting of semi-discrete OT and show that DRAG nearly achieves these bounds.

Our algorithm nearly achieves the minimax rate when b is close to 1. However, the closer b is to 1, the
higher the constants in the rates. In practice, the choice a = b ≈ 0.75 gives robust practical results, as shown
in Figure 7 in the appendix. An open direction is to design an improvement of our DRAG algorithm that
achieves the minimax lower bound, while not suffering from large multiplicative constants, and remaining as
computationally and memory efficient as our algorithm.

Our results can also motivate further investigation into different lines of work: (i) Studying the convergence
of the discrete potential in semi-discrete OT for different costs. Indeed, the main challenge in extending
the convergence proof of our algorithm to other costs is obtaining results similar to those in (Delalande
[2022], Corollary 2.2) for alternative cost functions. (ii) Developing decreasing regularization algorithms
in the continuous case to efficiently approximate OT distances and maps. (iii) Adapting our approach to
demonstrate or improve the acceleration of entropic annealing schemes for EOT solvers in the discrete case.
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M. Cuturi and G. Peyré. Semidual regularized optimal transport. SIAM Review, 60(4):941–965, 2018. doi:
10.1137/18M1208654. URL https://doi.org/10.1137/18M1208654.

N. Deb, P. Ghosal, and B. Sen. Rates of estimation of optimal transport maps using plug-in estimators via
barycentric projections. Advances in Neural Information Processing Systems, 34:29736–29753, 2021.

A. Delalande. Nearly tight convergence bounds for semi-discrete entropic optimal transport. In International
Conference On Artificial Intelligence And Statistics, pages 1619–1642, 2022.

P. Dvurechensky, A. Gasnikov, and A. Kroshnin. Computational optimal transport: Complexity by accelerated
gradient descent is better than by sinkhorn’s algorithm. In International Conference On Machine Learning,
pages 1367–1376, 2018.

J. Feydy. Geometric data analysis, beyond convolutions. Applied Mathematics, 2020.
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A Additional experiments

Weighted Averaging: Maintaining a better trade-off between averaged and non-averaged
iterations. Since the dependence of DRAG iterates gt on the number of points M is at least quadratic,
whereas for the non-averaged iterates gt it is only linear, when the total number of iterations t is insufficient
(i.e., t ≤ M2), gt can outperform gt as an estimator. One strategy to try to consistently achieve the best
estimator regardless of the time t is through weighted averaging Mokkadem and Pelletier [2011].

Namely, we replace the averaged estimator gt =
1

t+1

∑t
k=0 gt, by

g
(ω)
t :=

1∑t
k=0 log(k + 1)ω

t∑
k=0

log(k + 1)ωgk,

with a parameter ω > 0. The parameter ω balances the weights assigned to the estimators gk. As ω increases,
greater importance is given to the more recent estimates, while we retrieve gt when ω goes to 0. As for
the usual averaged estimators, we can perform the weighted average online, without having to store all the
iterates, with the recursion

g
(ω)
t+1 =

(
1− ln(t+ 1)ω∑t

k=0 ln(k + 1)ω

)
g
(ω)
t +

ln(t+ 1)ω∑t
k=0 ln(k + 1)ω

gt+1.

It is important to note that g
(ω)
t will have the same asymptotic convergence guarantees as gt.

In the following experiments, we operate under conditions where the number of iterations t is insufficient
for the estimator gt to outperform gt. We set M = 1000 in Examples 1 and 3, select ω = 2 for the weighted
average parameter, and fix t at 105.
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Example 1
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∝ 1/tb ∝ 1/t2b ‖gt − g∗‖2 ‖gt − g∗‖2 ‖g(ω)
t − g∗‖2

Figure 5: Comparison between gt,gt and g
(ω)
t on Examples 1 and 3, fixing M = 1000 and ω = 2.

As illustrated in Figure 5, the estimator gt begins to converge after approximately M iterations and
remains superior to gt throughout the figure, since we are still within the regime where t ≤ M2. However,

we see that the weighted average estimator g
(ω)
t consistently outperforms gt and already surpasses gt in

performance after 105 iterations in Example 1.

Mini-batch DRAG. As for Vanilla SGD, we can take advantage of GPU parallelization and replace the
gradient estimator using one sample X ∼ µ

∇ghε(X,g)

by a mini-batch estimator, using nb ≥ 1 i.i.d samples X1, ..., Xnb
samples of the source measure at once

1

nb

nb∑
k=0

∇ghε(Xk,g). (12)

Of course, no matter the choice nb, (12) defines an unbiased estimator of ∇Hε(g).
Using a mini-batch of size nb, we suggest multiplying γ1 by

√
nb, as is usual with mini-batch SGD. The

following figure shows the acceleration due to mini-batching in Example 2, while maintaining the same
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computational time when using a GPU. Indeed, each mini-batch estimator has an error an order of magnitude
lower than the non-batched ones, even with a small mini-batch size of nb = 16.
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Figure 6: Comparison of the non mini-batched and mini-batched estimators on Example 2, nb = 16.

Influence of the parameter a and b. In Figure 7, we illustrate the behavior of DRAG when changing
the parameters a and b, on Example 2.
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(a) Error between the estimators gt and gt and the op-
timal potential g∗ on Example 2, a ∈ {0, 6, 0.75, 0.9}
and γ1 =

√
wmin, b = 0.75.
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DRG b = 0.9

(b) Error between the estimators gt and gt and the op-
timal potential g∗ on Example 2, b ∈ {0, 6, 0.75, 0.9}
and γ1 =

√
wmin, a = 0.75.

Figure 7: Evolution of the errors, when changing one of the parameters a or b.

As we can see, the choice a = b = 0.75 seems to be a good compromise on this experiments. We also see
on Figure 7b that the non-averaged estimates with the best convergence rate is when b = 0.9. This behabiour
is concordant with our theory. However, as we can see, the parameter b = 0.9 does not yet benefits from the
acceleration thanks to averaging.

DRAG compared with SGD and ASGD. We compare here the performance of our algorithm DRAG
compared to the vanilla SGD and ASGD, introduced in Genevay et al. [2016] for EOT, on Example 2. For
our comparison, since we fixed the parameters of DRAG to (

√
M, 3/4, 3/4) and ran the algorithm for t = 105

iterations, we have εt = 10−15/4 ≃ 10−4. We thus set ε = εt to run SGD and ASGD. As we can see in Figure
8, DRAG clearly outperforms SGD and ASGD. We note that the poor convergence of SGD and ASGD is not
surprising with a small regularization parameter, as already observed, for instance, in Seguy et al. [2017].
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‖gt − g∗‖2, DRG (Non-Averaged)

‖ḡt − g∗‖2, DRAG

‖gt − g∗‖2, SGD, γ1 =
√
M

‖ḡt − g∗‖2, ASGD, γ1 =
√
M

‖gt − g∗‖2, SGD, γ1 = 1

‖ḡt − g∗‖2, ASGD, γ1 = 1

Figure 8: Comparison of DRAG with SGD and ASGD with a fixed regularization of εt = 10−15/4, on Example
2.

B Proofs of the main paper

Additionnal notations for the proofs.
For any c > 0 we define the function t 7→ Ψc(t) such that

T∑
t=1

t−c ≤ Ψc(T ) :=


1 + ln(T + 1) if c = 1,
2c−1
c−1 if c > 1,

1 + 1
1−c(T + 1)1−c if c < 1.

(13)

For a sequence (ut)t∈N, if
t
2 /∈ N, u t

2
must be understood as u⌈ t

2⌉.

B.1 Proof of Theorem 1: Convergence rate of the non averaged iterates.

In all the sequel, we note

∆t = ∥gt − g∗
εt∥2.

Remark that the dependence in t is both in the estimator gt and the optimizer g∗
εt . We also recall that

we note DC := sup
g,g′∈C

∥g − g′∥ < ∞ .

We will divide the proof into two parts.

B.1.1 Part 1: proof for p = 1.

Proof. By definition of the gradient step at time t+ 1 and since g∗
εt+1

∈ C, we have

∆t+1 = ∥gt+1 − g∗
εt+1

∥2

= ∥ProjC(gt − γt+1∇ghεt(gt, Xt+1))− g∗
εt+1

∥2

≤ ∥gt − γt+1∇ghεt(gt, Xt+1)− g∗
εt+1

∥2.

Then, incorporating the change of optimum between time t and t+ 1, we get

∆t+1 ≤ ∥gt − γt+1∇ghεt(gt, Xt+1)− g∗
εt + g∗

εt − g∗
εt+1

∥2

≤ ∥gt − γt+1∇ghεt(gt, Xt+1)− g∗
εt∥2 + 2

〈
gt − γt+1∇ghεt(gt, Xt+1)− g∗

εt ,g
∗
εt − g∗

εt+1

〉
+ ∥g∗

εt − g∗
εt+1

∥2.

Using Corollary 2.2 in [Delalande, 2022], see (5), there exists K0 > 0 such that for any α′ ∈]0, α[

∥g∗
εt − g∗

εt+1
∥ ≤ K0ε

α′
t (εt − εt+1) ≤ K0t

−aα′ (
t−a − (t+ 1)−a

)
≤ aK0t

−(1+a+aα′). (14)

For clarity, we define rt := aK0t
−(1+a+aα′) and Rt := (2DC + 2γt+1 + rt)rt.
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Using that for all t, gt ∈ C, and that for all x ∈ Rd,g ∈ RM , ∥∇ghεt(g, x)∥ ≤ 2, we obtain

∆t+1 ≤ ∥gt − γt+1∇ghεt(gt, Xt+1)− g∗
εt∥2 + (2DC + 2γt+1)∥g∗

εt − g∗
εt+1

∥+ ∥g∗
εt − g∗

εt+1
∥2

≤ ∥gt − γt+1∇ghεt(gt, Xt+1)− g∗
εt∥2 +Rt

≤ ∥gt − g∗
εt∥2 − 2γt+1

〈
∇ghεt(gt, Xt+1),gt − g∗

εt

〉
+ γ2t+1∥∇ghεt(gt, Xt+1)∥2 +Rt

≤ ∆t − 2γt+1

〈
∇ghεt(gt, Xt+1),gt − g∗

εt

〉
+ 4γ2t+1 +Rt.

Note that, since we have 1+a+aα > 2b, we can also take α′ ∈]0, α[ such that 1+a+aα′ > 2b. Therefore,
the sequence Rt/γ

2
t is decreasing and tends to 0. For conciseness, we note

ta,α := min
{
t ≥ 1 : Rt ≤ γ2t

}
. (15)

For any t ≥ ta,α, we then obtain the following upper bound of ∆t+1 in terms of ∆t and the gradient
direction:

∆t+1 ≤ ∆t − 2γt+1

〈
∇ghεt(gt, Xt+1),gt − g∗

εt

〉
+ 5γ2t+1. (16)

Noting Ft the filtration generated by the samples X1, . . . , Xt
iid∼ µ, that is Ft = σ (X1, . . . , Xt) and taking

the conditional expectation, we have

E [∆t+1|Ft] ≤ ∆t − 2γt+1

〈
∇Hεt(gt),gt − g∗

εt

〉
+ 5γ2t . (17)

Using Lemma 2 and denoting Agt,εt = 1− e
− 2

εt
[1∧∥gt−g∗

εt
∥], one has for all t〈

∇Hεt(gt),gt − g∗
εt

〉
≥ Agt,εt

Kw
∥gt − g∗

t ∥22 =: λt∆t. (18)

Then, it comes

E [∆t+1 | Ft] ≤ (1− 2λtγt+1)∆t + 5γ2t+1. (19)

We note

λ =
wmin(1− e−2)

2max{2R2, 1} , (20)

and note that λt ≥ λ if ∥gt − g∗
εt∥∞ ≥ εt. Therefore, we have

E [∆t+1 | Ft] ≤ (1− 2λγt+1)∆t +
[
2(λ− λt)1∥gt−g∗

εt
∥∞≤εt

]
γt+1∆t + 5γ2t+1.

Moreover, ∥gt − g∗
εt∥∞ ≤ εt implies that ∆t ≤ Mε2t . Therefore,

E [∆t+1 | Ft] ≤ (1− 2λγt+1)∆t +
[
2(λ− λt)1∥gt−g∗

εt
∥∞≤εt

]
γt+1Mε2t + 5γ2t+1.

Using that (λ− λt)1∥gt−g∗
εt
∥∞ ≤ λ and taking the expectation, we obtain

E [∆t+1] ≤ (1− 2λγt+1)E[∆t] + 2λMε2tγt+1 + 5γ2t+1.

Noting tγ := min {t, 2λγt+1 ≤ 1} and t0 := max{ta,α, tγ} , we use Proposition 1 to obtain

E [∆t] ≤ exp

(
−2λ

t∑
i=t0+1

γi

)D2
C +

t∑
k=t0

5γ2k

+
5

2λ
γ t

2
−1 +Mε2t

2
−1

. (21)

Applying Corollary 2, the exponential product converges exponentially to 0. Therefore, using the value of
λ defined in (20) , an asymptotic comparison gives

E[∆t] ≤
5[2R2 ∨ 1]

wmin(1− e−2)
γ t

2
−1 +Mε2t

2
−1

+O(γ2t ) .

In the usual case where the discrete measure ν has uniform weights equal to 1
M , we deduce from the relation

2a ≥ b, by the assumption of the theorem, that

E[∆t] = O (Mγt) .
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B.1.2 Part 2: proof for p = 2.

Proof. Building on the proof of the case p = 1, we start by squaring equation (16). For t ≥ ta,α, where ta,α
is defined in (15), we have

∆2
t+1 ≤

(
∆t − 2γt+1

〈
∇ghεt(gt, Xt+1),gt − g∗

εt

〉
+ 5γ2t+1

)2
≤ ∆2

t + 4γ2t+1

〈
∇ghεt(gt, Xt+1),gt − g∗

εt

〉2
+ 25γ4t+1

− 2∆tγt+1

〈
∇ghεt(gt, Xt+1),gt − g∗

εt

〉︸ ︷︷ ︸
=:A

+5∆tγ
2
t+1 − 10γ3t+1

〈
∇ghεt(gt, Xt+1),gt − g∗

εt

〉︸ ︷︷ ︸
=:B

.

Taking the conditional expectation, recalling that λt is defined in 18, we obtain thanks to Lemma 2

E[A | Ft] ≥ 2∆2
tλtγt+1.

We also use the simple bound

E[B | Ft] ≥ 0.

These two inequalities lead to

E[∆2
t | Ft] ≤ ∆2

t (1− 2λtγt+1) + 4γ2t+1E
[〈
∇hεt (gt, Xt+1) ,gt − g∗

εt

〉2 | Ft

]
+ 25γ4t+1 + 5∆tγ

2
t+1. (22)

Using that the gradient norm is bounded by two, we use Cauchy-Schwarz inequality to obtain

4γ2t+1

〈
∇ghεt(gt, Xt+1),gt − g∗

εt

〉2 ≤ 16γ2t+1∥gt − g∗
εt∥2 ≤ 16∆tγ

2
t+1.

Recalling the value of λ defined in (20):

λ =
wmin(1− e−2)

2max{2R2, 1} ,

we use Hölder’s inequality to obtain

21∆tγ
2
t+1 ≤

(
∆t

√
2λ

1√
2λ

21γt+1

)
γt+1

≤ γt+1∆
2
tλ+

212

4λ
γ3t+1.

Summing up these inequalities, we obtain

E[∆2
t+1 | Ft] ≤ (1− 2λtγt+1 + λγt+1)∆

2
t +

212

4λ
γ3t+1 + 25γ4t+1.

Similarly to the case p = 1, we have

E[∆2
t+1 | Ft] ≤ (1− 2λγt+1 + λγt+1)∆

2
t +

[
2(λ− λt)1∥gt−g∗

εt
∥∞≤εt

]
∆2

tγt+1 +
212

4λ
γ3t+1 + 25γ4t+1

≤ (1− λγt+1)∆
2
t + 2λM2ε4tγt+1 +

212

4λ
γ3t+1 + 25γ4t+1.

Taking the expectation, we obtain

E[∆2
t+1] ≤ (1− λγt+1)E[∆2

t ] + 2λM2ε4tγt+1 +
212

4λ
γ3t+1 + 25γ4t+1.

Proceeding as for the case p = 1, that is, applying Proposition 1 and Corollary 2 concludes the proof.
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B.2 Proof of Theorem 2: Convergence rate of DRPASGD

Proof. We start by a decomposition of the gradient step, already present in Godichon and Portier [2017]. By
abuse of notation, we note

∇2
k := ∇2Hεk(g

∗
εk
)

and define the following differences:

pk := ProjC (gk − γk+1∇ghεk (gk, Xk+1))− (gk − γk+1∇ghεk (gk, Xk+1)) ,

ξk+1 := ∇Hεk (gk)−∇ghεk (gk, Xk+1) ,

δk := ∇Hεk (gk)−∇2
k (gk − g∗

k) .

The term pk represents the difference between the projected and non-projected steps. Remark that pk = 0
if gk − γk+1∇ghεk (gk, Xk+1) ∈ C. The difference of martingale ξk represents the difference between the
gradient and its unbiased version. Finally, δk represents the difference between the gradient at gk with the
linearized Hessian at the optimum.

Noting IM the identity matrix of MM (R), observe that for any k ∈ N

gk+1 − g∗
εk

= ProjC (gk − γk+1∇ghεk(gk, Xk+1))− g∗
εk

= gk − γk+1∇ghεk(gk, Xk+1)− g∗
εk

− pk

= gk − γk+1∇Hεk(gk, Xk+1)− g∗
εk

+ γk+1ξk+1 − pk

=
(
IM − γk+1∇2

k

)
(gk − g∗

k)− γk+1δk + γk+1ξk+1 + pk.

Thus, we have that

∇2
k

(
gk − g∗

εk

)
=

gk − gk+1

γk+1
− δk + ξk+1 +

pk
γk

.

Observe that there is an orthogonal matrix Uk such that ∇2
k = Uk diag (λk,1, . . . , λk,M−1, 0)U

⊤
k . Therefore,

in the following, we denote (
∇2

k

)−1
= Uk diag

(
λ−1
k,1, . . . , λ

−1
k,M−1, 0

)
U⊤
k

the inverse of ∇2
k in the space Vect(1M )⊥. Note that we have (Bercu and Bigot [2021], Lemma A.1, equation

(A.4))

min
j∈J1,M−1K

λk,j ≥
wmin

εk
, k ≥ 0.

Taking all the equalities in Vect(1M )⊥, that is, considering all our vectors in the subspace Vect(1M )⊥,
we have

(
gt − g∗

εt

)
=

1

t+ 1

t∑
k=0

(
∇2

k

)−1 gk − gk+1

γk+1︸ ︷︷ ︸
:=L1,t

− 1

t+ 1

t∑
k=0

(
∇2

k

)−1
δk︸ ︷︷ ︸

:=L2,t

+
1

t+ 1

t∑
k=0

(
∇2

k

)−1
ξk+1︸ ︷︷ ︸

:=Mt

+
1

t+ 1

t∑
k=0

(
∇2

k

)−1 pk
γk+1︸ ︷︷ ︸

:=L3,t

+
1

t+ 1

t∑
k=0

(g∗
k − g∗

t )︸ ︷︷ ︸
=:Dt

.

Remark that the term 1
t+1Dt comes from the difference between 1

t+1

∑t
k=0 g

∗
εk

and g∗
εt .

We will now bound the convergence rate for each of the sums in our decomposition. Note that the terms
L1,t, L2,t and L3,t will be, surprisingly, the limiting terms. Indeed, in stochastic optimization, Mt is usually

the main term. Nevertheless, the presence of the inverse of the Hessian
(
∇2

k

)−1
, whose largest eigenvalues is

of order εk, decreasing with k ≥ 1, makes it negligible.
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• Convergence rate for L1,t. By the definition of our gradient step, we have

1

t+ 1
L1,t =

1

t+ 1

t∑
k=0

(
∇2

k

)−1 γk+1∇ghεk(gk, xk+1)

γk+1
.

Then, using that the gradient norm is bounded by 2, we obtain

1

t+ 1

(
E
[
∥L1,t∥2

]) 1
2 ≤ 2

t+ 1

t∑
k=0

∥(∇2
k)

−1∥

≤ 2w−1
min

t+ 1
Ψa(t).

• Convergence rate for L2,t. Using Lemma 2, for all k ≥ 0, we have

∥δk∥ =
∥∥∇Hεk(gk)−∇2Hεk

(
g∗
εk

) (
gk − g∗

εk

)∥∥ ≤ 4

εk
∥gk − g∗

εk
∥2∞.

In addition, thanks to Theorem 1, E
[
∆2

k

]
= O(w−2

minγ
2
k). That is, there is a positive constant C2 such that

for all k ≥ 1, we have E
[
∆2

k

]
≤ C2w

−2
mink

−2b. Therefore,

1

t+ 1

(
E
[
∥L2,t∥2

]) 1
2 ≤ 4w−1

min

(t+ 1)

t∑
k=0

√
E
[∥∥gk − g∗

εk

∥∥4
∞

]
≤ 4w−1

min

(t+ 1)

t∑
k=0

√
E
[
∆2

k

]
≤ 4w−2

min

√
C2

(t+ 1)
Ψb(t)

= O(w−2
mint

−b) .

Remark: When the weights are uniform, i.e., wmin = 1/M , the bound can be of the order of M smaller
since ∥.∥∞ ≤ ∥.∥ ≤

√
M − 1∥.∥∞. Therefore, the bound can be closer to

1

t+ 1

(
E
[
∥L2,t∥2

]) 1
2
= O(Mt−b).

To emphasis this, we can fix β ∈ [0, 1] such that, when w = 1
M 1M , we have

1

t+ 1

(
E
[
∥L2,t∥2

]) 1
2
= O(M1+βt−b).

• Convergence rate for L3,t. In the same way as for L1,t, we have that for any k

∥pk∥ ≤ 2γk ,

such that

1

t+ 1

(
E
[
∥L3,t∥2

]) 1
2 ≤

t∑
k=0

2∥(∇2
k)

−1∥ ≤ 2w−1
minΨa(t).

However, we can retrieve a better convergence rate for this term.
• Convergence rate for Mt. Observe that

E[∥Mt∥2] = E
[
∥Mt−1∥2 + 2

〈
(∇2

t )
−1⊤Mt−1, ξt

〉
+ ∥(∇2

t )
−1∥2∥ξt∥2

]
,

with

E
[〈

(∇2
t )

−1⊤Mt−1, ξt

〉]
= 0.
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Moreover, we have ∥ξ∥ ≤ 4, such that

1

t+ 1

(
E[∥Mt∥2]

)1/2
=

4w−1
min

t+ 1

√
Ψ2a(t) ≤

√
2a

2a− 1

4w−1
min

t+ 1
.

• Convergence rate for Dt. Thanks to (5), one as for all 0 < α′ < α,

1

t+ 1
Dt ≤

K0

t+ 1

t∑
k=0

εα
′

k (εk − εt)

≤ K0

t+ 1

t∑
k=0

ε1+α′

k

≤ K0

t+ 1
Ψa+aα′(t),

and this term is negligible since a+ α′ > b.
• Conclusion. Taking a ≥ b as in the Theorem’s assumption and summing up the inequalities, we

obtain

E
[
∥gt − g∗

εt∥2
] 1
2 ≤ O(w2

mint
−b) + o(t−b).

When w = 1
M 1M , we obtain

E
[
∥gt − g∗

εt∥2
] 1
2 ≤ O(M1+βt−b) + o(t−b).

Using (5), for any α′ < α we have

∥g∗
εt − g∗∥ ≤ K0ε

1+α′

t ≤ K0t
a+aα′

= o(t−b).

Finally, we have

E
[
∥gt − g∗∥2

] 1
2 ≤ O(w2

mint
−b) + o(t−b),

and when w = 1
M 1M ,

E
[
∥gt − g∗∥2

] 1
2 ≤ O(M1+βt−b) + o(t−b).

Remark: The main theorem considers a ≥ b to have the best convergence rate. However, note that from
the proof, we can read the result when b/2 ≤ a < b. In this case, the limiting terms are only L1,t and L3,t.

B.3 Proof of Corollary 1: OT cost estimation

Proof. EOT cost estimation.
For any ε > 0, the function Hε is 1

ε -smooth. Therefore, for any g ∈ RM , we have

Hε(g)−Hε(g
∗
ε) ≤

1

2ε
∥g∗

ε − g∥2.

Using our estimator gt and (5), we obtain

Hε(gt)−Hε(g
∗
ε) ≤

1

ε

(
∥g∗

ε − g∗
t ∥2 + ∥gt − g∗

t ∥2
)

≲ ε2α
′−1(ε− εt)

2 +
1

εt2b
.

Remark. Using the triangular inequality and Theorem 2.3 in Delalande [2022], we also have

|H0(g
∗)−Hε(gt)| ≲ ε2 + ε2α

′−1(ε− εt)
2 +

1

εt2b
.
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OT cost estimation. For any vector g ∈ RM , we recall the definition of L(g) =
⋃M

j=1 Li(g) :

for all j ∈ J1,MK, Lj(g) :=

{
x ∈ Rd;gc(x) =

1

2
∥x− yj∥22 − gj

}
.

Note that L(g) defines a partition, i.e. µ (Li(g) ∩ Lj(g)) = 0 when i ̸= j, and the convex sets Lj(g) are
called power or Laguerre cells. We define the set

Kδ :=
{
g : RM → R | ∀i ∈ J1,MK, µ (Li(g)) > δ

}
.

Using Theorem 4.1 in Kitagawa et al. [2019], under Assumption 1, H0 is uniformly C2,α on Kδ. That is,
there exists a constant L such that H0 is L-smooth on Kδ. Note that the constant L depends on µmin, δ, R.
We refer to Kitagawa et al. [2019], Remark 4.1 for more details.

By the first order condition, as soon as δ ≤ wmin, we have g∗ ∈ Kδ. Indeed, at the optimum, we have for
all i ∈ J1,MK,Li(g

∗) = wi. We fix here δ = 1
10wmin.

Thanks to the L-smoothness, for any g ∈ Kδ, we have

|H0(g)−H0(g
∗)| ≤ L

2
∥g − g∗∥2.

Note that, for any g ∈ RM and i ∈ J1,MK, the difference of measure of the Laguerre cells Li(g) and
Li(g

∗) is at most linear with respect to ∥g − g∗∥∞. We refer to Theorem 4 or Section 6.4.2 in Santambrogio
[2015] for more details.

Therefore, there exists a constant CL such that, as soon as ∥g − g∗∥2 ≤ CL, we have that g ∈ Kδ. This
constant depends on δ, µmax, R and d as in Theorem 4. Using Theorem 2, E[∥gt − g∗∥2] = O(t−2b). Then

E [|H0(gt)−H0(g
∗)|] = E

[
|H0(gt)−H0(g

∗)|1gt∈Kδ

]
+ E

[
|H0(gt)−H0(g

∗)|1gt /∈Kδ

]
≤ L

2
E[∥gt − g∗∥2] + max

g∈C
|H0(g)−H0(g

∗)|E[1gt /∈Kδ ]

≤ L

2
E[∥gt − g∗∥2] + max

g∈C
|H0(g)−H0(g

∗)|E[1∥gt−g∗∥2>CL
]

= O(t−2b) ,

where the Markov inequality of order 1 was used on E[1∥gt−g∗∥2>CL
].

B.4 Proof of Theorem 4: OT map estimation

Proof. We will show here that a rate of convergence of gt to g∗
0 gives a convergence rate for the map

estimation. The Brenier map is equal to Tµ,ν(x) = x − ∇(g∗
0)

c(x); see for instance Santambrogio [2015],
Theorem 1.17. We will thus focus on the convergence of ∇gc

t to ∇(g∗
0)

c.
For all j ∈ J1,MK, if x is the interior of Lj(g), we have

∇gc(x) = x− yj . (23)

Therefore, given g,g′ ∈ RM , if there exists a j ∈ J1,MK such that x is the interior of Lj(g) ∩ Lj(g
′) we have

∇gc(x) = ∇(g′)c(x).

We will now follow arguments from Santambrogio [2015], Section 6.4.2. Fix j, j′ ∈ J1,MK such that j ̸= j′

and x is in the interior of Lj(g) ∩ Lj′(g
′). By definition of the c-transform, we can see that Lj(g) is defined

by M − 1 linear inequalities of the form

⟨x, yj′ − yj⟩ ≤ ag(j, j
′) := gj − gj′ +

1

2
∥yj′∥22 −

1

2
∥yj∥22 .

Similarly, interchanging the role of g, g′ and j, j′ we have

⟨x, yj − yj′⟩ ≤ ag′(j′, j) := g′j′ − g′j +
1

2
∥yj∥22 −

1

2
∥yj′∥22 .
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We obtain that

Lj(g) ∩ Lj′(g
′) ⊂ {x ∈ Rd : −ag′(j′, j) ≤ ⟨x, yj′ − yj⟩ ≤ ag(j, j

′)} .

Moreover, noting h = (h1, ..., hM ) = g − g′, we see that∣∣ag′(j′, j) + ag(j, j
′)
∣∣ ≤ |hj′ − hj | . (24)

We have

µ
(
A :=

{
x ∈ Rd,∇gc(x) ̸= ∇(g′)c(x)

})
= µ

⋃
j<j′

Lj(g) ∩ Lj′(g
′)


≤
∑
j<j′

µ
(
Lj(g) ∩ Lj′(g

′)
)

≤
∑
j<j′

µ
(
{x ∈ Rd : −ag′(j′, j) ≤ ⟨x, yj′ − yj⟩ ≤ ag(j, j

′)}
)
.

Under Assumption 1 µ is a measure such that Supp(µ) ⊂ B(0, R) and it admits a density dµ bounded by
dµmax. Thus

µ(A) ≤ dµmax

∑
j<j′

λRd({x ∈ B(0, R) : −ag′(j′, j) ≤ ⟨x, yj′ − yj⟩ ≤ ag(j, j
′)})

≤ dµmax

∑
j<j′

λRd

({
x ∈ B(0, R) : − ag′(j′, j)

∥yj′ − yj∥2
≤
〈
x,

yj′ − yj
∥yj′ − yj∥2

〉
≤ ag(j, j

′)

∥yj′ − yj∥2

})

≤ dµmax

∑
j<j′

λRd

({
x ∈ B(0, R) : − ag′(j′, j)

∥yj′ − yj∥2
≤ x1 ≤

ag(j, j
′)

∥yj′ − yj∥2

})
.

by isotropy of the Lebesgue measure. Combining this remark with (24) yields

µ(A) ≤ dµmaxR
d−1

∑
j<j′

|hj′ − hj |
∥yj′ − yj∥2

.

Similarly

∥∥
(
∇gc(·)−∇(g′)c(·)

∥∥
q
∥pLp(µ) ≤

∑
j<j′

∫
Lj(g)∩Lj′ (g

′)
∥
(
∇gc(·)−∇(g′)c(·)

∥∥
q
dµ(x)

≤
∑
j<j′

∥yj′ − yj∥qµ
(
Lj(g) ∩ Lj′(g

′)
)

≤ dµmaxR
d−1

∑
j<j′

∥yj′ − yj∥q|hj′ − hj |
∥yj′ − yj∥2

≤ dµmaxM
(2−q)+/2qRd−12M∥h∥1 .

So, in particular, there exists C∆ > 0 independent of the location of the points yj but growing at least
linearly in M such that

∥∥
(
∇gc(·)−∇(g′)c(·)

∥∥
q
∥pLp(µ) ≤ C∆∥g − g′∥1 ≤ C∆

√
M∥g − g′∥.

Plugging the convergence rate of gt to g∗ concludes the proof.
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B.5 Proof of Theorem 3: Minimax estimation of the discrete OT potential

Proof. Let Θ ⊆
{
θ = (θ1, ..., θM ) ∈ RM ; θ1 = 0

}
and ν be a fixed discrete measure. For each θ ∈ Θ, consider

ρθ ∈ Pα(B(0, R)) such that θ is the only vector in Θ for which the couple (θc, θ) is solution of the dual of
OT(ρθ, ν).

In our class of probabilities, the minimax estimation of the optimal transport potential θ, given t > 0
i.i.d samples of the source measure, can be written as

RΘ
M,t := inf

θ̂(t)
sup
θ∈Θ

Eρθ

[
∥θ̂(t) − θ∥2

]
,

where θ̂(t) is constructed with the t iid samples from the source measure µ. Note that

RΘ
M,t ≤ inf

g(t)
sup

µ∈Pα(B(0,R))
Eµ

[
∥g(t) − g∗∥2

]
, (25)

where the infimum is taken over all vectors g(t) constructed with the t iid samples of µ.
Let M ≥ 2 and take νM the uniform measure on the points

{
k
M ; k ∈ J1,MK

}
.

For δ ≥ 0, we note ρθδ ∼ U([δ, δ + 1]). Note that since d = 1, the optimal transport map is monotone
non-decreasing (see, for instance, Chapter 2 in Santambrogio [2015]). Thus, for all k ∈ J1,MK, we must have
the identity

Tρθδ ,ν
(x) = k/M, x ∈ [δ + (k − 1)/M ; δ + k/M ].

Using the above information, the vector θδ ∈ Θ is optimal for the semi-dual problem if and only if it satisfies
the following inequalities for all k ∈ J1,M − 1K

∀x ∈ [δ + (k − 1)1/M, δ + k/M ] : θδ,k+1 − θδ,k ≤ − 1

M
x+

(2k + 1)2

2M2
,

∀x ∈ [δ + k/M, δ + (k + 1)/M ] : θδ,k+1 − θδ,k ≥ − 1

M
x+

(2k + 1)2

2M2
.

For all k ∈ J1,M − 1K, we thus obtain that

θδ,k+1 − θδ,k =
1

2M2
− δ

1

M
.

In particular, for any δ ≥ 0, we have

∥θ0 − θδ∥22 =
M−1∑
k=1

(
kδ

1

M

)2

=
1

M2

δ2

6
[M(M − 1)(2M − 1)]

≥ 1

6
δ2(M − 1).

Taking P,Q ∈ P(Rd) with densities ρP and ρQ, we recall that the Hellinger distance is defined by

dH(P,Q) :=

(∫
Rd

(√
ρP (x)−

√
ρQ(x)

)2

dλRd(x)

) 1
2

. (26)

In particular, we have dH(ρθ0 , ρθδ) =
√
2δ. Applying Le Cam’s Lemma (see, for instance Wainwright

[2019], Chapter 15) with δ = 1
8t gives

RΘ
M,t ≥

1

4

(
1−

√
tdH (ρθ0 , ρθδ)

)
∥θ0 − θδ∥22 ≥

(M − 1)

3072t2
.

Using the inequality (25) concludes the the proof.
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B.6 Proof of Theorem 5: Minimax estimation of the transport map

Proof. We fix the source measure ν = 1
2δ1 +

1
2δ2. For p ∈ [1,∞[, we define

Q2,t := inf
T̂ (t)

sup
µ∈Pα(B(0,R))

Eµ

[
∥∥T̂ (t) − Tµ,ν∥∥pLp(U([0,1]))

]
,

where T̂ (t) is constructed with t i.i.d samples from the source measure µ. Note that we have

inf
T̂ (t)

sup
µ∈Pα(B(0,R))

Eµ

[
∥∥T̂ (t) − Tµ,ν∥∥pLp(µ)

]
≥ Q2,t. (27)

We define the family of source measures ρδ = U([δ, 1 + δ]). Since the Brenier map is monotone increasing
on the support of the source measure, we have

Tδ(x) = 1, ∀x ∈
[
δ,
1

2
+ δ

]
,

Tδ(x) = 2, ∀x ∈
[
1

2
+ δ, 1 + δ

]
.

Fixing δ > 0, we see that

∥Tρθ0 ,ν
− Tρθ1 ,ν

∥pLp(U([0,1])) = δ.

Using Le Cam’s Lemma with δ = 1
8t , as in the proof of Theorem 3, we obtain

Q2,t ≥
1

64t
.

Using (27) concludes the proof.

B.7 Proof of Lemma 1: Projection step

Proof. Following Nutz and Wiesel [2022], we know that an optimal couple of functions (fε, gε) optimizing
the dual formulation of EOT with regularization ε ≥ 0 satisfies the Schrödinger equations. That is, we can
take for all y ∈ Rd, gε(y) = f c,ε

ε (y). Moreover, 1
2∥x − y∥2 is R-Lipschitz on B(0, R). Therefore, since by

Assumption 1, we have Supp(µ) ⊂ B(0, R) and Supp(ν) ⊂ B(0, R), we can exploit the Lipschitz property of
our cost function on B(0, R). Following the same proof as Lemma 3.1 in Nutz and Wiesel [2022], we get, for
all y, y′ ∈ Rd:

|f c,ε
ε (y)− f c,ε

ε (y′)| ≤ R∥y − y′∥.
That is, coming back to the function g, we have for all j, j′ ∈ {1, ...,M} :

|gε(yj)− gε(yj′)| ≤ R
∥∥yj − yj′

∥∥ .
By writing back our dual potential as a vector, that is g∗ = (g∗1, . . . , g

∗
M ), where for all j ∈ J1,MK, g∗j = gε(yj),

we have

|g∗j − g∗j′ | ≤ R∥yj − yj′∥.
Moreover, if g∗ optimizes the semi-dual Hε, then for any β ∈ R, the vector g∗ + β1M optimizes Hε.

In particular, g∗ − gε(y1)1M , which we rename g∗, optimizes the semi-dual, with g∗1 = 0. Hence, for all
j ∈ 1, ...,M ∣∣g∗y1 − g∗yj

∣∣ = ∣∣g∗yj ∣∣ ≤ R∥y1 − yj∥.
That is, there exists an optimizer in the desired closed convex set.

Remark: Note that for other costs such as c(x, y) = ∥x− y∥ which defines the 1-Wasserstein distance,
this projection set can be more relevant. Indeed, in this case, the cost is 1-Lipschitz and the projection
set depends only on the target measure ν and no assumption of bounded cost is needed. In this case, the
practitioner could choose the index k such that gk = 0, minimizing for instance the Euclidean diameter of
the corresponding set.

27



B.8 Proof of Lemma 2

Proof. Since this proof heavily relies on Lemma A.2 in Bercu and Bigot [2021], we will begin by rewriting
the essential elements of their proof, using our notations, to derive our lemma. Note that in their proof, they
study the concave problem −Hε (which they refer to as Hε).

Fix ε > 0 and g ∈ RM . Note g∗
ε ∈ Vect(1M )⊥ such that ming∈RM Hε(g) = Hε(g

∗
ε). For any s ∈ [0, 1],

denote gs = g∗
ε + s(g − g∗

ε) and define the function

φ : s ∈ [0, 1] 7→ Hε(gs).

Following equation (A.21, Bercu and Bigot [2021]), we have

|φ′′′(s)| ≤ 1

ε
φ′′(s) max

1≤j≤M

∣∣gj − g∗ε,j −m (x,gs)
∣∣ , (28)

where for all x ∈ Rd and any s ∈ [0, 1], we define m(x,gs) by

m(x,gs) :=
M∑
j=1

χε
j(x,gs)(gs − g∗

ε).

Instead of using Cauchy-Schwarz inequality as in Bercu and Bigot [2021], we use Hölder’s inequality with
the Hölder conjugates p = 1, q = +∞ to obtain

max
1≤j≤M

∣∣gj − g∗ε,j −m (x,gs)
∣∣ ≤ 2∥g − g∗

ε∥∞. (29)

Plugging (29) in (28) gives

|φ′′′(s)| ≤ 2

ε
φ′′(s)∥g − g∗

ε∥∞. (30)

Then, following from equation (A.23, Bercu and Bigot [2021]) to (A.27, Bercu and Bigot [2021]) with our
new inequality (29) leads to∥∥∇Hε(g)−∇2Hε (g

∗
ε) (g − g∗

ε)
∥∥ ≤ 2

ε
∥g − g∗

ε∥∞ (φ(1)− φ(0)) ,

where φ(0) = Hε(g
∗
ε) and φ(1) = Hε(g). Remark that for all ε > 0, Hε is 2-Lipschitz for the ∥.∥∞ norm.

That is, we have

φ(1)− φ(0) = Hε(g)−Hε(g
∗
ε) ≤ 2∥g − g∗

ε∥∞.

Therefore, we have the desired first bound in (6).
For the second bound in our proof, we still follow Lemma A.2 in Bercu and Bigot [2021] starting from

line (A.28), with our new value

δ =
2

ε
∥g − g∗

ε∥∞,

such that using (30), we have

φ′′′(s)

φ′′(s)
≥ −δ.

Integrating between 0 and t gives

φ′′(t) ≥ exp(−δs)φ′′(0). (31)

Using that φ′′(s) = (g − g∗
ε)

T ∇2Hε (gs) (g − g∗
ε) and that the smallest eigenvalue of ∇2Hε (g

∗
ε) is greater

than wmin/ε (Lemma A.1,Bercu and Bigot [2021]) implies that

φ′′(0) ≥ wmin

ε
∥g − g∗

ε∥2.
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Then, using that φ′(s) = ⟨∇Hε(gs),g − g∗⟩ and integrating 31 between 0 and 1 gives

⟨∇Hε(g),g − g∗
ε⟩ ≥

wmin

ε

1

δ
(1− exp(−δ)) ∥g − g∗

ε∥2.

Using a disjunction of cases, we obtain

⟨∇Hε(g),g − g∗
ε⟩ ≥

{
wmin
ε

ε
2

[
1− exp

(
−2∥g−g∗

ε∥∞
ε

)]
∥g − g∗

ε∥2∞ if ∥g − g∗
ε∥∞ ≤ 1,

wmin
∥g−g∗

ε∥∞ε
ε
2

[
1− exp

(−2
ε

)]
∥g − g∗

ε∥2∞ if ∥g − g∗
ε∥∞ ≥ 1.

Then, using the projection step, no matter if C = C∞ or C = Cu, we have

sup
x,y∈C

{∥x− y∥∞} ≤ 2R2.

We thus have ∥g − g∗
ε∥∞ ≤ 2R2, which leads to

min

{
wmin

ε

ε

2
;

wmin

∥g − g∗
ε∥∞ ε

ε

2

}
≤ wmin

[2R2 ∨ 1]

1

2
.

Finally, noticing that

exp

(−2[∥g − g∗
ε∥∞ ∧ 1]

ε

)
=

{
exp

(
−2∥g−g∗

ε∥∞
ε

)
if ∥g − g∗

ε∥∞ ≤ 1,

exp
(−2

ε

)
if ∥g − g∗

ε∥∞ ≥ 1,

we obtain the desired bound.

C Additional and technical results

C.1 OT cost estimation with the c-transform

We can also derive a convergence rate without evaluating the regularized semi-dual nor using the unknowned
fixed smoothness of H0, noticing that the vectorial c-transform is non-expansive. That is, considering
g1,g2 ∈ RM , we have ∥gc

1 − gc
2∥∞ ≤ ∥g1 − g2∥L∞(µ).

Theorem 6. Under the same assumptions as Theorem 2, we have

E∥f∗ − gc
t∥2∞ ≲

1

t2b
,

which leads to

E

∣∣∣∣∣OTc(µ, ν)−
∫

gc
tdν −

M∑
i=1

wigi

∣∣∣∣∣
2

≲
1

t2b
.

Proof. By definition of the c-transform, for all x, y ∈ Rd and all function g : Rd → R

gc(x) + gj ≤
1

2
∥x− yj∥2.

That is, for any f ∈ RM , we have

f c(x) = inf
j∈J1,MK

[
1

2
∥x− yj∥2 − fj

]
≥ gc(x) + inf

j∈J1,MK
[gj − fj ] ,

such that we obtain

gc(x)− f c(y) ≤ ∥g − f∥∞. (32)
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Therefore, changing the role of f and g in (32), we get for all f ,g ∈ RM ,

sup
x∈Rd

|f c(x)− gc(x)| ≤ ∥f − g∥∞.

Since E∥gt − g∗∥2∞ ≲ 1
t2b

, we have

E
∫

|gc
t − (g∗)c|2 dµ ≲

1

t2b
,

E
∫

|gt − g∗|2 dν ≲
1

t2b
.

By developing the cost difference, we have

E
∣∣∣∣OTc(µ, ν)−

∫
gc
tdµ−

∫
gtdν

∣∣∣∣2 = E
∣∣∣∣∫ ((g∗0)

c − gct ) dµ+

∫
(g∗ − gt) dν

∣∣∣∣2
≤ 2E

∫
|gc

t − (g∗)c|2 dµ+ 2E
∫

|gt − (g∗)|2 dν

≲
1

t2b
.

C.2 Technical results

Proposition 1. Let (γt)t≥0 and (νt)t≥0 be some positive and decreasing sequences and let (δt)t≥0, satisfying
the following:

• The sequence δt follows the recursive relation:

δt+1 ≤ (1− ωγt+1) δt + νt+1γt+1, (33)

with δ0 ≥ 0 and ω > 0.

• Let γt converge to 0.

• Let t0 = inf {t ≥ 1 : ωγt+1 ≤ 1}.
Then, for all t ≥ t0, we have the upper bound:

δt ≤ exp

(
−ω

t∑
i=t0+1

γi

) t∑
k=t0

γkνk + δt0

+
1

ω
ν⌈ t

2⌉−1

Proof. For all t ≥ t0, one has

δt ≤
n∏

i=t0+1

(1− ωγi) δt0︸ ︷︷ ︸
=:U1,t

+
t∑

k=t0+1

t∏
i=k+1

(1− ωγi) γkνk︸ ︷︷ ︸
=:U2,t

As in Godichon-Baggioni [2023], one can consider two cases: ⌈t/2⌉ − 1 ≤ t0 and ⌈t/2⌉ − 1 > t0.
Case where ⌈t/2⌉ − 1 ≤ t0 < t: Since νk is decreasing,

U2,t ≤ νt0+1

t∑
k=t0+1

t∏
i=k+1

(1− ωγi) γk

=
1

ω
νt0+1

t∑
k=t0+1

t∏
i=k+1

(1− ωγi)−
t∏

i=k

(1− ωγi)

=
1

ω
νt0+1

(
1−

t∏
i=t0+1

(1− ωγi)

)

≤ 1

ω
νt0+1
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Since νk is decreasing, it comes U2,t ≤ 1
ων⌈t/2⌉.

Case where ⌈t/2⌉ − 1 > t0: As in Bach [2014], for all m = t0 + 1, . . . , t, one has

U2,t ≤ exp

(
−ω

t∑
k=m+1

γk

)
m∑

k=t0+1

γkνk +
1

ω
νm

Then, taking m = ⌈t/2⌉ − 1, it comes

U2,t ≤ exp

−ω
t∑

k=⌈t/2⌉

γk

 ⌈t/2⌉−1∑
k=t0+1

γkνk +
1

ω
ν⌈t/2⌉−1

Corollary 2. Let (γt)t≥0 and (νt)t≥0 be some positive and decreasing sequences and let (δt)t≥0, satisfying
the following:

• The sequence δt follows the recursive relation:

δt+1 ≤ (1− ωγt+1) δt + νt+1γt+1, (34)

with δ0 ≥ 0 and ω > 0.

• Let γt = cγt
−α with α ∈ (0, 1).

• Let t0 = inf {t ≥ 1 : ωγt+1 ≤ 1}.

Then, for all t ∈ N, we have the upper bound:

δt ≤ exp

(
−1

2
ωcγt

1−α

)
exp

(
1

2
ωcγ (t0 + 1)1−α

) t∑
k=t0

γkνk + δt0

+
1

ω
ν t

2
−1.

Proof. With the help of an integral test for convergence, one can now bound U1,n as

U1,t ≤ exp

(
−ω

cγ
1− α

(
(t+ 1)1−α − (t0 + 1)1−α

))
γt0νt0

≤ exp
(
−ωcγ

2

(
(t+ 1)1−α − (t0 + 1)1−α

))
γt0νt0 .

In a same way, since

exp

−ω
t∑

k=⌈t/2⌉

γk

 ≤ exp
(
−ωcγ

2
(t+ 1)1−α

)
,

one finally has

δt ≤ exp

(
−1

2
ωcγt

1−α

)
exp

(
1

2
ωcγ (t0 + 1)1−α

) t∑
k=t0

γkνk + δt0

+
1

ω
ν t

2
−1.
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