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Abstract—Assurance case (AC) patterns are structured ar-
guments in a tree-like form in which certain choices are not
frozen. By making these choices a user can determine a design,
implementation, integration, verification and validation workflow
that will produce artifacts supporting the argument for his/her
use case. However, it is difficult to make choices in an AC
pattern because of the lack of information on the consequences
of these choices and the cost/effort they may require. Based on
recently published results, this work proposes an uncertainty
assessment that allows the user to be aware of the confidence
in the argument induced by those choices. To do so, confidence
features are elicited from experts. The elicitation procedure is
presented and the propagation of uncertainty through the AC
is analyzed. Finally, application of the method on a use case
related to robustness of machine learning models demonstrates
the validity of the approach.

Index Terms—Assurance case, Dempster-Shafer theory, robust-
ness, machine learning, experts’ judgments elicitation

I. INTRODUCTION

Functions designed using Machine Learning (ML) have to
comply with standards and nowadays an effort is devoted to
the proof of their dependability. Justification of such high-
level properties can be done with structured arguments named
Assurance Cases (AC). In order to streamline and normalize
the design of AC, AC patterns are proposed. The objective of
the research presented here is to add uncertainty or confidence
to AC patterns. The final objective of uncertainty assessment
in instances of AC is to provide to certification authorities an
AC presenting a full belief assessment. However, intermediate
steps with intermediate objectives are necessary because the
product to be certified follows a design, implementation,
integration, verification and validation cycle. At the beginning
of the cycle, the product owner only relies, for all cycle steps,
on an AC pattern that provides choices in a pre-defined tree
structure. The difficulty for making decisions among choices
is high when the subject of the AC is a new technology with a
large number of approaches with different levels of readiness,
as it is the case for robust ML. In those cases an uncertainty
assessment can be useful for making a judgment about the

opportunity of using a specific approach. Moreover, the un-
certainty assessment of each strategy in the tree structure may
be performed at no cost and could be directly provided with
the AC pattern. At the opposite, the evidence at some leaves
of the tree is subject to dynamical uncertainty assessment:
The evidence will be provided at no additional cost by the
chosen design process but the uncertainty before producing it
may be different from the uncertainty after producing it and
depending on the choice made in the AC pattern, the evidence
must be provided independently from the design process by
the verification and validation process with some cost.

The objective of this research raises several issues: Choice
of an uncertainty representation, elicitation of uncertainty asso-
ciated to atomic elements such as relations and evidences, and
propagation of the uncertainty of atomic elements through the
AC. Working with AC patterns that will become instantiated
as actual AC is also quite challenging.

The approach followed here is based on recently published
results [1], [2] and brings the following contributions:

1) An uncertainty assessment based simultaneously on
qualitative and quantitative uncertainty modeling,

2) an elicitation method allowing simultaneous capture of
qualitative and quantitative uncertainty,

3) an analysis of uncertainty modeling and propagation on
AC patterns and

4) demonstration of the approach with a use case related
to robustness of ML models.

The following section is devoted to positioning the approach
described above with respect to the state of the art. Then,
a section presents the uncertainty assessment. Section IV is
devoted to the elicitation process. Modeling and propagation
are analyzed in section V. Section VI demonstrates the ap-
proach on the use case. Finally the conclusion provides a
global assessment of the approach and possible improvements.

II. BACKGROUND AND RELATED WORKS

In this section, we introduce the necessary background
information to facilitate a comprehensive understanding of our



work and we highlight the weaknesses of related works.

A. Structured arguments

1) Formalism: Goal Structuring Notation (GSN) [3] is a
graphical way to describe AC including concepts such as Goal,
Solution, Strategy, Context, Assumption, Justification and their
relationships such as Is supported by and In the context of.
Figure 1 illustrates some of these elements. Further versions
of GSN include an extension allowing the description of argu-
ment patterns using the concepts of Choice and Uninstantiated
Element and the description of confidence argument using
the concept of Assurance Claim Point that refers to another
argument for assessing the confidence [4]. The work presented
here was conducted in the scope of GSN using another
method to assess confidence. An alternative graphical way of
describing AC is Claim Argument Evidence (CAE) [5]. More
recently, Structured Assurance Case Meta-model (SACM) [6]
was build upon GSN and CAE and transformations from these
models to SACM were developed. SACM allows arguing the
confidence in the arguments provided in the AC by using a
meta-claim feature of the Assertion element. Meta-claim as
its name suggests, is a Claim about an Assertion to argue
the trustworthiness of the Assertion. The approach presented
here is quite different from the SACM approach because
here confidence is not modeled by additional claims but is
grounded on uncertainty measures. Nevertheless, using the
transformation GSN to SACM the results obtained here could
be used in SACM.

2) AC for machine learning: Safety criteria, which if
enforced would contribute to justifying the safety of neural
networks, were determined and structured in an AC pattern
presenting an undeveloped goal “The neural network tolerates
faults in its inputs” [7]. The AC pattern for robustness of ML
used in our work corresponds to a development of this goal.

Burton and Herd proposed a high level AC pattern for claim-
ing that the ML system satisfy its allocated safety requirements
within the defined context [8]. A strategy refines this goal
in five sub-goals concerning specification, data sets, design,
demonstration and operation. Only the sub-goal concerning
specifications is detailed to the level of solutions. The AC
pattern used in our work addressees design and demonstration
and is detailed to the level of solutions on the design part.

B. Uncertainty modeling

Uncertainty is most of the time modeled using probabili-
ties. Those are most of the time related to frequencies and
are more suited for aleatory uncertainty than for epistemic
uncertainty. T-norms and T-conorms are binary operations
which generalize respectively conjunction and disjunction in
valued logic [9]. The probabilistic T-norm corresponds to
the product while the Zadeh’s T-norm correspond to the
minimum. Their associated T-conorms are the sum minus
the product and the maximum. If T (x, y) and T ∗(x, y)
are a T-norm and its conorm, the distributivity property is
characterized by T (x, T ∗(y, z)) = T ∗(T (x, y), T (x, z)) and
T ∗(x, T (y, z)) = T (T ∗(x, y), T ∗(x, z)) and the absorption

property by T (T ∗(x, y), x) = x and T ∗(T (x, y), x) = x. Fi-
nally the idempotency property is characterized by T (x, x) =
x and T ∗(x, x) = x.

The Dempster-Shafer Theory (DST) [10] is a general
framework for reasoning with uncertainty. It uses a frame
of discernment and may allocate parts of an unitary mass
on all non empty subsets of this frame of discernment. DST
operations are extension to the cross product of frames of
discernment, combination of masses from different sources
managing the conflict issue and marginalization. Capacities
[11], are set functions which give 0 for the empty set, 1 for the
sure event and respect monotonicity with respect to inclusion.

Fig. 1. An example of parts of a GSN pattern (Extract from Robustness AC
pattern)

C. Uncertainty assessment in AC

1) Probabilistic approach: The question of uncertainty
assessment in ACs has been the subject of a number of
approaches. Some are based on probability theory. They use
Bayesian Networks (BN) [12]–[15] to propagate probabilities
on pieces of evidence provided by the argument up to the
top-goal. Probabilities deals well with aleatory uncertainty.
However, this is less the case for epistemic uncertainties due
to lack of information. For this reason the work presented here
is not based on BN.

2) Approaches based on DST theory: To address the issue
related to BN, other approaches using DST are proposed. In
addition to efficiently modeling epistemic uncertainties, these
kinds of approach require less data than Bayesian approaches.
First of all, those approaches assume that uncertainty is asso-
ciated on the one hand to goals directly linked to solutions and
on the other hand to the support relation between goals, either
directly or through an explicit strategy. The other elements
of GSN, such as context, assumption, justification and in the
context of, provide information about uncertainty but don’t
carry this information. For instance, Wang et al. [16] use DST
to propose models to elicit confidence values about evidence
and propagate them according to the relationships between a
goal and its sub-goals. The confidence on these relations is also
quantified using DST. To determine their values, Wang et al.
proposed to use the non linear least square method. However,
this method can lead to values outside the unit interval [0.1]



which makes no sense. Chung-Ling et al. [17] propose to use
Vector Space Model (VSM) to identify these values.

Authors in [1], [18], [19] used an approach based on experts
judgment to deal with this issue. They assume that Goals
directly supported by a Solution can be believed, disbelieved
and epistemically uncertain, rules involved in Strategy can be
believed, epistemically uncertain but cannot be disbelieved.
Considered rules, pi ⇒ C, ¬pi ⇒ ¬C, (∧i pi) ⇒ C and
(∧i ¬pi) ⇒ ¬C, with pi a child goal and C a father goal,
provide a formal and flexible definition of Is supported by.
Their corresponding belief are noted here reciprocally Bi

⇒,
Bi

⇐, B⇒ and B⇐. Two approaches to uncertainty assessment
of GSN are proposed: the quantitative approach and the
qualitative approach. For the quantitative approach elicitation
is performed using scales and the rankings are transformed
in numbers. For the propagation child Goals with masses Bi

p,
Di

p and 1 − Bi
p − Di

p on respectively itself pi, its negation
¬pi and tautology ⊤ = pi ∨ ¬pi lead to conclusion Goals
with masses on C, ¬C and ⊤ = C ∨ ¬C. If masses on
goals linked to solutions are provided, the mass computation
can be propagated from the bottom of the tree to the top
of the tree and provides belief, BC and disbelief DC in top
claim. Formulae for numeric propagation are derived from the
hypotheses and the DST:

BC = B⇒ ·
∏
i

Bi
p(1−Bi

⇒)+1−
∏
i

(1−Bi
p ·Bi

⇒)−MC (1)

DC = B⇐ ·
∏
i

Di
p(1−Bi

⇐)+1−
∏
i

(1−Di
p ·Bi

⇐)−MC (2)

where MC is the conflict mass on C. For its computation see
[19]. For the qualitative approach elicitation is also performed
using scales but there is no need to transform rankings in
numbers. Formulae for qualitative propagation are derived
from the hypotheses, the DST and the properties of capacities:

βC = max{min(β⇒,min
i

βi
p),max

i
min(βi

p, β
i
⇒)} (3)

δC = max{min(β⇐,min
i

δip),max
i

min(δip, β
i
⇐)} (4)

where β and δ are reciprocally the qualitative counterparts of
B and D.

3) Criticism to propagation of uncertainty in AC: Bur-
ton and Herd indicate that these approaches depend on the
availability of reliable confidence values that can be assigned
to elements of the assurance argument and combined into
an overall confidence score, they are themselves subject to
uncertainty and subjective judgment [8]. In order to avoid this
problem they propose to use locally, i.e. for each element of the
AC, a first scale of uncertainty including subjective ranking,
subjective probabilities, probabilities and variance combined
by a second scale including ignorance, imprecise judgment,
precise judgment and certainty. Those scales are quite helpful
for improving locally an AC but seem inoperative for making
choices in an AC pattern.

III. QUALITATIVE AND QUANTITATIVE MODELING SHALL
BE CONSIDERED TOGETHER

Requirements are proposed for uncertainty modeling and
assessment: (i) The assessment shall be useful for focusing
validation effort and for identifying weaknesses of AC struc-
ture, (ii) the result of the assessment of an AC tree shall not be
driven by its dimension, (iii) the sensitivity of the assessment
shall allow discriminating strategies and (iv) methodological
choices should not be arbitrary.

A. Usefulness

The uncertainty assessment is useful for focusing validation
effort on most sensitive parts of the AC because it is performed
at each goal and can indicate its weakness and contradictions
between proof elements. For nodes corresponding to conjunc-
tions a procedure to focus on the most sensitive element, i.e.,
the one with least belief is derived. If this element corresponds
to a Solution, consider means for improving its belief, for
example, doing a higher number of tests. The uncertainty
assessment is also useful for identifying weaknesses of AC
structure and applying uncertainty reduction techniques. The
proposed procedure is quite like the one for focusing valida-
tion. A Strategy associated to a node, whose uncertainty is
sensitive but whose uncertainties of the children are not so, is
not sufficiently convincing. Then, an alternative strategy can
be considered.

B. Dimension

The result of the analysis of this requirement on a large
conjunctive argument case indicates that, for the numeric
approach, while the number of solutions increase the general
trend is the rejection of the property corresponding to the root
goal. At the opposite, for the qualitative approach the belief
of the root goal cannot be lower than the belief of the solution
with the lowest belief. Moreover, the disbelief of the root goal
cannot be larger than the disbelief of the solution with the
largest disbelief. With the qualitative approach the uncertainty
of the root goal is bounded.

C. Sensitivity

Changing a strategy changes the goal supported by this
strategy. This goal supports its father goal. Thus, changing
a strategy changes a premise of a goal. For the numeric
approach, partial derivatives of the belief and disbelief of the
father goal with respect to belief and disbelief of a premise
are highlighted. Thus there is a sensitivity to each premise.
Concerning the qualitative approach, sensitivity of goal belief
to belief of premise argmin and sensitivity of goal disbelief to
disbelief of premise argmax are highlighted. However, those
sensitivities are valid only when argmin respectively argmax
are single premise. Finally, there is no sensibility to other
premises.



TABLE I
COMPLIANCE OF UNCERTAINTY MODELING WITH REQUIREMENTS

Requirement Numeric Qualitative
Usefulness + +
Result not dimension driven – ++
Sensitivity ++ –
Not arbitrary methodological choices + +

D. Methodological choices

The T-norm used in the numeric approach can only be
applied to numbers and is grounded on: assimilating the
uncertainty measure to frequencies, representativeness of fre-
quencies and independence of events. The T-norm used in
the qualitative approach can be applied on numbers as well
as on ordered linguistic qualifiers and is the unique T-norm
complying with idempotence, absorption and distributivity.
Concerning the assessment of elementary elements, the con-
sensus on the association of a number with a linguistic
qualifier is difficult. The numeric approach highlights slight
differences between belief degrees. However, it is unlikely that
two experts provide the same value. The scale used by the
qualitative approach is associated to linguistic qualifiers, there
is consensus on their order and it is likely that two experts
associate the same qualifier to the same element. However,
there is gaps between the degrees of the scale and results on an
extreme case highlight the negative effect of a limited number
of linguistic qualifiers on sensitivity. Indeed, improving the
AC implies substituting several elements in a single step.

E. Synthesis

Table I, presents a synthesis of the compliance of uncer-
tainty assessment methods with requirements. It indicates that
in order to comply with all requirements it is needed to work
with both a scale and numbers and use the numeric and
qualitative methods together.

IV. ELICITING QUALITATIVE AND QUANTITATIVE
UNCERTAINTY IN A SINGLE STEP

Another important result of the work is the definition of
a methodology for elicitation of uncertainty associated to
rules and Goals directly linked to Solutions. Following this
methodology, the full tree is presented without Strategies to
experts, i.e. child Goals are directly connected to father Goals
by a Is supported by relation. Then a questionnaire with a form
for each hidden Strategy has to be filled by experts. Figure 3
presents an extract of the form for a Goal supported by two
children Goals. In those forms, the number of questions per
hidden Strategy is equal to the number of rules, i.e. two plus
twice the number of child Goals.

Answers are given by experts associating a confidence in
decision on the scale { very low, low, high, very high }. For
positive rules the provided decision is the acceptance of the
father Goal. For negative rules it is the rejection of the father
Goal. In both cases the strength of the decision is scaled on
{no decision, weak, moderate, strong }. Numerical values are

Fig. 2. Assurance case assessment process

captured using a scroll-bar that drives the linguistic qualifier
of the corresponding scale.

Answers are converted to masses on belief and tautology
for each rule. The quantitative approach considers the values
provided by scroll-bars. The qualitative approach uses the
semantic qualifiers.

It is important to know that the elicitation phase may require
several round of assessment by experts. Normally during its
elaboration, an AC is subject to an internal reviewing. How-
ever, Rushby et al. [20] explained that this kind of evaluation
is not only insufficient, but also not very effective. This is
because developers tend to justify their reasoning rather than
question it, while external assessors will most likely try to
criticise it. Analysis of the elicitation results provided by the
external experts allowed us to improve the structure of the
argument (i.e., reasoning and evidence). Hence, the necessity
of reassessing the argument after each major modification,
until we get a structure approved by a reasonable number of
experts. Figure 2 shows this process. The answers collected
during the closing phase are those that will be used to
propagate confidence and uncertainty measures to the top-goal.

As shown Figure 2, the first stage after the selection of
external expert(s) is to introduce the GSN standard if required,
present the assurance case, and the assessment procedure.
I.e., how to interpret and answer the questions in the form.
Once the form is filled, answers (i.e., direct responses to
questions in Figure 3 for example, and comments left by the
expert(s)) are analyzed in order to detect any inconsistency
or misunderstanding. A debriefing session is then scheduled
to answers pending questions and discuss possible corrections
on the AC. If improvements are required, the AC is modified
and reassessed by a different set of experts. If this is not the
case, the confidence/uncertainty measures resulting from these
responses are associated to the AC so that they can be used
during the propagation step.

The choice of an expert depends on his/her knowledge and
competence in the fields covered by the AC. (e.g., ML, formal
proof, V&V processes, etc.). Ideally the expert/assessor needs
to have experience from both: (1) industrial domain to judge
the use case-dependent arguments, notably for the instantiated
assurance cases (i.e., all required artifacts are supplied), and
(2) academia to assess relatively new methods from articles
used as evidence. However, since such profiles are not easy
to identify, one can call a set of experts. Aggregating their
answers can be done through discussion by agreeing on a



Fig. 3. Extract from the form used for elicitation

single answer, which can be difficult and time-consuming. It
can also be computed using aggregation formulas. This issue is
not addressed in this paper since the evaluation of “Robustness
AC” was made by a single expert.

V. ANALYSIS OF UNCERTAINTY MODELING AND
PROPAGATION IN AC PATTERNS

Results indicate that conflicts, as meant by DST, cannot be
detected at single rule level because for rules mass is only
on tautology ⊤ = r ∨ ¬r and the rule itself r. However
variation of mass between experts can be recorded. Moreover,
the results indicate that conflicts cannot be detected at node
level. Indeed, it is shown that if masses on rules of expert 1
and 2 respect consistency, consistency is respected by masses
on rules of the fusion. Finally, conflicts cannot be detected
at tree level with an optimistic leaf assignment because the
propagation of an optimistic leaf assignment induces for any
node of the tree a belief in [0,1] and a null disbelief. Globally
those results indicate that conflicts between experts are not
detectable without applying the AC to a use case.

For assessing the sensitivity of arguments to disbelief in
premises, a parameter ϵ is defined and belief and disbelief
in premises are set respectively to 1 − ϵ and ϵ. Results
indicate that for the conjunctive argument belief and disbelief
of conclusion are highly sensitive to ϵ, for the disjunctive
argument belief and disbelief of conclusion are not sensitive
to ϵ and that for the hybrid argument belief of conclusion is
sensitive to ϵ while disbelief of conclusion is not sensitive to
ϵ. Nevertheless, for this argument uncertainty is sensitive to
ϵ. Additional sensitivity analysis is performed by varying the
mass on individual direct rule. It indicates that the decrease
of this mass reduces uncertainty and increases disbelief in
conclusion. Finally, it is observed that for those cases the
uncertainty is equal to the degree of conflict.

VI. UNCERTAINTY IN THE AC PATTERN FOR ROBUSTNESS
OF ML

A. AC pattern for robustness of ML

The root goal of the AC pattern for robustness of ML,
i.e. goal 15 in Table II, is “<The Trained ML model> is
<robust>”, where “<Trained ML model>” is an artifact
resulting from the design and building stages of the life cycle

TABLE II
GOALS SUPPORTED BY STRATEGIES

Goal Wording
number

15 <The Trained ML model> is <robust>
17 <The Trained ML model> satisfies the

<global robustness criteria>
18 <The Trained ML model> satisfies the

<Global nbsample robustness criteria>
21 <The Trained ML model> is <locally robust>
23 <The Trained ML model> is < l2 locally robust>
24 <The ML model design> ensures that <The Trained ML

model> is < l2 locally robust>
25 <The ML model design> integrates applicable <robustness

reinforcement methods> and these methods allows that <The
Trained ML model> is < l2 locally robust>

99 <The Trained ML model> is < l∞ locally robust>
100 <The ML model design> ensures that <The Trained ML

model> is < l∞ locally robust>
101 <The ML model design> integrates applicable <robustness

reinforcement methods> and these methods allows that <The
Trained ML model> is < l∞ locally robust>

and “<robust>” is a property defined in the AC. This goal
is reformulated and then decomposed in three sub-goals, all
based on the concept of local robustness. Then a decomposi-
tion is performed with respect to the norms involved in the
local robustness criterion and then with respect to the way
robustness can be obtained, either by design or by validation.
The tree further develop the branch dedicated to by design
methods, splitting in sub-goals corresponding to families of
methods of this category. Tables II and III present some stages
of this decomposition. Note that goal 19 corresponds to “The
<verification set> is relevant for robustness evaluation”. Goals
98 and 178 are respectively “The evaluation of the <Trained
ML Model> demonstrates that the <Trained ML Model> is
< l2 locally robust>” and “The evaluation of the <Trained
ML Model> demonstrates that the <Trained ML Model> is
< l∞ locally robust>”. Finally, as shown on Figure 4, the
goal corresponding to each method is supported by a set of
three goals: two which are dependent on artifacts linked to the
trained ML model, and one connected to a solution referencing
published research articles, cf. Table IV. The goals connected
to solutions for goals 30, 42, 55, 76, 103, 126, 139, 150, and
165 are respectively goals 36, 48, 60, 82, 108, 132, 143, 154,
and 168.

This structure is a pattern AC and not an AC because
artifacts are not present and branches of the tree can be deleted
for a specific ML model.

B. Elicitation results

One expert filled forms of the type of the one shown in
Figure 3, for goals connected to articles and for nodes upper in
the tree. The results are derived by gathering and analyzing the
filled forms. It consists in filling the AC pattern from expert’s
answers.

1) Qualitative analysis: The analysis of answers to open
questions and binary questions highlights the following points.

a) Too demanding expert effort: The expert indicated that
he didn’t analyze articles related to goals 108, 154 and 168,



TABLE III
SUPPORTING GOALS FOR GOALS SUPPORTED BY STRATEGIES

Goal number Sub-goals
15 17
17 18
18 19, 21
21 23, 99
23 24, 98
24 25
25 30, 42, 55, 76
99 100, 178
100 101
101 103, 126, 139, 150, 165

TABLE IV
GOALS SUPPORTED BY SCIENTIFIC ARTICLES

Goal Norm Solution
number

36 l2 Jacobian regularization [21]
48 l2 Lipschitz training [22]
60 l2 Certified robust training [23]–[25]
82 l2 Randomized smoothing [26]–[28]

108 l∞ Empirical robustness reinforcement [21], [29]–[32]
132 l∞ Lipschitz training [22]
143 l∞ Gowal certified robust training [33]
154 l∞ Certified robust training [34], [35]
168 l∞ Random Noising [27], [36]

i.e., Empirical robustness reinforcement method, Certified ro-
bust training and Random Noising for linf robustness. It seems
that the reason is the amount of effort needed to fill seriously
the questionnaire is too large. Indeed, this evaluation procedure
requires considerable time and effort to complete the ques-
tionnaire especially for parts concerning the goal/solution(s)
nodes, which require the reading and processing of extensive
documentation (e.g., technical reports, scientific articles, etc.).

b) Definitions: Concerning the definition of robustness,
the expert indicated that the definition of robust provided
by the AC is restrictive. For instance, this definition don’t
cover robustness with respect to distribution shift. The expert
thinks that in the definition of <Global nbsample robustness
criteria>, i.e., “the number of samples of a subset that are
<locally robust> is greater than a threshold”, a criterion of
representativity of the “subset” is needed. The expert found
that the wording of goal 21 is incomplete because <local
robustness> is defined for a single input while it supports the
goals 18 that is grounded on <Global nbsample robustness
criteria> that refers to several inputs. A consistent wording
for goal 21 could be “<The Trained ML model> is <locally
robust> for a sufficient number of inputs”. The expert consid-
ered such wording. The addition of “for a sufficient number
of inputs” could also be done for goals 23, 24, 25, 99,
100, 101 and for all goals of table IV. The expert stated
that he was unable to assess Goal 19 whose wording is
“The <verification set> is relevant for robustness evaluation”
and support is “<Verification set>” because the definition of
a relevant verification set is not provided. Nevertheless, he
indicated values for the answers to the questions.

c) Contexts: For the context associated to goal 101, the
expert has some doubts about the applicability for l∞ robust-
ness of all methods among Double Backpropagation, Jaco-
bian regularization, Saturated Network, Ensemble adversarial
training, Lipschitz Training, Wong Kolter, Universal Random
Smoothing, Feature pruning and Random Noising. Moreover,
the expert has specific doubt about Lipschitz Training even if
he thinks that the method helps obtaining l∞ robustness

d) Relations between goal and sub-goals: The expert
signaled that, for a given perturbation radius, goal 99 implies
goal 23 because the l2 ball is included in the l∞ ball. This is
true from a formal point of view, but the hidden Strategy is
“Argument by partitioning of norms”. It seems that the expert
has understood goal 21 as “<The Trained ML model> is
<locally robust> for any norm with the same radius”. The
expert indicated that the conjunction of goals 30, 42, 55 and 76
is impossible because the methods cannot be applied together
at learning time. This also applies to goals 103, 126, 139, 150
and 165. Moreover, for the negation of the use of all methods
he assumed that those methods are the only available methods.

e) Relations between goal and solutions: The expert
pointed out that when multiple solutions are provided for
a goal, it is unclear whether the goal shall be assessed as
supported by a logical “and” or by a logical “or” of solutions.
Some articles are subject to a deep analysis by the expert.
For Jacobian regularization [21] the expert concludes that it
improves l2 robustness but doesn’t ensure it. For Lipschitz
training [22] he indicates that a specific loss function should be
used as done in recent work [37]. For Certified robust training
for l2 robustness, the expert indicates that one article [24] is
out of scope

2) Quantitative analysis:
a) Completing the AC for unassessed goals: Goals 30,

42, 55, 76, 103, 126, 139, 150 and 165 are not assessed
through the questionnaire. However, they have the lx and
Method of Goals 36, 48, 60, 82, 108, 132, 143, 154 and
168 respectively. In the full AC they are connected through
structures like the structure of Figure 4. Without a concrete
use case with a specific ML model, it is not possible to
assess GOA2 and GOA4 in this figure. Thus goals 30 and
36, 42 and 48... are linked for uncertainty propagation by
simple arguments with no uncertainty. Goals 98 and 178
corresponding to robustness by evaluation are not assessed
through the questionnaire. At the first order, it is assumed
that the evaluation provided a full confidence in robustness
and that their assessment is Bel = (1, Acceptance, with Very
High Confidence) and Disb = (0, Rejection, with Very Low
Confidence). Despite being in the questionnaire goals 19,
108, 154, and 168 were not assessed by the expert. Goals
108, 154 and 168 are dismissed because their branches lead
almost directly to a choice node with multiple incompatible
alternatives. The case of goal 19, is more complex. Indeed,
during the debriefing the expert suggested a quite different
property than relevance for data without a clear link with
robustness. Thus, the structure of goal 18 is changed to a
simple argument with sub goal 21. Uncertainty of rules for



TABLE V
UNCERTAINTY ASSOCIATED TO RULES

Goal Sub- Direct belief Inverse belief
goal(s)

quantitative qualitative quantitative qualitative
15 17 1.000 VH 1.000 VH
17 18 1.000 VH 0.915 VH
18 21 0.765 VH 0.845 VH
21 23 0.860 VH 1.000 VH
21 99 0.860 VH 1.000 VH
21 all 1.000 VH 1.000 VH
23 24 0.325 H 0.345 H
23 98 0.400 L 0.345 VH
23 all 0.870 VH 1.000 VH
24 25 1.000 VH 0.330 L
25 30 1.000 VH 0.500 VH
25 42 1.000 VH 0.500 VH
25 55 1.000 VH 0.500 VH
25 76 1.000 VH 0.500 VH
99 100 0.310 H 0.320 H
99 178 0.410 L 1.000 VH
99 all 0.650 H 1.000 VH

100 101 0.320 L 0.240 L
101 103 1.000 VH 0.500 VH
101 126 1.000 VH 0.500 VH
101 139 1.000 VH 0.500 VH
101 150 0.995 VH 0.500 VH
101 165 1.000 VH 0.500 VH

this simple argument is derived from the answers in the form
to questions concerning goal 21 alone.

b) Elicitation problems: Analysis of answer to elemen-
tary questions indicate that the expert takes sometime a deci-
sion that is excessive with respect to its confidence leading to a
disrespect of Josang constraint. Moreover some inconsistency
between elementary and conjunctive rules is observed. Finally,
some strategies that were considered by the AC developers
as pure rewording or as pure logical operators are assessed
differently by the expert when the goal and sub-goals are
presented without explaining the strategy, indicating that the
wording of goals should be revised. This has been particularly
critical for the node 21, that is a choice of a norm and that was
interpreted by the expert as a competition between norms. All
those elicitation problems were solved during the debriefing
with the expert.

c) Elicitation of uncertainty associated to rules: Table
V presents the uncertainty associated to rules after correcting
the elicitation problems. In this table VH, H and L stand
reciprocally for Very High, High and Low.

d) Elicitation of uncertainty for goals associated with
solutions: Table IV presents the uncertainty associated to
goals directly supported by solutions. In the table VL stands
for Very Low. The table indicates that at the leafs of the
tree the expert is confident of using Lipschitz training when
considering robustness criteria based on l2 norm, goal 48, and
less confident when considering robustness criteria based on
l∞ norm, goal 132. For all other methods the belief is too low
and sometime the disbelief is larger than the belief.

TABLE VI
UNCERTAINTY ASSOCIATED TO GOALS LINKED TO SOLUTIONS

Goal Belief Disbelief

quantitative qualitative quantitative qualitative
36 0.120 L 0.880 VH
48 0.600 VH 0.400 H
60 0.040 VL 0.060 VL
82 0.000 L 0.300 L
132 0.375 L 0.115 L
183 0.270 L 0.110 L

TABLE VII
UNCERTAINTY PROPAGATION FOR LIPSCHITZ TRAINING BASED ON l2

NORM

Goal Belief Disbelief

quantitative qualitative quantitative qualitative
42 0.600 VH 0.400 H
25 0.600 VH 0.200 H
24 0.600 VH 0.066 L
23 0.719 VH 0.014 L
21 0.618 VH 0.014 L

C. Propagation results

Results on the use of the AC pattern by a ML model
developer are obtained by making uncertainty propagation
under different hypotheses for the solution directly linked to
artifacts. Assuming that Lipschitz training is applicable to a
specific ML model, confidence can be propagated higher in the
AC assuming that goals 98 and 178 related to verification will
be fulfilled with very high belief and no disbelief. A user of
the AC pattern will then make a propagation up to the choice
between l2 and l∞ norms and use the propagation results to
make the choice.

1) Propagation to the choice of a norm:
a) l2 norm: As shown in Table VII for Lipschitz training

considering a robustness criteria based on l2, the argumenta-
tion improves its initial strength, i.e. belief of 0.6 qualified as
very high, because of the confidence brought by the validation,
c.f. goal 23.

b) l∞ norm: As shown by Table VIII, for a robustness
criteria based on l∞ the initial belief of 0.375, qualified as low,
is also improved by the hypothesis of successful validation.

Note that for both training methods all depends on the pres-
ence of successful validation. Moreover, disbelief is reduced
by propagation in the AC and reaches 0.014 and 0.003, both

TABLE VIII
UNCERTAINTY PROPAGATION FOR LIPSCHITZ TRAINING BASED ON l∞

NORM

Goal Belief Disbelief

quantitative qualitative quantitative qualitative
126 0.375 L 0.115 L
101 0.375 L 0.057 L
100 0.120 L 0.014 L
99 0.462 L 0.003 L
21 0.430 L 0.003 L



TABLE IX
POST CHOICE PROPAGATION

Goal Belief Disbelief

quantitative qualitative quantitative qualitative
18 0.473 VH 0.012 L
17 0.473 VH 0.011 L
15 0.473 VH 0.011 L

qualified as low, for reciprocally l2 and l∞ Lipschitz training.
Finally, all depends on the presence of a successful validation.

2) Choice of a norm: The user of the AC pattern has to
make a choice on the basis of at least four criteria: quantitative
and qualitative belief to maximize, quantitative and qualitative
disbelief to minimize and other criteria such as cost of artifact
production to minimize. Considering only the four criteria,
using a ranking with Leximin the values for l2 are (0.618, 2/3,
0.986, 1) and the values for l∞ are (1/3, 0.430, 2/3, 0.997).
0.618 being larger than 1/3, the l2 norm is chosen.

3) Post choice propagation: The Table IX presents the
propagation from the choice to the top property of the AC.
Quantitatively there is some decrease of belief at goal 18 due
to a possible difference between local robustness and global
robustness.

D. Lessons learned

1) Strategies shall be shown: The choice of methodology is
to hide from the expert the strategies and choices. The results
show that with the information included in the strategy the
expert can make a quite different uncertainty assessment of
rules than without this information. Moreover, this difference
may lead to a quantitative difference in the assessment of the
AC property. The methodology could be revised concerning
hiding or not the strategies.

2) Consistency shall be enforced: The procedure and asso-
ciated Excel file type for uncertainty elicitation developed here
is based on scrollbars actuated by the expert. Each scrollbar
drives at the same time a numerical value and a semantic
qualifier. The scrollbar associated with decision is totally
independent from the scrollbar associated with confidence.
However, the Josang constraint must be respected. The results
indicate that, when the Josang constraint is violated, the
projection may depend on the context. This limitation could
be addressed by asking first the question about confidence
and limiting the decision scrollbar by the confidence value.
The absence of automatic enforcement of consistency between
rules at elicitation time is also a serious limitation. Finally, in
case of large choices with incompatible sub goals, the question
for all sub goals true and the question for all sub goals false are
irrelevant. The possibilities for sub goals combinations should
be assessed before making uncertainty assessment.

3) GSN format shall be adjusted for uncertainty
assessment: So far, there is no systematic method to
design an assurance case using GSN formalism. Moreover,
uncertainty assessment procedures proposed in the state of
the art are not mature enough to consider their features

Fig. 4. Example of an argument to be adjusted for uncertainty assessment

during the development of an AC. For example, in the
literature, one can find an argument that presents a goal with
a method to verify a property (defined as a top goal) and
another goal that argues that this method ensures the property.
However, “Is supported by” arrows, formally define by rules,
already fulfill this role. I.e., saying that the application of
a method m supports a property p means, according to the
nature of the chosen strategy, that m ensures, demonstrates,
implies, etc. p. Thus, a goal carrying the inference between a
method and the property it supports, must not be considered
during the uncertainty assessment. For example, questions
about goal GOA3 (“<Certified robust training>
ensures that the <Trained ML Model> is
< l2 locally robust >”), in Figure 4, will not be
included in the form. In addition, solutions are either used as
a reference to an artifact (e.g., a formal verification report,
test results, etc.) or to a method to be applied. Remember
that the assessment approach describe in this paper does
not assess the inference between the solution and the goal
connected to it. However, in the second case the assessment
of inference is needed. To keep coherence in the approach all
solutions that carry a method are transformed to goals. The
artifacts resulting from the application of these methods, such
as reports results, can serve as new solutions.

4) Multi criteria choice methods shall be integrated: The
result on comparison of approaches indicates that uncertainty
modeling in AC is useful and that, when considering relevant
requirements, the assessment of uncertainty shall be performed
at the same time with both qualitative and quantitative ap-
proaches. This leads to a valuation of goals by four elements:
the quantitative belief, the qualitative belief, the quantita-
tive disbelief and the qualitative disbelief. For most nodes,
propagation of those four elements is quite easy and for the
case study the conflict mass value is always low indicating
that there is no strong contradiction inside the argument.
However, at choice node uncertainty propagation relies on
building consistent sets of sub goals and on performing a
choice among those sets. This would require a better definition
of the choice and it is not sure that the propagation could be
fully automatized at those nodes. Moreover, there is no total
order between goals assessed following different strategies
because there are four uncertainty elements and other elements
such as, for instance, the cost. Thus, a multi criteria reasoning
shall be performed for choosing the best solution.

5) The AC pattern shall be extended and consolidated:
The case study highlights the benefits and some limitations of
the proposed methodology. However, limited effort and time



inducted additional limitations:
• Only one expert has been involved. It is impossible to

distinguish between one the one hand the results that are
specific to this expert and on the other hand the results
that could be consolidated with a large panel of experts.

• Uncertainty has not been assessed on the whole AC for
robustness of ML. Some elements, that are not purely
logical were not considered, for instance the branches
corresponding to two alternative definitions of robustness
and the branches corresponding to verification.

• The expert had the possibility to not assess a node or to
indicate that something is missing in the argument of a
node and used this possibility. This induced some doubts
about the structure of the AC.

In consequence new AC patterns are derived: One pattern is
developed for each norm and each robustness definition. Figure
5 presents the structure of the pattern devoted to the number
of samples robustness criterion.

Fig. 5. Updated AC pattern

VII. CONCLUSION

The work presented here shows that recently proposed
methods [19] can be applied to large AC patterns. However,
the elicitation of masses requires a large number of questions
to experts. Fortunately, the results obtained indicate that large
AC don’t imply large uncertainty on conclusion. The work
also shows that it is useful to work with both scale and
numbers and that the uncertainty in AC patterns contributes
to performing design, implementation, integration, verification
and validation choices and improving the AC structure. Finally,
the result of this research will be integrated in the Capella
system engineering environment1.

An open question for future researches is the use of uncer-
tainty levels in the context of certification and a possible link

1https://eclipse.dev/capella/

between the qualitative belief and disbelief of the top goal of
a final AC with Safety Integrity Levels or Design Assurance
Levels (DAL). For instance a belief VH and a disbelief VL
could be requested for DAL A and B, a belief VH and a
disbelief at most L for DAL C and D and a belief VH and a
disbelief at most H for DAL E.
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